
KerGM: Kernelized Graph Matching

Zhen Zhang1, Yijian Xiang1, Lingfei Wu2, Bing Xue1, Arye Nehorai1
1Washington University in St. Louis

2IBM Research
1{zhen.zhang, yijian.xiang, xuebing, nehorai}@wustl.edu

2lwu@email.wm.edu

Abstract

Graph matching plays a central role in such fields as computer vision, pattern recog-
nition, and bioinformatics. Graph matching problems can be cast as two types of
quadratic assignment problems (QAPs): Koopmans-Beckmann’s QAP or Lawler’s
QAP. In our paper, we provide a unifying view for these two problems by introduc-
ing new rules for array operations in Hilbert spaces. Consequently, Lawler’s QAP
can be considered as the Koopmans-Beckmann’s alignment between two arrays in
reproducing kernel Hilbert spaces (RKHS), making it possible to efficiently solve
the problem without computing a huge affinity matrix. Furthermore, we develop the
entropy-regularized Frank-Wolfe (EnFW) algorithm for optimizing QAPs, which
has the same convergence rate as the original FW algorithm while dramatically
reducing the computational burden for each outer iteration. We conduct extensive
experiments to evaluate our approach, and show that our algorithm significantly
outperforms the state-of-the-art in both matching accuracy and scalability.

1 Introduction

Graph matching (GM), which aims at finding the optimal correspondence between nodes of two given
graphs, is a longstanding problem due to its nonconvex objective function and binary constraints.
It arises in many applications, ranging from recognizing actions [3, 13] to identifying functional
orthologs of proteins [11, 41]. Typically, GM problems can be formulated as two kinds of quadratic
assignment problems (QAPs): Koopmans-Beckmann’s QAP [18] or Lawler’s QAP [22]. Koopman-
Beckmann’s QAP is the structural alignment between two weighted adjacency matrices, which, as a
result, can be written as the standard Frobenius inner product between two n× n matrices, where n
denotes the number of nodes. However, Koopmans-Beckmann’s QAP cannot incorporate complex
edge attribute information, which is usually of great importance in characterizing the relation between
nodes. Lawler’s QAP can tackle this issue, because it attempts to maximize the overall similarity that
well encodes the attribute information. However, the key concern of the Lawler’s QAP is that it needs
to estimate the n2 × n2 pairwise affinity matrix, limiting its application to very small graphs.

In our work, we derive an equivalent formulation of Lawler’s QAP, based on a very mild assumption
that edge affinities are characterized by kernels [15, 34]. After introducing new rules for array
operations in Hilbert spaces, named asH−operations, we rewrite Lawler’s QAP as the Koopmann-
Beckmann’s alignment between two arrays in a reproducing kernel Hilbert space (RKHS), which al-
lows us to solve it without computing the huge affinity matrix. Taking advantage of theH−operations,
we develop a path-following strategy for mitigating the local maxima issue of QAPs. In addition to
the kernelized graph matching (KerGM) formulation, we propose a numerical optimization algorithm,
the entropy-regularized Frank-Wolfe (EnFW) algorithm, for solving large-scale QAPs. The EnFW
has the same convergence rate as the original Frank-Wolfe algorithm, with far less computational
burden in each iteration. Extensive experimental results show that our KerGM, together with the
EnFW algorithm, achieves superior performance in both matching accuracy and scalability.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Related Work: In the past forty years, a myriad of graph matching algorithms have been proposed
[8], most of which focused on solving QAPs. Previous work [2, 14, 21] approximated the quadratic
term with a linear one, which consequently can be solved by standard linear programming solvers.
In [36], several convex relaxation methods are proposed and compared. It is known that convex
relaxations can achieve global convergence, but usually perform poorly because the final projection
step separates the solution from the original QAP. Concave relaxations [29, 28] can avoid this problem
since their outputs are just permutation matrices. However, concave programming [4] is NP-hard,
which limits its applications. In [45], a seminal work termed the "path-following algorithm" was
proposed, which leverages both the above relaxations via iteratively solving a series of optimization
problems that gradually changed from convex to concave. In [27, 38, 39, 44], the path following
strategy was further extended and improved. However, all the above algorithms, when applied
to Lawler’s QAP, need to compute the n2 × n2 affinity matrix. To tackle the challenge, in [48],
the authors elegantly factorized the affinity matrix into the Kronecker product of smaller matrices.
However, it still cannot be well applied to large dense graphs, since it scales cubically with the
number of edges. Beyond solving the QAP, there are interesting works on doing graph matching from
other perspectives, such as probabilistic matching[46], hypergraph matching [24], and multigraph
matching [42]. We refer to [43] for a survey of recent advances.

Organization: In Section 2, we introduce the background, including Koopmans-Beckmann’s and
Lawler’s QAPs, and kernel functions and its reproducing kernel Hilbert space. In Section 3, we
present the proposed rules for array operations in Hilbert space. Section 4 and Section 5 form
the core of our work, where we develop the kernelized graph matching, together with the entropy-
regularized Frank-Wolfe optimizaton algorithm. In Section 6, we report the experimental results. In
the supplementary material, we provide proofs of all mathematical results in the paper, along with
further technical discussions and more experimental results.

2 Background

2.1 Quadratic Assignment Problems for Graph Matching

Let G = {A,V,P , E ,Q} be an undirected, attributed graph of n nodes and m edges, where
A ∈ Rn×n is the adjacency matrix, V = {vi}ni=1 and P = [~p1, ~p2, ..., ~pn] ∈ RdN×n are the
respective node set and node attributes matrix, and E = {eij |vi and vj are connected} and Q =
[~qij |eij ∈ E] ∈ RdE×m are the respective edge set and edge attributes matrix. Given two graphs
G1 = {A1,V1,P1, E1,Q1} and G2 = {A2,V2,P2, E2,Q2} of n nodes1, the GM problem aims to
find a correspondence between nodes in V1 and V2 which is optimal in some sense.

For Koopmans-Beckmann’s QAP [18], the optimality refers to the Frobenius inner product maxi-
mization between two adjacency matrices after permutation, i.e.,

max 〈A1X,XA2〉F s.t.X ∈ P = {X ∈ {0, 1}n×n|X~1 = ~1,XT~1 = ~1}, (1)
where 〈A,B〉F = tr(ATB) is the Frobenius inner product. The issue with (1) is that it ignores the
complex edge attributes, which are usually of particular importance in characterizing graphs.

For Lawler’s QAP [22], the optimality refers to the similarity maximization between the node
attribute sets and between the edge attribute sets, i.e.,

max
∑

v1i∈V1,v2a∈V2

kN (~p1
i , ~p

2
a)Xia +

∑
e1ij∈E1,e2ab∈E2

kE(~q1
ij , ~q

2
ab)XiaXjb s.t.X ∈ P, (2)

where kN and kE are the node and edge similarity measurements, respectively. Furthermore, (2) can
be rewritten in compact form:

max 〈KN ,X〉F + vec(X)TKvec(X) s.t.X ∈ P, (3)
where KN ∈ Rn×n is the node affinity matrix, K is an n2 × n2 matrix, defined such that Kia,jb =
kE(~q1

ij , ~q
2
ab) if i 6= j, a 6= b, e1ij ∈ E1, and e2ab ∈ E2, otherwise, Kia,jb = 0. It is well known

that Koopmans-Beckmann’s QAP is a special case of Lawler’s QAP if we set K = A2 ⊗A1 and
KN = 0n×n. The issue of (3) is that the size of K scales quadruply with respect to n, which
precludes its applications to large graphs. In our work, we will show that Lawler’s QAP can be
written in the Koopmans-Beckmann’s form, which can avoid computing K.

1We assume G1 and G2 have the same number of nodes. If not, we add dummy nodes.

2

Figure 1: Visualization of the operation Ψ�X .

2.2 Kernels and reproducing kernel Hilbert spaces

Given any set X , a kernel k : X × X → R is a function for quantitatively measuring the affinity
between objects in X . It satisfies that there exist a Hilbert space, H, and an (implicit) feature map
ψ : X → H, such that k(q1, q2) = 〈ψ(q1), ψ(q2)〉H, ∀q1, q2 ∈ X . The spaceH is the reproducing
kernel Hilbert space associated with k.

Note that if X is a Euclidean space i.e., X = Rd, many similarity measurement functions are kernels,
such as exp(−‖~q1 − ~q2‖22), exp(−‖~q1 − ~q2‖2), and 〈~q1, ~q2〉, ∀~q1, ~q2 ∈ Rd.

3 H-operations for arrays in Hilbert spaces

Let H be any Hilbert space, coupled with the inner product 〈·, ·〉H taking values in R. Let Hn×n
be the set of all n × n arrays in H, and let Ψ, Ξ ∈ Hn×n, i.e., Ψij , Ξij ∈ H, ∀i, j = 1, 2, ..., n.
Analogous to matrix operations in Euclidean spaces, we make the following addition, transpose, and
multiplication rules (H-operations), i.e.,∀X ∈ Rn×n, and we have

1. Ψ + Ξ, ΨT ∈ Hn×n, where [Ψ + Ξ]ij , Ψij + Ξij ∈ H and [ΨT]ij , Ψji ∈ H.

2. Ψ ∗Ξ ∈ Rn×n, where [Ψ ∗Ξ]ij ,
∑n
k=1〈Ψik,Ξkj〉H ∈ R.

3. Ψ �X , X �Ψ ∈ Hn×n, where [Ψ �X]ij ,
∑n
k=1 ΨikXkj =

∑n
k=1 XkjΨik ∈ H

and [X �Ψ]ij ,
∑n
k=1 XikΨkj ∈ H.

Note that if H = R, all the above degenerate to the common operations for matrices in Euclidean
spaces. In Fig. 1, we visualize the operation Ψ �X , where we let H = Rd, let Ψ be a 3 × 3
array in Rd, and let X be a 3× 3 permutation matrix. It is easy to see that Ψ�X is just Ψ after
column-permutation.

As presented in the following corollary, the multiplication � satisfy the combination law.
Corollary 1. ∀X,Y ∈ Rn×n, Ψ�X � Y = Ψ� (XY), and Y � (X �Ψ) = (Y X)�Ψ.

Based on theH-operations, we can construct the Frobenius inner product onHn×n.

Proposition 1. Define the function 〈·, ·〉FH : Hn×n ×Hn×n → R such that 〈Ψ,Ξ〉FH , tr(ΨT ∗
Ξ) =

∑n
i,j=1〈Ψij ,Ξij〉H, ∀Ψ, Ξ ∈ Hn×n. Then 〈·, ·〉FH is an inner product onHn×n.

As an immediate result, the function ‖·‖FH : Hn×n → R, defined such that ‖Ψ‖FH =
√
〈Ψ,Ψ〉FH ,

is the Frobenius norm onHn×n. Next, we introduce two properties of 〈·, ·〉FH , which play important
roles for developing the convex-concave relaxation of the Lawler’s graph matching problem.
Corollary 2. 〈Ψ�X,Ξ〉FH = 〈Ψ,Ξ�XT 〉FH and 〈X �Ψ,Ξ〉FH = 〈Ψ,XT �Ξ〉FH .

4 Kernelized graph matching

Before deriving kernelized graph matching, we first present an assumption.
Assumption 1. We assume that the edge affinity function kE : RdE × RdE → R is a kernel.
That is, there exist both an RKHS, H, and an (implicit) feature map, ψ : RdE → H, such that
kE(~q1, ~q2) = 〈ψ(~q1), ψ(~q2)〉H, ∀~q1, ~q2 ∈ RdE .

3

Note that Assumption 1 is rather mild, since kernel functions are powerful and popular in quantifying
the similarity between attributes [47], [19].

For any graph G = {A,V,P , E ,Q}, we can construct an array, Ψ ∈ Hn×n:

Ψij =

{
ψ(~qij) ∈ H, if (vi, vj) ∈ E
0H ∈ H, otherwise

,where 0H is the zero vector inH. (4)

Given two graphs G1 and G2, let Ψ(1) and Ψ(2) be the corresponding Hilbert arrays of G1 and G2,
respectively. Then the edge similarity term in Lawler’s QAP (see (2)) can be written as∑
e1ij∈E1,e2ab∈E2

kE(~q1ij , ~q
2
ab)XiaXjb =

n∑
i,b=1

〈
n∑
j=1

Ψ
(1)
ij Xjb,

n∑
a=1

XiaΨ
(2)
ab 〉HK = 〈Ψ(1)�X,X�Ψ(2)〉FH ,

which shares a similar form with (1), and can be considered as the Koopmans-Beckmann’s alignment
between the Hilbert arrays Ψ(1) and Ψ(2). The last term in (4) is just the Frobenius inner product
between two Hilbert arrays after permutation. Adding the node affinity term, we write Laweler’s
QAP as2:

min Jgm(X) = −〈KN ,X〉F − 〈Ψ(1) �X,X �Ψ(2)〉FH s.t.X ∈ P. (5)

4.1 Convex and concave relaxations

The form (5) inspires an intuitive way to develop convex and concave relaxations. To do this, we first
introduce an auxiliary function Jaux(X) = 1

2 〈Ψ
(1)�X,Ψ(1)�X〉FH+ 1

2 〈X�Ψ(2),X�Ψ(2)〉FH .
Applying Corollary 1 and 2, for any X ∈ P , which satisfies XXT = XTX = I , we have

Jaux(X) =
1

2
〈Ψ(1),Ψ(1)�(XXT)〉FH+

1

2
〈Ψ(2), (XTX)�Ψ(2)〉FH =

1

2
‖Ψ(1)‖2FH

+
1

2
‖Ψ(2)‖2FH

,

which is always a constant. Introducing Jaux(X) to (5), we obtain convex and concave relaxations:

Jvex(X) = Jgm(X) + Jaux(X) = −〈KN ,X〉F +
1

2
‖Ψ(1) �X −X �Ψ(2)‖2FH

, (6)

Jcav(X) = Jgm(X)− Jaux(X) = −〈KN ,X〉F −
1

2
‖Ψ(1) �X +X �Ψ(2)‖2FH

. (7)

The convexity of Jvex(X) is easy to conclude, because the composite function of the squared norm,
‖ · ‖2FH

, and the linear transformation, Ψ(1) � X − X � Ψ(2), is convex. We have similarity
interpretation for the concavity of Jcav(X).

It is interesting to see that the term 1
2‖Ψ

(1) �X −X �Ψ(2)‖FH in (6) is just the distance between
Hilbert arrays. If we set the map ψ(x) = x, then the convex relaxation of (1) is recovered (see [1]).

Path following strategy: Leveraging these two relaxations [45], we minimize Jgm by successively
optimizing a series of sub-problems parameterized by α ∈ [0, 1]:

min Jα(X) = (1− α)Jvex(X) + αJcav(X) s.t.X ∈ D = {X ∈ Rn×n+ |X1 = 1,XT1 = 1}, (8)

where D is the double stochastic relaxation of the permutation matrix set, P . We start at α = 0 and
find the unique minimum. Then we gradually increase α until α = 1. That is, we optimize Jα+4α
with the local minimizer of Jα as the initial point. Finally, we output the local minimizer of Jα=1.
We refer to [45], [48], and [39] for detailed descriptions and improvements.

Gradients computation: If we use the first-order optimization methods, we need only the gradients:

OJα(X) = (1− 2α)
[
(Ψ(1) ∗Ψ(1))X +X(Ψ(2) ∗Ψ(2))

]
− 2(Ψ(1) �X) ∗Ψ(2) −KN , (9)

where ∀i, j = 1, 2, ..., n, [Ψ(1) ∗ Ψ(1)]ij =
∑
e1ik,e

1
kj∈E1

kE(~q1
ik, ~q

1
kj); ∀a, b = 1, 2, ..., n,

[Ψ(2) ∗ Ψ(2)]ab =
∑
e2ac,e

2
cb∈E2

kE(~q2
ac, ~q

2
cb); and ∀i, a = 1, 2, ..., n, [(Ψ(1) � X) ∗ Ψ(2)]ia =∑

e1ik∈E1,e2ca∈E2
Xkck

E(~q1
ik, ~q

2
ca). In the supplementary material, we provide compact matrix multi-

plication forms for computing (9).
2For convenience in developing the path-following strategy, we write it in the minimization form.

4

4.2 Approximate explicit feature maps

Based on the above discussion, we significantly reduce the space cost of Lawler’s QAP by avoiding
computing the affinity matrix K ∈ Rn2×n2

. However, the time cost of computing gradient with (9)
is O(n4), which can be further reduced by employing the approximate explicit feature maps [33, 40].

For the kernel kE : RdE ×RdE → R, we may find an explicit feature map ψ̂ : RdE → RD, such that

∀ ~q1, ~q2 ∈ RdE , 〈ψ̂(~q1), ψ̂(~q2)〉 = k̂E(~q1, ~q2) ≈ kE(~q1, ~q2). (10)

For example, if kE(~q1, ~q2) = exp(−γ‖~q1 − ~q2‖22), then ψ̂ is the Fourier random feature map [33]:

ψ̂(~q) =

√
2

D

[
cos(ωT1 ~q + b1), ..., cos(ω

T
D~q + bD)

]T
, where ωi ∼ N(~0, γ2I) and bi ∼ U [0, 1]. (11)

Note that in practice, the performance of ψ̂ is good enough for relatively small values of D [47]. By
the virtue of explicit feature maps, we obtain a new graph representation Ψ̂ ∈ (RD)n×n:

Ψ̂ij =

{
ψ̂(~qij) ∈ RD, if (vi, vj) ∈ E
~0 ∈ RD, otherwise

,where ~0 is the zero vector in RD. (12)

Its space cost is O(Dn2). Now computing the gradient-related terms Ψ̂4 ∗ Ψ̂4,4 = (1), (2), and
(Ψ̂(1) �X) ∗ Ψ̂(2) in (9) becomes rather simple. We first slice Ψ̂4 into D matrices Ψ̂4(:, :, i) ∈
Rn×n, i = 1, 2, ..., D. Then it can be easily shown that

Ψ̂4 ∗ Ψ̂4 =

D∑
i=1

Ψ̂4(:, :, i)Ψ̂4(:, :, i), and (Ψ̂(1) �X) ∗ Ψ̂(2) =

D∑
i=1

Ψ̂(1)(:, :, i)XΨ̂(2)(:, :, i),

(13)
whose the first and second term respectively involves D and 2D matrix multiplications of the size
n× n. Hence, the time complexity is reduced to O(Dn3). Moreover, gradient computations with
(13) are highly parallizable, which also contributes to scalability.

5 Entropy-regularized Frank-Wolfe optimization algorithm

The state-of-the-art method for optimizing problem (8) is the Frank-Wolfe algorithm [29, 25, 37, 49],
whose every iteration involves linear programming to obtain optimal direction Y ∗, i.e.,

Y ∗ = argminY ∈D 〈OJα(X),Y 〉F, (14)

which is usually solved by the Hungarian algorithm [20]. Optimizing Jα may need to
call the Hungarian algorithm many times, which is quite time-consuming for large graphs.

500 1000 1500 2000 2500 3000 3500 4000
n

10-1

100

101

102

103

tim
e

(s
)

Hungarian
Sinkhorn

=0.001

Figure 2: Hungarian vs Sinkhorn.

In this work, instead of minimizing Jα(X) in (8), we
consider the following problem,

min
X

Fα(X) = Jα(X)+λH(X) s.t.X ∈ Dn,
(15)

where Dn = {X ∈ Rn×n+ |X1 = 1
n1,XT1 = 1

n1},
H(X) =

∑n
i,j=1 Xij logXij is the negative en-

tropy, and the node affinity matrix KN in Jα(X)
(see (5) and (8)) is normalized as KN → 1

nK
N to

balance the node and edge affinity terms. The ob-
servation is that if λ is set to be small enough, the
solution of (15), after being multiplied by n, will ap-
proximate that of the original QAP (8) as much as
possible. We design the entropy-regularized Frank-
Wolfe algorithm ("EnFW" for short) for optimizing (15), in each outer iteration of which we solve
the following nonlinear problem.

min 〈OJα(X),Y 〉F + λH(Y) s.t. Y ∈ Dn. (16)

5

Note that (16) can be extremely efficiently solved by the Sinkhorn-Knopp algorithm [10]. Theo-
retically, the Sinkhorn-Knopp algorithm converges at the linear rate, i.e., 0 < lim sup ‖Yk+1 −
Y ∗‖/‖Yk − Y ∗‖ < 1. An empirical comparison between the runtimes of these two algorithms is
shown in Fig. 2, where we can see that the Sinkhorn-Knopp algorithm for solving (16) is much faster
than the Hungarian algorithm for solving (14).

The EnFW algorithm description: We first give necessary definitions. Write the quadratic function
Jα(X+s(Y −X)) = Jα(X)+s〈OJα(X),Y −X〉F+ 1

2vec(Y −X)T∇2Jα(X)vec(Y −X)s2.
Then, we define the coefficient of the quadratic term as

Q(X,Y) ,
1

2
vec(Y −X)T∇2Jα(X)vec(Y −X) =

1

2
〈OJα(Y −X),Y −X〉F, (17)

where the second equality holds because Jα is a quadratic function. Next, similar to the original FW
algorithm, we define the nonnegative gap function g(X) as

g(X) , 〈OJα(X),X〉F + λH(X)− min
Y ∈Dn

〈OJα(X),Y 〉F + λH(Y). (18)

Proposition 2. If X∗ is an optimal solution of (15), then g(X∗) = 0.

Therefore, the gap function characterize the necessary condition for optimal solutions. Note that
for any X ∈ Dn, if g(X) = 0, then we say "X is a first-order stationary point". Now with the
definitions of Q(X,Y) and g(X), we detail the EnFW procedure in Algorithm 1.

Algorithm 1 The EnFW optimization algorithm for minimizing Fα (15)

1: Initialize X0 ∈ Dn
2: while not converge do
3: Compute the gradient ∇Jα(Xt) based on (9) or (13),
4: Obtain the optimal direction Yt by solving (16), i.e., Yt = argminY ∈Dn

〈OJα(Xt),Y 〉F + λH(Y),
5: Compute Gt = g(Xt) and Qt = Q(Xt,Yt),
6: Determine the stepsize st: If Qt ≤ 0; st = 1, else st = min{Gt/(2Qt), 1},
7: Update Xt+1 = Xt + st(Yt −Xt).
8: end
9: Output the solution X∗α.

After obtaining the optimal solution path X∗α, α = 0 : 4α : 1, we discretize nX∗1 by the Hungarian
[20] or the greedy discretization algorithm [5] to get the binary matching matrix. We next highlight
the differences between the EnFW algorithm and the original FW algorithm: (i) We find the optimal
direction by solving a nonlinear convex problem (16) with the efficient Sinkhorn-Knopp algorithm,
instead of solving the linear problem (14). (ii) We give an explicit formula for computing the stepsize
s, instead of making a linear search on [0, 1] for optimizing Fα(X + s(Y −X)) or estimating the
Lipschitz constant of∇Fα [32].

5.1 Convergence analysis

In this part, we present the convergence properties of the proposed EnFW algorithm, including the
sequentially decreasing property of the objective function and the convergence rates.
Theorem 1. The generated objective function value sequence, {Fα(Xt)}t=0, will decreasingly
converge. The generated points sequence, {Xt}t=0 ⊆ Dn ⊆ Rn×n, will weakly converge to the
first-order stationary point, at the rate O(1√

t+1
), i.e,

min
1≤t≤T

g(Xt) ≤
2max{40,

√
L40/n}√

T + 1
, (19)

where40 = Fα(X0)−minX∈Dn
Fα(X), and L is the largest absolute eigenvalue of∇2Jα(X).

If Jα(X) is convex, which happens when α is small (see (8)), then we have a tighter bound O(1
T+1).

Theorem 2. If Jα(X) is convex, we have Fα(XT)− Fα(X∗) ≤ 4L
n(T+1) .

Note that in both cases, convex and non-convex, our EnFW achieves the same (up to a constant coef-
ficient) convergence rate with the original FW algorithm (see [17] and [32]). Thanks to the efficiency
of the Sinkhorn-Knopp algorithm, we need much less time to finish each iteration. Therefore, our
optimization algorithm is more computationally efficient than the original FW algorithm.

6

6 Experiments

In this section, we conduct extensive experiments to demonstrate the matching performance and
scalability of our kernelized graph matching framework. We implement all the algorithms using
Matlab on an Intel i7-7820HQ, 2.90 GHz CPU with 64 GB RAM.

Notations: We use KerGMI to denote our algorithm when we use exact edge affinity kernels, and
use KerGMII to denote it when we use approximate explicit feature maps.

Baseline methods: We compare our algorithm with many state-of-the-art graph (network) matching
algorithms: (i) Integer projected fixed point method (IPFP) [25], (ii) Spectral matching with affine
constraints (SMAC) [9], (iii) Probabilistic graph matching (PM) [46] , (iv) Re-weighted random
walk matching (RRWM) [5], (v) Factorized graph matching (FGM) [48], (vi) Branch path following
for graph matching (BPFG) [39], (vii) Graduated assignment graph matching (GAGM) [14], (viii)
Global network alignment using multiscale spectral signatures (GHOST) [31], (ix) Triangle alignment
(TAME) [30], and (x) Maximizing accuracy in global network alignment (MAGNA) [35]. Note that
GHOST, TAME, and MAGNA are popular protein-protein interaction (PPI) networks aligners.

Settings: For all the baseline methods, we used the parameters recommended in the public code. For
our method, if not specified, we set the regularization parameter (see (15)) λ = 0.005 and the path
following parameters α = 0 : 0.1 : 1. We use the Hungarian algorithm for final discretization. We
refer to the supplementary material for other implementation details.

6.1 Synthetic datasets

We evaluate algorithms on the synthetic Erdos–Rényi [12] random graphs, following the experimental
protocol in [14, 48, 5]. For each trial, we generate two graphs: the reference graph G1 and the
perturbed graph G2, each of which has nin inlier nodes and nout outlier nodes. Each edge in G1 is
randomly generated with probability ρ ∈ [0, 1]. The edges e1ij ∈ E1 are associated with the edge
attributes q1ij ∼ U [0, 1]. The corresponding edge e2p(i)p(j) ∈ E2 has the attribute q2p(i)p(j) = q1ij + ε,
where p is a permutation map for inlier nodes, and ε ∼ N(0, σ2) is the Gaussian noise. For
the baseline methods, the edge affinity value between q1ij and q2ij is computed as kE(q1ij , q

2
ij) =

exp(−(q1ij − q2ij)2/0.15). For our method, we use the Fourier random features (11) to approximate
the Gaussian kernel, and represent each graph by an (nin + nout)× (nin + nout) array in RD. We
set the parameter γ = 5 and the dimension D = 20.

Comparing matching accuracy. We perform the comparison under three parameter settings, in all
of which we set nin = 50. Note that different from the standard protocol where nin = 20 [48], we
use relatively large graphs to highlight the advantage of our KerGMII. (i) We change the number
of outlier nodes, nout, from 0 to 50 while fixing the noise, σ = 0, and the edge density, ρ = 1. (ii)
We change σ from 0 to 0.2 while fixing nout = 0 and ρ = 1. (iii) We change ρ from 0.3 to 1 while
fixing nout = 5 and σ = 0.1. For all cases in these settings, we repeat the experiments 100 times and
report the average accuracy and standard error in Fig. 3 (a). Clearly, our KerGMII outpeforms all the
baseline methods with statistical significance.

Comparing scalability. To fairly compare the scalability of different algorithms, we consider the
exact matching between fully connected graphs, i.e., nout = 0, σ = 0, and ρ = 1. We change the
number of nodes, n (= nin), from 50 to 2000, and report the CPU time of each algorithm in Fig. 3
(b). We can see that all the baseline methods can handle only graphs with fewer than 200 nodes
because of the expensive space cost of matrix K (see (3)). However, KerGMII can finish Lawler’s
graph matching problem with 2000 nodes in reasonable time.

Analyzing parameter sensitivity. To analyze the parameter sensitivity of KerGMII, we vary the
regularization parameter, λ, and the dimension, D, of Fourier random features. We conduct large
subgraph matching experiments by setting nin = 500, nout = 0 : 100 : 500, ρ = 1, and σ = 0. We
repeat the experiments 50 times and report the average accuracies and standard errors. In Fig. 4,
we show the results under different λ and different D. We can see that (i) smaller λ leads to better
performance, which can be easily understood because the entropy regularizer will perturb the original
optimal solution, and (ii) the dimension D does not much affect on KerGMII, which implies that in
practice, we can use relatively small D for reducing the time and space complexity.

7

0 10 20 30 40 50
outliers

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0 0.04 0.08 0.12 0.16 0.2
noise

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

50 100 200 500 1000 2000
nodes

10-1

100

101

102

103

104

ti
m

e
(s

)

(a) (b)

Figure 3: Comparison of graph matching on synthetic datasets.

0 100 200 300 400 500

outliers

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

=0.005

=0.006

=0.007

=0.008

=0.009

=0.01

=0.012

=0.016

=0.02

=0.03

=0.04

=0.05

D=20

(a)

0 100 200 300 400 500

outliers

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy D=10

D=20

D=50

=0.005

(b)
Figure 4: (a) Parameter sensitivity study of the regularizer λ. (b) Parameter sensitivity study of the
dimension, D, of the random Fourier feature.

6.2 Image datasets
The CMU House Sequence dataset has 111 frames of a house, each of which has 30 labeled
landmarks. We follow the experimental protocol in [48, 39]. We match all the image pairs, spaced by
0:10:90 frames. We consider two node settings: (n1, n2) = (30, 30) and (n1, n2) = (20, 30). We
build graphs by using Delaunay triangulation [23] to connect landmarks. The edge attributes are the
pairwise distances between nodes. For all methods, we compute the edge affinity as kE(q1ij , q

2
ab) =

exp(−(q1ij − q2ab)2/2500). In Fig. 5, we report the average matching accuracy and objective function
(3) value ratio for every gap. It can be seen that on this dataset, KerGMI and FGM achieve the best
performance, and are slightly better than BPFG when outliers exist, i.e., (n1, n2) = (20, 30).

The Pascal dataset [26] has 20 pairs of motorbike images and 30 pairs of car images. For each
pair, the detected feature points and manually labeled correspondences are provided. Following
[48, 39], we randomly select 0:2:20 outliers from the background to compare different methods.
For each node, vi, its attribute, pi, is assigned as its orientation of the normal vector at that point
to the contour where the point was sampled. Nodes are connected by Delaunay triangulation [23].
For each edge, eij , its attribute ~qij equals [dij , θij]

T , where dij is the distance between vi and
vj , and θij is the absolute angle between the edge and the horizontal line. For all methods, the
node affinity is computed as kN (pi, pj) = exp(−|pi − pj |). The edge affinity is computed as
kE(~q1

ij , ~q
2
ab) = exp(−|d1ij − d2ab|/2− |θ1ij − θ2ab|/2). Fig. 6 (a) shows a matching result of KerGMI.

10 20 30 40 50 60 70 80 90 100
gap

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

10 20 30 40 50 60 70 80 90 100
gap

0.8

0.85

0.9

0.95

1

o
b

je
ct

iv
e

ra
ti

o

10 20 30 40 50 60 70 80 90 100
gap

0.85

0.9

0.95

1

A
cc

u
ra

cy

10 20 30 40 50 60 70 80 90 100
gap

0.925

0.95

0.975

1

o
b

je
ct

iv
e

ra
ti

o

(a) (b)

(20, 30) (20, 30) (30, 30) (30, 30)

Figure 5: Comparison of graph matching on the CMU house dataset.

8

(a)

0 2 4 6 8 10 12 14 16 18 20
outliers

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

0 2 4 6 8 10 12 14 16 18 20
outliers

0
100
200
300
400
500
600
700
800
900

ti
m

e
(s

)

(b)
Figure 6: (a) A matching example for a pair of motorbike images generated by KerGMI, where
green and red lines respectively indicate correct and incorrect matches. (b) Comparison of graph
matching on the Pascal dataset.

In Fig. 6 (b), we report the matching accuracies and CPU running time. From the perspective of
matching accuracy, KerGMI, BPFG, and FGM consistently outperforms other methods. When the
number of outliers increases, KerGMI and BPFG perform slightly better than FGM. However, from
the perspective of running time, the time cost of BPFG is much higher than that of the others.

6.3 The protein-protein interaction network dataset
The S.cerevisiae (yeast) PPI network [7] dataset is popularly used to eval-
uate PPI network aligners because it has known true node correspondences.

5% 10% 15% 20% 25%
Noise level

0

0.2

0.4

0.6

0.8

1

N
od

e
ac

cu
ra

cy

Figure 7: Results on PPI networks.

It consists of an unweighted high-confidence
PPI network with 1004 proteins (nodes) and
8323 PPIs (edges), and five noisy PPI net-
works generated by adding 5%, 10%, 15%,
20%, 25% low-confidence PPIs. We do graph
matching between the high-confidence network
with every noisy network. To apply KerGM,
we generate edge attributes by the heat dif-
fusion matrix [16, 6], Ht = exp(−tL) =∑n
i=1 exp(−λit)~ui~uTi ∈ Rn×n, where L

is the normalized Laplacian matrix [6], and
{(λi, ~ui)}ni=1 are eigenpairs of L. The edge
attributes vector ~qij is assigned as ~qij =
[H5(i, j),H10(i, j),H15(i, j),H20(i, j)]

T ∈
R4. We use the Fourier random features (11), and set D = 50 and γ = 200. We compare
KerGMII

3 with the state-of-the-art PPI aligners: TAME, GHOST, and MAGNA. In Fig. 7, we report
the matching accuracies. Clearly, KerGMII significantly outperforms the baselines. Especially when
the noise level are 20% or 25%, KerGMII’s accuracies are more than 50 percentages higher than
those of other algorithms.

7 Conclusion

In this work, based on a mild assumption regarding edge affinity values, we provided KerGM, a
unifying framework for Koopman-Beckmann’s and Lawler’s QAPs, within which both two QAPs
can be considered as the alignment between arrays in RKHS. Then we derived convex and concave
relaxations and the corresponding path-following strategy. To make KerGM more scalable to large
graphs, we developed the computationally efficient entropy-regularized Frank-Wolfe optimization
algorithm. KerGM achieved promising performance on both image and biology datasets. Thanks to
its scalability, we believe KerGM can be potentially useful for many applications in the real world.

8 Acknowledgment

This work was supported in part by the AFOSR grant FA9550-16-1-0386.
3To the best our knowledge, KerGM is the first one that uses Lawler’s graph matching formulation to solve

the PPI network alignment problem.

9

References
[1] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On convex relaxation of graph

isomorphism. Proceedings of the National Academy of Sciences, 112(10):2942–2947, 2015.

[2] HA Almohamad and Salih O Duffuaa. A linear programming approach for the weighted
graph matching problem. IEEE Transactions on pattern analysis and machine intelligence,
15(5):522–525, 1993.

[3] William Brendel and Sinisa Todorovic. Learning spatiotemporal graphs of human activities. In
2011 International Conference on Computer Vision, pages 778–785. IEEE, 2011.

[4] Altannar Chinchuluun, Enkhbat Rentsen, and Panos M Pardalos. A numerical method for
concave programming problems. In Continuous Optimization, pages 251–273. Springer, 2005.

[5] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph matching.
In European conference on Computer vision, pages 492–505. Springer, 2010.

[6] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

[7] Sean R Collins, Patrick Kemmeren, Xue-Chu Zhao, Jack F Greenblatt, Forrest Spencer,
Frank CP Holstege, Jonathan S Weissman, and Nevan J Krogan. Toward a comprehensive atlas
of the physical interactome of saccharomyces cerevisiae. Molecular & Cellular Proteomics,
6(3):439–450, 2007.

[8] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial
intelligence, 18(03):265–298, 2004.

[9] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Balanced graph matching. In Advances in
Neural Information Processing Systems, pages 313–320, 2007.

[10] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pages 2292–2300, 2013.

[11] Ahed Elmsallati, Connor Clark, and Jugal Kalita. Global alignment of protein-protein interaction
networks: A survey. IEEE/ACM transactions on computational biology and bioinformatics,
13(4):689–705, 2015.

[12] P ERDdS and A R&wi. On random graphs i. Publ. Math. Debrecen, 6:290–297, 1959.

[13] Utkarsh Gaur, Yingying Zhu, Bi Song, and A Roy-Chowdhury. A “string of feature graphs”
model for recognition of complex activities in natural videos. In 2011 International Conference
on Computer Vision, pages 2595–2602. IEEE, 2011.

[14] Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching.
IEEE Transactions on pattern analysis and machine intelligence, 18(4):377–388, 1996.

[15] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine
learning. The annals of statistics, pages 1171–1220, 2008.

[16] Nan Hu, Raif M Rustamov, and Leonidas Guibas. Stable and informative spectral signatures
for graph matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2305–2312, 2014.

[17] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML (1),
pages 427–435, 2013.

[18] Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, pages 53–76, 1957.

[19] Nils M. Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In ICML,
2012.

10

[20] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[21] Yam Kushinsky, Haggai Maron, Nadav Dym, and Yaron Lipman. Sinkhorn algorithm for lifted
assignment problems. SIAM Journal on Imaging Sciences, 12(2):716–735, 2019.

[22] Eugene L Lawler. The quadratic assignment problem. Management science, 9(4):586–599,
1963.

[23] D. T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay triangulation.
International Journal of Computer & Information Sciences, 9(3):219–242, Jun 1980.

[24] Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. Hyper-graph matching via reweighted random
walks. In CVPR 2011, pages 1633–1640. IEEE, 2011.

[25] Marius Leordeanu, Martial Hebert, and Rahul Sukthankar. An integer projected fixed point
method for graph matching and map inference. In Advances in neural information processing
systems, pages 1114–1122, 2009.

[26] Marius Leordeanu, Rahul Sukthankar, and Martial Hebert. Unsupervised learning for graph
matching. International journal of computer vision, 96(1):28–45, 2012.

[27] Zhi-Yong Liu and Hong Qiao. Gnccp—graduated nonconvexityand concavity procedure. IEEE
transactions on pattern analysis and machine intelligence, 36(6):1258–1267, 2014.

[28] João Maciel and João P Costeira. A global solution to sparse correspondence problems. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (2):187–199, 2003.

[29] Haggai Maron and Yaron Lipman. (probably) concave graph matching. In Advances in Neural
Information Processing Systems, pages 408–418, 2018.

[30] Shahin Mohammadi, David F Gleich, Tamara G Kolda, and Ananth Grama. Triangular alignment
tame: A tensor-based approach for higher-order network alignment. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB), 14(6):1446–1458, 2017.

[31] Rob Patro and Carl Kingsford. Global network alignment using multiscale spectral signatures.
Bioinformatics, 28(23):3105–3114, 2012.

[32] Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi. Step-size adaptivity in
projection-free optimization. arXiv preprint arXiv:1806.05123, 2018.

[33] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

[34] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning, pages 63–71. Springer, 2003.

[35] Vikram Saraph and Tijana Milenković. Magna: maximizing accuracy in global network
alignment. Bioinformatics, 30(20):2931–2940, 2014.

[36] Christian Schellewald, Stefan Roth, and Christoph Schnörr. Evaluation of convex optimization
techniques for the weighted graph-matching problem in computer vision. In Joint Pattern
Recognition Symposium, pages 361–368. Springer, 2001.

[37] Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer,
Eric T Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate
quadratic programming for graph matching. PLOS one, 10(4):e0121002, 2015.

[38] Tao Wang, Haibin Ling, Congyan Lang, and Songhe Feng. Graph matching with adaptive and
branching path following. IEEE transactions on pattern analysis and machine intelligence,
40(12):2853–2867, 2018.

[39] Tao Wang, Haibin Ling, Congyan Lang, and Jun Wu. Branching path following for graph
matching. In European Conference on Computer Vision, pages 508–523. Springer, 2016.

11

[40] Lingfei Wu, Ian EH Yen, Jie Chen, and Rui Yan. Revisiting random binning features: Fast con-
vergence and strong parallelizability. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1265–1274. ACM, 2016.

[41] Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia,
and Charu Aggarwal. Scalable global alignment graph kernel using random features: From
node embedding to graph embedding. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1418–1428, 2019.

[42] Junchi Yan, Jun Wang, Hongyuan Zha, Xiaokang Yang, and Stephen Chu. Consistency-driven
alternating optimization for multigraph matching: A unified approach. IEEE Transactions on
Image Processing, 24(3):994–1009, 2015.

[43] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang.
A short survey of recent advances in graph matching. In Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval, pages 167–174. ACM, 2016.

[44] Tianshu Yu, Junchi Yan, Yilin Wang, Wei Liu, et al. Generalizing graph matching beyond
quadratic assignment model. In Advances in Neural Information Processing Systems, pages
853–863, 2018.

[45] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the
graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(12):2227–2242, 2009.

[46] Ron Zass and Amnon Shashua. Probabilistic graph and hypergraph matching. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[47] Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. Retgk: Graph
kernels based on return probabilities of random walks. In Advances in Neural Information
Processing Systems, pages 3964–3974, 2018.

[48] Feng Zhou and Fernando De la Torre. Factorized graph matching. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 127–134. IEEE, 2012.

[49] Feng Zhou and Fernando De la Torre. Factorized graph matching. IEEE transactions on pattern
analysis and machine intelligence, 38(9):1774–1789, 2015.

12

