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Abstract

Amongst the very first variance reduced stochastic methods for solving the empiri-
cal risk minimization problem was the SVRG method [13]. SVRG is an inner-outer
loop based method, where in the outer loop a reference full gradient is evaluated, af-
ter whichm ∈ N steps of an inner loop are executed where the reference gradient is
used to build a variance reduced estimate of the current gradient. The simplicity of
the SVRG method and its analysis have lead to multiple extensions and variants for
even non-convex optimization. Yet there is a significant gap between the parameter
settings that the analysis suggests and what is known to work well in practice. Our
first contribution is that we take several steps towards closing this gap. In particular,
the current analysis shows that m should be of the order of the condition number so
that the resulting method has a favorable complexity. Yet in practice m = n works
well regardless of the condition number, where n is the number of data points.
Furthermore, the current analysis shows that the inner iterates have to be reset
using averaging after every outer loop. Yet in practice SVRG works best when
the inner iterates are updated continuously and not reset. We provide an analysis
of these aforementioned practical settings and show that they achieve the same
favorable complexity as the original analysis (with slightly better constants). Our
second contribution is to provide a more general analysis than had been previously
done by using arbitrary sampling, which allows us to analyse virtually all forms
of mini-batching through a single theorem. Since our setup and analysis reflect
what is done in practice, we are able to set the parameters such as the mini-batch
size and step size using our theory in such a way that produces a more efficient
algorithm in practice, as we show in extensive numerical experiments.
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1 Introduction

Consider the problem of minimizing a µ–strongly convex and L–smooth function f where

x∗ = arg min
x∈Rd

1

n

n∑
i=1

fi(x) =: f(x), (1)

and each fi is convex and Li–smooth. Several training problems in machine learning fit this format,
e.g. least-squares, logistic regressions and conditional random fields. Typically each fi represents a
regularized loss of an ith data point. When n is large, algorithms that rely on full passes over the
data, such as gradient descent, are no longer competitive. Instead, the stochastic version of gradient
descent SGD [26] is often used since it requires only a mini-batch of data to make progress towards
the solution. However, SGD suffers from high variance, which keeps the algorithm from converging
unless a carefully often hand-tuned decreasing sequence of step sizes is chosen. This often results in
a cumbersome parameter tuning and a slow convergence.

To address this issue, many variance reduced methods have been designed in recent years including
SAG [27], SAGA [6] and SDCA [28] that require only a constant step size to achieve linear conver-
gence. In this paper, we are interested in variance reduced methods with an inner-outer loop structure,
such as S2GD [14], SARAH [21], L-SVRG [16] and the orignal SVRG [13] algorithm. Here we
present not only a more general analysis that allows for any mini-batching strategy, but also a more
practical analysis, by analysing methods that are based on what works in practice, and thus providing
an analysis that can inform practice.

2 Background and Contributions
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Figure 1: Left: the total complexity (3) for random
Gaussian data, right: the step size (4) as b increases.

Convergence under arbitrary samplings.
We give the first arbitrary sampling conver-
gence results for SVRG type methods in
the convex setting1. That is our analysis in-
cludes all forms of sampling including mini-
batching and importance sampling as a spe-
cial case. To better understand the signifi-
cance of this result, we use mini-batching b
elements without replacement as a running
example throughout the paper. With this sam-
pling the update step of SVRG, starting from
x0 = w0 ∈ Rd, takes the form of

xt+1 = xt − α

(
1

b

∑
i∈B
∇fi(xt)−

1

b

∑
i∈B
∇fi(ws−1) +∇f(ws−1)

)
, (2)

where α > 0 is the step size, B ⊆ [n]
def
= {1, . . . , n} and b = |B|. Here ws−1 is the reference point

which is updated after m ∈ N steps, the xt’s are the inner iterates and m is the loop length. As
a special case of our forthcoming analysis in Corollary 4.1, we show that the total complexity of
the SVRG method based on (2) to reach an ε > 0 accurate solution has a simple expression which
depends on n, m, b, µ, L and Lmax

def
= maxi∈[n] Li:

Cm(b)
def
= 2

( n
m

+ 2b
)

max

{
3

b

n− b
n− 1

Lmax

µ
+
n

b

b− 1

n− 1

L

µ
,m

}
log

(
1

ε

)
, (3)

so long as the step size is

α =
1

2

b(n− 1)

3(n− b)Lmax + n(b− 1)L
. (4)

By total complexity we mean the total number of individual∇fi gradients evaluated. This shows that
the total complexity is a simple function of the loop length m and the mini-batch size b. See Figure 1
for an example for how total complexity evolves as we increase the mini-batch size.

1SVRG has very recently been analysed under arbitrary samplings in the non-convex setting [12].
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Optimal mini-batch and step sizes for SVRG. The size of the mini-batch b is often left as a
parameter for the user to choose or set using a rule of thumb. The current analysis in the literature for
mini-batching shows that when increasing the mini-batch size b, while the iteration complexity can
decrease2, the total complexity increases or is invariant. See for instance results in the non-convex
case [22, 25], and for the convex case [10], [15], [1] and finally [18] where one can find the iteration
complexity of several variants of SVRG with mini-batching. However, in practice, mini-batching
can often lead to faster algorithms. In contrast our total complexity (3) clearly highlights that when
increasing the mini batch size, the total complexity can decrease and the step size increases, as can
be seen in our plot of (3) and (4) in Figure 1. Furthermore Cm(b) is a convex function in b which
allows us to determine the optimal mini-batch a priori. For m = n – a widely used loop length
in practice – the optimal mini-batch size, depending on the problem setting, is given in Table 1.
Moreover, we can also determine the optimal loop length. The reason we were able to achieve these

n ≤ L
µ

L
µ < n < 3Lmax

µ

n ≥ 3Lmax

µLmax ≥ nL
3 Lmax <

nL
3 Lmax ≥ nL

3 Lmax <
nL
3

n

⌊
b̂
⌋ ⌊

b̃
⌋ ⌊

min{b̂, b̃}
⌋

1

Table 1: Optimal mini-batch sizes for Algorithm 1 with m = n. The last line presents the optimal
mini-batch sizes depending on all the possible problem settings, which are presented in the first two

lines. Notations: b̂ =
√

n
2

3Lmax−L
nL−3Lmax

, b̃ = (3Lmax−L)n
n(n−1)µ−nL+3Lmax

.

new tighter mini-batch complexity bounds was by using the recently introduced concept of expected
smoothness [9] alongside a new constant we introduce in this paper called the expected residual
constant. The expected smoothness and residual constants, which we present later in Lemmas 4.1
and 4.2, show how mini-batching (and arbitrary sampling in general) combined with the smoothness
of our data can determine how smooth in expectation our resulting mini-batched functions are. The
expected smoothness constant has been instrumental in providing a tight mini-batch analysis for
SGD [8], SAGA [7] and now SVRG.

New practical variants. We took special care so that our analysis allows for practical parameter
settings. In particular, often the loop length is set to m = n or m = n/b in the case of mini-batching3.
And yet, the classical SVRG analysis given in [13] requires m ≥ 20Lmax/µ in order to ensure
a resulting iteration complexity of O((n + Lmax/µ) log(1/ε)). Furthermore, the standard SVRG
analysis relies on averaging the xt inner iterates after every m iterations of (2), yet this too is not
what works well in practice4. To remedy this, we propose Free-SVRG, a variant of SVRG where
the inner iterates are not averaged at any point. Furthermore, by developing a new Lyapunov style
convergence for Free-SVRG, our analysis holds for any choice of m, and in particular, for m = n we
show that the resulting complexity is also given by O((n+ Lmax/µ) log(1/ε)).

The only downside of Free-SVRG is that the reference point is set using a weighted averaging based on
the strong convexity parameter. To fix this issue, [11], and later [16, 17], proposed a loopless version
of SVRG. This loopless variant has no explicit inner-loop structure, it instead updates the reference
point based on a coin toss and lastly requires no knowledge of the strong convexity parameter and no
averaging whatsoever. We introduce L-SVRG-D, an improved variant of Loopless-SVRG that takes
much larger step sizes after the reference point is reset, and gradually smaller step sizes thereafter.

2Note that the total complexity is equal to the iteration complexity times the mini-batch size b.
3See for example the lightning package from scikit-learn [23]: http://contrib.scikit-learn.org/lightning/

and [21] for examples where m = n. See [2] for an example where m = 5n/b.
4Perhaps an exception to the above issues in the literature is the Katyusha method and its analysis [1], which

is an accelerated variant of SVRG. In [1] the author shows that using a loop length m = 2n and by not averaging
the inner iterates, the Katyusha method achieves the accelerated complexity ofO((n+

√
(nLmax)/µ) log(1/ε)).

Though a remarkable advance in the theory of accelerated methods, the analysis in [1] does not hold for the
unaccelerated case. This is important since, contrary to the name, the accelerated variants of stochastic methods
are not always faster than their non-accelerated counterparts. Indeed, acceleration only helps in the stochastic
setting when Lmax/µ ≥ n, in other words for problems that are sufficiently ill-conditioned.

3
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We provide an complexity analysis of L-SVRG-D that allows for arbitrary sampling and achieves the
same complexity as Free-SVRG, albeit at the cost of introducing more variance into the procedure
due to the coin toss.

3 Assumptions and Sampling

We collect all of the assumptions we use in the following.
Assumption 3.1. There exist L ≥ 0 and µ ≥ 0 such that for all x, y ∈ Rd,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖22 , (5)

f(x) ≤ f(y) + 〈∇f(x), x− y〉 − µ

2
‖x− y‖22 . (6)

We say that f is L–smooth (5) and µ–strongly convex (6). Moreover, for all i ∈ [n], fi is convex and
there exists Li ≥ 0 such that fi is Li–smooth.

So that we can analyse all forms of mini-batching simultaneously through arbitrary sampling we
make use of a sampling vector.
Definition 3.1 (The sampling vector). We say that the random vector v = [v1, . . . , vn] ∈ Rn with
distribution D is a sampling vector if ED [vi] = 1 for all i ∈ [n].

With a sampling vector we can compute an unbiased estimate of f(x) and ∇f(x) via

fv(x)
def
=

1

n

n∑
i=1

vifi(x) and ∇fv(w)
def
=

1

n

n∑
i=1

vi∇fi(x). (7)

Indeed these are unbiased estimators since

ED [fv(x)] =
1

n

n∑
i=1

ED [vi] fi(x) =
1

n

n∑
i=1

fi(x) = f(x). (8)

Likewise we can show that ED [∇fv(x)] = ∇f(x). Computing∇fv is cheaper than computing the
full gradient ∇f whenever v is a sparse vector. In particular, this is the case when the support of v is
based on a mini-batch sampling.
Definition 3.2 (Sampling). A sampling S ⊆ [n] is any random set-valued map which is uniquely

defined by the probabilities
∑
B⊆[n] pB = 1 where pB

def
= P(S = B) for all B ⊆ [n]. A sampling S

is called proper if for every i ∈ [n], we have that pi
def
= P [i ∈ S] =

∑
C:i∈C

pC > 0.

We can build a sampling vector using sampling as follows.

Lemma 3.1 (Sampling vector). Let S be a proper sampling. Let pi
def
= P [i ∈ S] and P

def
=

Diag (p1, . . . , pn). Let v = v(S) be a random vector defined by

v(S) = P−1
∑
i∈S

ei
def
= P−1eS . (9)

It follows that v is a sampling vector.

Proof. The i-th coordinate of v(S) is vi(S) = 1(i ∈ S)/pi and thus

E [vi(S)] =
E [1(i ∈ S)]

pi
=

P [i ∈ S]

pi
= 1.

Our forthcoming analysis holds for all samplings. However, we will pay particular attention to b-nice
sampling, otherwise known as mini-batching without replacement, since it is often used in practice.
Definition 3.3 (b-nice sampling). S is a b-nice sampling if it is sampling such that

P [S = B] =
1(
n
b

) , ∀B ⊆ [n] : |B| = b.
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To construct such a sampling vector based on the b–nice sampling, note that pi = b
n for all i ∈ [n] and

thus we have that v(S) = n
b

∑
i∈S ei according to Lemma 3.1. The resulting subsampled function is

then fv(x) = 1
|S|
∑
i∈S fi(x), which is simply the mini-batch average over S.

Using arbitrary sampling also allows us to consider non-uniform samplings, and for completeness,
we present this sampling and several others in Appendix D.

4 Free-SVRG: freeing up the inner loop size

Similarly to SVRG, Free-SVRG is an inner-outer loop variance reduced algorithm. It differs from the
original SVRG [13] on two major points: how the reference point is reset and how the first iterate of
the inner loop is defined, see Algorithm 15.

First, in SVRG, the reference point is the average of the iterates of the inner loop. Thus, old iterates
and recent iterates have equal weights in the average. This is counterintuitive as one would expect
that to reduce the variance of the gradient estimate used in (2), one needs a reference point which is
closer to the more recent iterates. This is why, inspired by [20], we use the weighted averaging in
Free-SVRG given in (10), which gives more importance to recent iterates compared to old ones.

Second, in SVRG, the first iterate of the inner loop is reset to the reference point. Thus, the inner
iterates of the algorithm are not updated using a one step recurrence. In contrast, Free-SVRG defines
the first iterate of the inner loop as the last iterate of the previous inner loop, as is also done in practice.
These changes and a new Lyapunov function analysis are what allows us to freely choose the size of
the inner loop6. To declutter the notation, we define for a given step size α > 0:

Sm
def
=

m−1∑
i=0

(1− αµ)m−1−i and pt
def
=

(1− αµ)m−1−t

Sm
, for t = 0, . . . ,m− 1. (10)

Algorithm 1 Free-SVRG
Parameters inner-loop length m, step size α, a sampling vector v ∼ D, and pt defined in (10)
Initialization w0 = xm0 ∈ Rd

for s = 1, 2, . . . , S do
x0s = xms−1
for t = 0, 1, . . . ,m− 1 do

Sample vt ∼ D
gts = ∇fvt(xts)−∇fvt(ws−1) +∇f(ws−1)
xt+1
s = xts − αgts

ws =
∑m−1
t=0 ptx

t
s

return xmS

4.1 Convergence analysis

Our analysis relies on two important constants called the expected smoothness constant and the
expected residual constant. Their existence is a result of the smoothness of the function f and that of
the individual functions fi, i ∈ [n].
Lemma 4.1 (Expected smoothness, Theorem 3.6 in [8]). Let v ∼ D be a sampling vector and assume
that Assumption 3.1 holds. There exists L ≥ 0 such that for all x ∈ Rd,

ED
[
‖∇fv(x)−∇fv(x∗)‖22

]
≤ 2L (f(x)− f(x∗)) . (11)

Lemma 4.2 (Expected residual). Let v ∼ D be a sampling vector and assume that Assumption 3.1
holds. There exists ρ ≥ 0 such that for all x ∈ Rd,

ED
[
‖∇fv(x)−∇fv(x∗)−∇f(x)‖22

]
≤ 2ρ (f(x)− f(x∗)) . (12)

5After submitting this work, it has come to our attention that Free-SVRG is a special case of k-SVRG [24]
when k = 1.

6Hence the name of our method Free-SVRG.
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For completeness, the proof of Lemma 4.1 is given in Lemma E.1 in the supplementary material. The
proof of Lemma 4.2 is also given in the supplementary material, in Lemma F.1. Indeed, all proofs are
deferred to the supplementary material.

Though Lemma 4.1 establishes the existence of the expected smoothness L, it was only very recently
that a tight estimate of L was conjectured in [7] and proven in [8]. In particular, for our working
example of b–nice sampling, we have that the constants L and ρ have simple closed formulae that
depend on b.
Lemma 4.3 (L and ρ for b-nice sampling). Let v be a sampling vector based on the b–nice sampling.
It follows that.

L = L(b)
def
=

1

b

n− b
n− 1

Lmax +
n

b

b− 1

n− 1
L, (13)

ρ = ρ(b)
def
=

1

b

n− b
n− 1

Lmax. (14)

The reason that the expected smoothness and expected residual constants are so useful in obtaining
a tight mini-batch analysis is because, as the mini-batch size b goes from n to 1, L(b) (resp. ρ(b))
gracefully interpolates between the smoothness of the full function L(n) = L (resp. ρ(n) = 0), and
the smoothness of the individual fi functions L(1) = Lmax (resp ρ(1) = Lmax). Also, we can bound
the second moment of a variance reduced gradient estimate using L and ρ as follows.
Lemma 4.4. Let Assumption 3.1 hold. Let x,w ∈ Rd and v ∼ D be sampling vector. Consider

g(x,w)
def
= ∇fv(x)−∇fv(w) +∇f(w). As a consequence of (11) and (12) we have that

ED
[
‖g(x,w)‖22

]
≤ 4L(f(x)− f(x∗)) + 4ρ(f(w)− f(x∗)). (15)

Next we present a new Lyapunov style convergence analysis through which we will establish the
convergence of the iterates and the function values simultaneously.
Theorem 4.1. Consider the setting of Algorithm 1 and the following Lyapunov function

φs
def
= ‖xms − x∗‖

2
2 + ψs where ψs

def
= 8α2ρSm(f(ws)− f(x∗)). (16)

If Assumption 3.1 holds and if α ≤ 1
2(L+2ρ) , then

E [φs] ≤ βsφ0, where β = max
{

(1− αµ)m, 12
}
. (17)

4.2 Total complexity for b–nice sampling

To gain better insight into the convergence rate stated in Theorem 4.1, we present the total complexity
of Algorithm 1 when v is defined via the b–nice sampling introduced in Definition 3.3.
Corollary 4.1. Consider the setting of Algorithm 1 and suppose that we use b–nice sampling. Let
α = 1

2(L(b)+2ρ(b)) , where L(b) and ρ(b) are given in (13) and (14). We have that the total complexity

of finding an ε > 0 approximate solution that satisfies E
[
‖xms − x∗‖

2
2

]
≤ ε φ0 is

Cm(b)
def
= 2

( n
m

+ 2b
)

max

{
L(b) + 2ρ(b)

µ
,m

}
log

(
1

ε

)
. (18)

Now (3) results from plugging (13) and (14) into (18). As an immediate sanity check, we check the
two extremes b = n and b = 1. When b = n, we would expect to recover the iteration complexity of
gradient descent, as we do in the next corollary7.
Corollary 4.2. Consider the setting of Corollary 4.1 with b = n and m = 1, thus α =

1
2(L(n)+2ρ(n)) = 1

2L . Hence, the resulting total complexity (18) is given by C1(n) = 6nLµ log
(
1
ε

)
.

In practice, the most common setting is choosing b = 1 and the size of the inner loop m = n. Here
we recover a complexity that is common to other non-accelerated algorithms [27], [6], [14], and for a
range of values of m including m = n.

7Though the resulting complexity is 6 times the tightest gradient descent complexity, it is of the same order.
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Corollary 4.3. Consider the setting of Corollary 4.1 with b = 1 and thus α = 1
2(L(1)+2ρ(1)) = 1

6Lmax
.

Hence the resulting total complexity (18) is given by Cm(1) = 18
(
n+ Lmax

µ

)
log
(
1
ε

)
, so long as

m ∈
[
min(n, Lmax

µ ),max(n, Lmax

µ )
]
.

Thus total complexity is essentially invariant for m = n, m = Lmax/µ and everything in between.

5 L-SVRG-D: a decreasing step size approach

Although Free-SVRG solves multiple issues regarding the construction and analysis of SVRG, it still
suffers from an important issue: it requires the knowledge of the strong convexity constant, as is the
case for the original SVRG algorithm [13]. One can of course use an explicit small regularization
parameter as a proxy, but this can result in a slower algorithm.

A loopless variant of SVRG was proposed and analysed in [11, 16, 17]. At each iteration, their
method makes a coin toss. With (a low) probability p, typically 1/n, the reference point is reset to
the previous iterate, and with probability 1− p, the reference point remains the same. This method
does not require knowledge of the strong convexity constant.

Our method, L-SVRG-D, uses the same loopless structure as in [11, 16, 17] but introduces different
step sizes at each iteration, see Algorithm 2. We initialize the step size to a fixed value α > 0. At
each iteration we toss a coin, and if it lands heads (with probability 1− p) the step size decreases by
a factor

√
1− p. If it lands tails (with probability p) the reference point is reset to the most recent

iterate and the step size is reset to its initial value α.

This allows us to take larger steps than L-SVRG when we update the reference point, i.e., when
the variance of the unbiased estimate of the gradient is low, and smaller steps when this variance
increases.

Algorithm 2 L-SVRG-D
Parameters step size α, p ∈ (0, 1], and a sampling vector v ∼ D
Initialization w0 = x0 ∈ Rd, α0 = α
for k = 1, 2, . . . ,K − 1 do

Sample vk ∼ D
gk = ∇fvk(xk)−∇fvk(wk) +∇f(wk)
xk+1 = xk − αkgk

(wk+1, αk+1) =

{
(xk, α) with probability p
(wk,

√
1− p αk) with probability 1− p

return xK

Theorem 5.1. Consider the iterates of Algorithm 2 and the following Lyapunov function

φk
def
=
∥∥xk − x∗∥∥2

2
+ ψk where ψk

def
=

8α2
kL

p(3− 2p)

(
f(wk)− f(x∗)

)
, ∀k ∈ N. (19)

If Assumption 3.1 holds and

α ≤ 1

2ζpL
, where ζp

def
=

(7− 4p)(1− (1− p) 3
2 )

p(2− p)(3− 2p)
, (20)

then

E
[
φk
]
≤ βkφ0, where β = max

{
1− 2

3
αµ, 1− p

2

}
. (21)

Remark 5.1. To get a sense of the formula of the step size given in (20), it is easy to show that ζp is
an increasing function of p such that 7/4 ≤ ζp ≤ 3. Since typically p ≈ 0, we often take a step
which is approximately α ≤ 2/(7L).
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Corollary 5.1. Consider the setting of Algorithm 2 and suppose that we use b–nice sampling. Let
α = 1

2ζpL(b) . We have that the total complexity of finding an ε > 0 approximate solution that satisfies

E
[∥∥xk − x∗∥∥2

2

]
≤ ε φ0 is

Cp(b)
def
= 2(2b+ pn) max

{
3ζp
2

L(b)

µ
,

1

p

}
log

(
1

ε

)
. (22)

6 Optimal parameter settings: loop, mini-batch and step sizes

In this section, we restrict our analysis to b–nice sampling. First, we determine the optimal loop
size for Algorithm 1. Then, we examine the optimal mini-batch and step sizes for particular choices
of the inner loop size m for Algorithm 1 and of the probability p of updating the reference point
in Algorithm 2, that play analogous roles. Note that the steps used in our algorithms depend on
b through the expected smoothness constant L(b) and the expected residual constant ρ(b). Hence,
optimizing the total complexity in the mini-batch size also determines the optimal step size.

Examining the total complexities of Algorithms 1 and 2, given in (18) and (22), we can see that,
when setting p = 1/m in Algorithm 2, these complexities only differ by constants. Thus, to avoid
redundancy, we present the optimal mini-batch sizes for Algorithm 2 in Appendix C and we only
consider here the complexity of Algorithm 1 given in (18).

6.1 Optimal loop size for Algorithm 1

Here we determine the optimal value ofm for a fixed batch size b, denoted bym∗(b), which minimizes
the total complexity (18).

Proposition 6.1. The loop size that minimizes (18) and the resulting total complexity is given by

m∗(b) =
L(b) + 2ρ(b)

µ
and Cm∗(b) = 2

(
n+ 2b

L(b) + 2ρ(b)

µ

)
log

(
1

ε

)
. (23)

For example when b=1, we have thatm∗(1) = 3Lmax/µ andCm∗(1) = O((n+Lmax/µ) log(1/ε)),
which is the same complexity as achieved by the range of m values given in Corollary 4.3. Thus,
as we also observed in Corollary 4.3, the total complexity is not very sensitive to the choice of m,
and m = n is a perfectly safe choice as it achieves the same complexity as m∗. We also confirm this
numerically with a series of experiments in Section G.2.2.

6.2 Optimal mini-batch and step sizes

In the following proposition, we determine the optimal mini-batch and step sizes for two practical
choices of the size of the loop m.

Proposition 6.2. Let b∗
def
= arg min

b∈[n]
Cm(b), where Cm(b) is defined in (18). For the widely used

choice m = n, we have that b∗ is given by Table 1. For another widely used choice m = n/b, which
allows to make a full pass over the data set during each inner loop, we have

b∗ =


⌊
b̄
⌋

if n > 3Lmax

µ

1 if 3Lmax

L < n ≤ 3Lmax

µ

n otherwise, if n ≤ 3Lmax

L

, where b̄
def
=

n(n− 1)µ− 3n(Lmax − L)

3(nL− Lmax)
. (24)

Previously, theory showed that the total complexity would increase as the mini-batch size increases,
and thus established that single-element sampling was optimal. However, notice that for m = n and
m = n/b, the usual choices for m in practice, the optimal mini-batch size is different than 1 for a
range of problem settings. Since our algorithms are closer to the SVRG variants used in practice, we
argue that our results explain why practitioners experiment that mini-batching works, as we verify in
the next section.
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7 Experiments

We performed a series of experiments on data sets from LIBSVM [5] and the UCI repository [3], to
validate our theoretical findings. We tested l2–regularized logistic regression on ijcnn1 and real-sim,
and ridge regression on slice and YearPredictionMSD. We used two choices for the regularizer:
λ = 10−1 and λ = 10−3. All of our code is implemented in Julia 1.0. Due to lack of space, most
figures have been relegated to Section G in the supplementary material.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)
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100
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l

0 500 1000 1500 2000 2500
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Figure 2: Comparison of theoretical variants of SVRG without mini-batching (b = 1) on the ijcnn1
data set.
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Figure 3: Optimality of our mini-batch size b∗ given in Table 1 for Free-SVRG on the slice data set.

Practical theory. Our first round of experiments aimed at verifying if our theory does result in
efficient algorithms. Indeed, we found that Free-SVRG and L-SVRG-D with the parameter setting
given by our theory are often faster than SVRG with settings suggested by the theory in [13], that is
m = 20Lmax/µ and α = 1/10Lmax. See Figure 2, and Section G.1 for more experiments comparing
different theoretical parameter settings.

Optimal mini-batch size. We also confirmed numerically that when using Free-SVRG withm = n,
the optimal mini-batch size b∗ derived in Table 1 was highly competitive as compared to the range
of mini-batch sizes b ∈ {1, 100,

√
n, n}. See Figure 3 and several more such experiments in

Section G.2.1. We also explore the optimality of our m∗ in more experiments in Section G.2.2.
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[15] J. Konečný, J. Liu, P. Richtárik, and M. Takáč. “Mini-Batch Semi-Stochastic Gradient Descent
in the Proximal Setting”. In: IEEE Journal of Selected Topics in Signal Processing 2 (2016),
pp. 242–255.
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