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Abstract

Program synthesis of general-purpose source code from natural language specifi-
cations is challenging due to the need to reason about high-level patterns in the
target program and low-level implementation details at the same time. In this
work, we present PATOIS, a system that allows a neural program synthesizer to
explicitly interleave high-level and low-level reasoning at every generation step.
It accomplishes this by automatically mining common code idioms from a given
corpus, incorporating them into the underlying language for neural synthesis, and
training a tree-based neural synthesizer to use these idioms during code genera-
tion. We evaluate PATOIS on two complex semantic parsing datasets and show
that using learned code idioms improves the synthesizer’s accuracy.

1 Introduction

Program synthesis is a task of translating an incomplete specification (e.g. natural language, input-
output examples, or a combination of the two) into the most likely program that satisfies this specifi-
cation in a given language [15]. In the last decade, it has advanced dramatically thanks to the novel
neural and neuro-symbolic techniques [5, 10, 19], first mass-market applications [28], and massive
datasets [9, 39, 41]. Table 1 shows a few examples of typical tasks of program synthesis from natural
language. Most of the successful applications apply program synthesis to manually crafted domain-
specific languages (DSLs) such as FlashFill and Karel, or to subsets of general-purpose functional
languages such as SQL and Lisp. However, scaling program synthesis to real-life programs in a
general-purpose language with complex control flow remains an open challenge.

We conjecture that one of the main current challenges of synthesizing a program is insufficient
separation between high-level and low-level reasoning. In a typical program generation process,
be it a neural model or a symbolic search, the program is generated in terms of its syntax tokens,
which represent low-level implementation details of the latent high-level patterns in the program. In
contrast, humans switch between high-level reasoning (“a binary search over an array”) and low-
level implementation (“while l < r: m = (l+r)/2 . . . ”) repeatedly when writing a single function.
Reasoning over multiple abstraction levels at once complicates the generation task for a model.

This conjecture is supported by two key observations. First, recent work [12, 25] has achieved great
results by splitting the synthesis process into sketch generation and sketch completion. The first stage
generates a high-level sketch of the target program, and the second stage fills in missing details in
the sketch. Such separation improves the accuracy of synthesis as compared to an equivalent end-
to-end generation. However, it allows only one stage of high-level reasoning at the root level of
the program, whereas (a) real-life programs involve common patterns at all syntactic levels, and (b)
programmers often interleave high-level and low-level reasoning during implementation.
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Table 1: Representative program synthesis tasks from real-world semantic parsing datasets.

Dataset Natural Language Specification Program

Hearthstone
[24]

Mana Wyrn (1, 3, 1, Minion, Mage, Common)

Whenever you cast a spell, gain +1 Attack.
# . . .

def create_minion(self, player):

return Minion(1, 3, effects=[Effect(

SpellCast(), ActionTag(Give(

ChangeAttack(1)), SelfSelector()))])

Spider
[41]

For each stadium, how many concerts are there?

Schema:

stadium = {stadium_id, name, ...}, ...

SELECT T2.name, COUNT(*)

FROM concert AS T1 JOIN stadium AS T2

ON T1.stadium_id = T2.stadium_id

GROUP BY T1.stadium_id

Second, many successful applications of inductive program synthesis such as FlashFill [14] rely on
a manually designed DSL to make the underlying search process scalable. Such DSLs include high-
level operators that implement common subroutines in a given domain. Thus, they (i) compress
the search space, ensuring that every syntactically valid DSL program expresses some useful task,
and (ii) enable logical reasoning over the domain-specific operator semantics, making the search
efficient. However, DSL design is laborious and requires domain expertise. Recently, Ellis et al.
[13] showed that such DSLs are learnable in the classic domains of inductive program synthesis; in
this work, we target general-purpose code generation, where DSL design is difficult even for experts.

In this work, we present a system, called PATOIS, that equips a program synthesizer with automat-
ically learned high-level code idioms (i.e. common program fragments) and trains it to use these
idioms in program generation. While syntactic by definition, code idioms often represent useful
semantic concepts. Moreover, they compress and abstract the programs by explicitly representing
common patterns with unique tokens, thus simplifying generative process for the synthesis model.

PATOIS has three main components, illustrated in Figure 1. First, it employs nonparameteric
Bayesian inference to mine the code idioms that frequently occur in a given corpus. Second, it
marks the occurrences of these idioms in the training dataset as new named operators in an extended
grammar. Finally, it trains a neural generative model to optionally emit these named idioms instead
of the original code fragments, which allows it to learn idiom usage conditioned on a task specifi-
cation. During generation, the model has the ability to emit entire idioms in a single step instead
of multiple steps of program tree nodes comprising the idioms’ definitions. As a result, PATOIS

interleaves high-level idioms with low-level tokens at all levels of program synthesis, generalizing
beyond fixed top-level sketch generation.

We evaluate PATOIS on two challenging semantic parsing datasets: Hearthstone [24], a dataset of
small domain-specific Python programs, and Spider [41], a large dataset of SQL queries over various
databases. We find that equipping the synthesizer with learned idioms improves its accuracy in
generating programs that satisfy the task description.

2 Background

Program Synthesis We consider the following formulation of the program synthesis problem.
Assume an underlying programming language L of programs. Each program P ∈ L can be rep-
resented either as a sequence y1 · · · y|P | of its tokens, or, equivalently, as an abstract syntax tree
(AST) T parsed according to the context-free grammar (CFG) G of the language L. The goal of a
program synthesis model f : φ 7→ P is to generate a program P that maximizes the conditional
probability Pr (P | φ) i.e. the most likely program given the specification. We also assume a train-

ing set D = {⟨φj , Pj⟩}
|D|
j=1, sampled from an unknown true distribution D, from which we wish to

estimate the conditional probability Pr (P | φ).

In this work, we consider general-purpose programming languages L with a known context-free
grammar G such as Python and SQL. Each specification φ is represented as a natural language
task description, i.e. a sequence of words X = x1 · · ·x|X| (although the PATOIS synthesizer can be
conditioned on any other type of incomplete spec). In principle, we do not impose any restrictions
on the generative model f apart from it being able to emit syntactically valid programs. However,
as we detail in Section 4, the PATOIS framework is most easily implemented on top of structural
generative models such as sequence-to-tree models [38] and graph neural networks [7, 21].
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Figure 1: Top: An overview of PATOIS. A miner 1⃝ extracts common idioms from the programs
in a given dataset. All the idiom occurrences in the dataset programs are 2⃝ marked as optional
alternative grammar operators. The dataset with marked occurrences is used to 3⃝ train a neural
generative model. At inference time, the model 4⃝ generates programs with named idioms, which
are inlined before program execution. Note that idioms may have named subexpressions, may repeat,
and may occur at any program level. For clarity, we typeset idioms using function-like syntax
Ij(ℓ1, . . . , ℓk) in this paper, although they are actually represented as AST fragments with no syntax.
Bottom: AST fragment representation of the idiom I2 in Python. Here sans-serif nodes are fixed

non-terminals, monospaced nodes are fixed terminals, and boxed nodes are named arguments.

Code Idioms Following Allamanis and Sutton [2], we define code idioms as fragments I of valid
ASTs T in the CFG G, i.e. trees of nonterminals and terminals from G that may occur as subtrees
of valid parse trees from G. The grammar G extended with a set of idiom fragments forms a tree
substitution grammar (TSG). We also associate a non-unique label ℓ with each nonterminal leaf
in every idiom, and require that every instantiation of an idiom I must have its identically-labeled
nonterminals instantiated to identical subtrees. This enables the role of idioms as subroutines, where
labels act as “named arguments” in the “body” of an idiom. See Figure 1 for an example.

3 Mining Code Idioms

The first step of PATOIS is obtaining a set of frequent and useful AST fragments as code idioms.
The trade-off between frequency and usefulness is crucial: it is trivial to mine commonly occurring
short patterns, but they are often meaningless [1]. Instead, we employ and extend the methodology
of Allamanis et al. [3] and frame idiom mining as a nonparameteric Bayesian problem.

We represent idiom mining as inference over probabilistic tree substitution grammars (pTSG). A
pTSG is a probabilistic context-free grammar extended with production rules that expand to a whole
AST fragment instead of a single level of symbols [8, 29]. The grammar G of our original language L
induces a pTSG G0 with no fragment rules and with choice probabilities estimated from the corpus D.
To construct a pTSG corresponding to the extension of L with common tree fragments representing
idioms, we define a distribution G over pTSGs as follows.

We first choose a Pitman-Yor process [36] as a prior distribution G0 over pTSGs. It is a nonpa-
rameteric process that has proven to be effective for mining code idioms in prior work thanks to its
modeling of production choices as a Zipfian distribution (in other words, it implements the desired
“rich get richer” effect, which encourages a smaller number of larger and more common idioms).
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Formally, it is a “stick-breaking” process [31] that

Figure 2: MCMC sampling for an AST (fig-
ure from [2]). Dots show the inferred nodes
where the AST is split into fragments.

defines G0 as a distribution for each set of id-

ioms ĨN rooted at a nonterminal symbol N as

Pr(I ∈ ĨN )
def

=
∞∑

k=0

πk δ (I = Ik) , Ik ∼ G0

πk
def

= uk

k−1∏

j=1

(1− uj), uk ∼ Beta (1− d, α+ kd)

where δ(·) is the delta function, and α, d are hyper-
parameters. See Allamanis et al. [3] for details.

PATOIS uses G0 to compute a posterior distribu-
tion G1 = Pr (G1 | T1, . . . , TN ) using Bayes’ rule,
where T1, . . . , TN are concrete AST fragments in the training set D. As this calculation is compu-
tationally intractable, we approximate it using type-based MCMC [23]. At each iteration t of the
MCMC process, PATOIS generates a pTSG Gt whose distribution approaches G1 as t → ∞. It
works by sampling splitting points for each AST T in the corpus D, which by construction define a
set of fragments constituting Gt (see Figure 2). The split probabilities of this Gibbs sampling are set
in a way that incentivizes merging adjacent tree fragments that often cooccur in D. The final idioms
are then extracted from the pTSG obtained at the last MCMC iteration.

While the Pitman-Yor process helps avoid overfitting the idioms to D, not all sampled idioms are
useful for synthesis. Thus we rank and filter the idioms before using them in the training. In this
work, we reuse two ranking functions defined by Allamanis et al. [3]:

ScoreCov (I)
def

= coverage = count(T ∈ D | I ∈ T )

ScoreCXE (I)
def

= coverage · cross-entropy gain =
count(T ∈ D | I ∈ T )

|D|
·
1

|I|
log

PrG1
(I)

PrG0
(I)

and also filter out any terminal idioms (i.e. those that do not contain any named arguments ℓ).

We conclude with a brief analysis of computational complexity of idiom mining. Every iteration of
the MCMC sampling traverses the entire dataset D once to sample the random variables that define
the splitting points in each AST. When run for M iterations, the complexity of idiom mining is

O(M ·
∑

T∈D |T |). Idiom ranking adds an additional step with complexity O(|Ĩ| log |Ĩ|) where Ĩ
is the set of idioms obtained at the last iteration. In our experiments (detailed in Section 5) we set
M = 10, and the entire idiom mining takes less than 10 minutes on a dataset of |D| ≈ 10,000 ASTs.

4 Using Idioms in Program Synthesis

Given a set of common idioms Ĩ = {I1, . . . , IN} mined by PATOIS, we now aim to learn a syn-
thesis model f that emits whole idioms Ij as atomic actions instead of individual AST nodes that
comprise Ij . Achieving this involves two key challenges.

First, since idioms are represented as AST fragments without concrete syntax, PATOIS works best
when the synthesis model f is structural, i.e. it generates the program AST instead of its syntax.
Prior work [7, 38, 40] also showed that tree- and graph-based code generation models outperform
sequence-to-sequence models, and thus we adopt a similar architecture in this work.

Second, exposing the model f to idiom usage patterns is not obvious. One approach could be to
extend the grammar with new named operators opI(ℓ1, . . . , ℓk) for each idiom I, replace every oc-
currence of I with opI in the data, and train the synthesizer on the rewritten dataset. However, this
would not allow f to learn from the idiom definitions (bodies). In addition, idiom occurrences often
overlap, and any deterministic rewriting strategy would arbitrarily discard some occurrences from
the corpus, thus limiting the model’s exposure to idiom usage. In our experiments, we found that
greedy rewriting discarded as many as 75% potential idiom occurrences from the dataset. There-
fore, a successful training strategy must preserve all occurrences and instead let the model learn a
rewriting strategy that optimizes end-to-end synthesis accuracy.
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To this end, we present a novel training setup for code generation that encourages the model to
choose the most useful subset of idioms and the best representation of each program in terms of the

idioms. It works by (a) marking occurrences of the idioms Ĩ in the training set D, (b) at training
time, encouraging the model to emit either the whole idiom or its body for every potential idiom oc-
currence in the AST, and (c) at inference time, replacing the model’s state after emitting an idiom I
with the state the model would have if it had emitted I’s body step by step.

4.1 Model Architecture

The synthesis model f of PATOIS combines a spec encoder fenc and an AST decoder fdec, fol-
lowing the formulation of Yin and Neubig [38]. The encoder fenc embeds the NL specification

X = x1 · · ·xn into word representations X̂ = x̂1 · · · x̂n. The decoder fdec uses an LSTM to model
the sequential generation of the AST in the depth-first order, wherein each timestep t corresponds to
an action at — either (a) expanding a production from the grammar, (b) expanding an idiom, or (c)

generating a terminal token. Thus, the probability of generating an AST T given X̂ is

Pr(T | X̂) =
∏

t
Pr

(
at | Tt, X̂

)
(1)

where at is the action taken at timestep t, and Tt is the partial AST generated before t. The proba-

bility Pr(at | Tt, X̂) is computed from the decoder’s hidden state ht−1 depending on at.

Production Actions For actions at = APPLYRULE[R] corresponding to expanding production

rules R ∈ G from the original CFG G, we compute the probability Pr(at | Tt, X̂) by encoding the
current partial AST structure similarly to Yin and Neubig [38]. Specifically, we compute the new
hidden state as ht = fLSTM ([at−1 ∥ ct ∥ hpt

∥ apt
∥ nft ], ht−1) where at−1 is the embedding

of the previous action, ct is the result of soft attention applied to the spec embeddings X̂ as per
Bahdanau et al. [4], pt is the timestep corresponding to expanding the parent AST node of the
current node, and nft is the embedding of the current node type. The hidden state ht is then used
to compute probabilities of the syntactically appropriate production rules R ∈ G:

Pr(at = APPLYRULE[R] | Tt, X̂) = softmaxR (g(ht)) (2)

where g(·) is a 2-layer MLP with a tanh non-linearity.

Terminal Actions For actions at = GETTOKEN[y], we compute the probability Pr(at | Tt, X̂) by
combining a small vocabulary V of tokens commonly observed in the training data with a copying
mechanism [24, 30] over the input X to handle UNK tokens. Specifically, we learn two functions
pgen(ht) and pcopy(ht, X) such that pgen produces a score for each vocabulary token y ∈ V and pcopy

computes a score for copying the token y from the input. The scores are then normalized across the
entries corresponding to the same constant, as in [7, 38].

4.2 Training to Emit Idioms

As discussed earlier, training the model to emit idioms presents computational and learning chal-
lenges. Ideally, we would like to extend Eq. (1) to maximize

J =
∑

τ∈T

|τ |∏

i=1

Pr(aτi | Tτi , X̂) (3)

where T is a set of different action traces that may produce the output AST T . The traces τ ∈ T dif-
fer only in their possible choices of idiom actions APPLYRULE[opI ] that emit some tree fragments
of T in a single step. However, computing Eq. (3) is intractable because idiom occurrences overlap
and cause combinatorial explosion in the number of traces T . Instead, we apply Jensen’s inequality
and maximize a lower bound:

logJ = log
∑

τ∈T

|τ |∏

i=1

Pr(aτi | Tτi , X̂) ≥ log(|T |) +
1

|T |

∑

τ∈T

|τ |∑

i=1

log Pr(aτi | Tτi , X̂) (4)
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Let A(Tt) = {a∗t } ∪ I(Tt) be the set of all valid actions to expand the AST Tt at timestep t. Here
a∗t is the action from the original action trace that generates T using the original CFG and I(Tt)
is the set of idiom actions APPLYRULE[opI ] also applicable at the node to be expanded in Tt. Let
c(T , t) also denote the number of traces τ ∈ T that admit an action choice for the AST Tt from
the original action trace. Since each action a ∈ A(Tt) occurs in the sum in Eq. (4) with probability

c(T , t)
/
|A(Tt)|, we can rearrange this sum over traces as a sum over timesteps of the original trace:

1

|T |

∑

τ∈T

|τ |∑

i=1

log Pr(aτi | Tτi , X̂) =
1

|T |

∑

t

∑

a∈A(Tt)

c(T , t)

|A(Tt)|
log Pr(a | Tτi , X̂)

=
∑

t

1

|A(Tt)|

∑

a∈A(Tt)

c(T , t)

|T |
log Pr(a | Tτi , X̂) = E

Tt∼T

1

|A(Tt)|

∑

a∈A(Tt)

log Pr(a | Tτi , X̂)

≈
∑

t

1

|A(Tt)|

[
log Pr(a∗t | Tt, X̂) +

∑

I∈M(Tt)

log Pr(at = APPLYRULE[opI ] | Tt, X̂)
]

(5)

In the last step of Equation (5), we approximate

Figure 3: Decoding the AST sorted(my_list,

reverse=True), figure adapted from [38]. Sup-

pose an idiom I = sorted( ℓ , reverse=True) is
mined and added as an operator opI(ℓ) to the
grammar. At training time, PATOIS adjusts the
cross-entropy objective at timestep t2 to addition-
ally allow opI as a valid production, with no
change to further decoding. At inference time, if
decoder emits an action at2 = APPLYRULE[opI ],
PATOIS unrolls I on the fly by teacher-forcing the
shaded portion of the AST generation.

the expectation over ASTs randomly drawn
from all traces T using only the original trace
(containing all possible Tt) as a Monte Carlo
estimate.

Intuitively, at each timestep during training we
encourage the model to emit either the orig-
inal AST action for this timestep or any ap-
plicable idiom that matches the AST at this
step, with no penalty to either choice. However,
to avoid the combinatorial explosion, we only
teacher-force the original generation trace (not
the idiom bodies), thus optimizing the bound
in Eq. (5). Figure 3 illustrates this optimization
process on an example.

At inference time, whenever the model emits
an APPLYRULE[opI ] action, we teacher-force
the body of I by substituting the embedding
of the previous action at−1 with embedding of
the previous action in the idiom definition, thus
emulating the tree fragment expansion. Out-
side the bounds of I (i.e. within the hole sub-
trees of I) we use the actual at−1 as usual.

5 Evaluation

Datasets We evaluate PATOIS on two semantic parsing datasets: Hearthstone [24] and Spider [41].

Hearthstone is a dataset of 665 card descriptions from the trading card game of the same name, along
with the implementations of their effects in Python using the game APIs. The descriptions act as NL
specs X , and are on average 39.1 words long.

Spider is a dataset of 10,181 questions describing 5,693 unique SQL queries over 200 databases
with multiple tables each. Each question pertains to a particular database, whose schema is given to
the synthesizer. Database schemas do not overlap between the train and test splits, thus challenging
the model to generalize across different domains. The questions are on average 13 words long and
databases have on average 27.6 columns and 8.8 foreign keys.

Implementation We mine the idioms using the training split of each dataset. Thus PATOIS cannot
indirectly overfit to the test set by learning its idioms, but it also cannot generalize beyond the idioms
that occur in the training set. We run type-based MCMC (Section 3) for 10 iterations with α = 5
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Table 2: Ablation tests on the Hearthstone dev set.

Model K Exact
match

Sentence
BLEU

Corpus
BLEU

Baseline decoder — 0.197 0.767 0.763

PATOIS, ScoreCov

10 0.151 0.781 0.785
20 0.091 0.745 0.745
40 0.167 0.765 0.764
80 0.197 0.780 0.774

PATOIS, ScoreCXE

10 0.151 0.780 0.783
20 0.167 0.787 0.782
40 0.182 0.773 0.770
80 0.151 0.771 0.768

Table 3: Ablation tests on the Spider dev set.

Model K Exact match

Baseline decoder — 0.395

PATOIS, ScoreCov

10 0.394
20 0.379
40 0.395
80 0.407

PATOIS, ScoreCXE

10 0.368
20 0.382
40 0.387
80 0.416

and d = 0.5. After ranking (with either ScoreCOV or ScoreCXE) and filtering, we use K top-ranked
idioms to train the generative model. We ran ablation experiments with K ∈ {10, 20, 40, 80}.

As described in Section 4, for all our experiments we used a tree-based decoder with a pointer mech-
anism as the synthesizer f , which we implemented in PyTorch [27]. For the Hearthstone dataset,

we use a bidirectional LSTM [16] to implement the description encoder X̂ = fenc(X), similarly to
Yin and Neubig [38]. The word embeddings x̂ and hidden LSTM states h have dimension 256. The
models are trained using the Adadelta optimizer [42] with learning rate 1.0, ρ = 0.95, ε = 10−6 for
up to 2,600 steps with a batch size of 10.

For the Spider dataset, word embeddings x̂ have dimension 300, and hidden LSTM states h have
dimension 256. The models are trained using the Adam optimizer [20] with β1 = 0.9, β2 = 0.999,
ε = 10−9 for up to 40,000 steps with a batch size of 10. The learning rate warms up linearly up to

2.5 × 10−4 during the first 2,000 steps, and then decays polynomially by (1− t/T )
−0.5

where T is
the total number of steps. Each model configuration is trained on one NVIDIA GTX 1080 Ti GPU.

The Spider tasks additionally include the database schema as an input in the description. We fol-
low a recent approach of embedding the schema using relation-aware self-attention within the en-
coder [34]. Specifically, we initialize a representation for each column, table, and word in the
question, and then update these representations using 4 layers of relation-aware self-attention [32]
using a graph that describes the relations between columns and tables in the schema. See Section A
in the appendix for more details about the Spider schema encoder.

5.1 Experimental Results

In each configuration, we compare the performance of equivalent trained models on the same dataset
with and without idiom-based training of PATOIS. For fairness, we show the performance of the same
decoder implementation described in Section 4.1 as a baseline rather than the state-of-the-art results
achieved by different approaches from the literature. Thus, our baseline is the decoder described
in Section 4.1 trained with a regular cross-entropy objective rather than the PATOIS objective in
Equation (5). Following prior work, we evaluate program generation as a semantic parsing task, and
measure (i) exact match accuracy and BLEU scores for Hearthstone and (ii) exact match accuracy
of program sketches for Spider.

Tables 2 and 3 show our ablation analysis of different configurations of PATOIS on the Hearth-
stone and Spider dev sets, respectively. Table 4 shows the test set results of the best
model configuration for Hearthstone (the test instances for the Spider dataset are unreleased).

Table 4: Test set results on Hearthstone (us-
ing the best configurations on the dev set).

Model Exact
match

Sentence
BLEU

Corpus
BLEU

Baseline 0.152 0.743 0.723
PATOIS 0.197 0.780 0.766

As the results show, small numbers of idioms do not
significantly change the exact match accuracy but
improve BLEU score, and K = 80 gives a signifi-
cant improvement in both the exact match accuracy
and BLEU scores. The improvement is even more
pronounced on the test set with 4.5% improvement
in exact match accuracy and more than 4 BLEU
points, which shows that mined training set idioms
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def __init__(self):

super().__init__( ℓ0 : str , ℓ1 : int ,

CHARACTER_CLASS. ℓ3 : id ,

CARD_RARITY. ℓ4 : id , ℓ?
5

)

ℓ0 : id =

copy.copy( ℓ1 : expr )

class ℓ0 : id ( ℓ1 : id ):

def __init__(self):

SELECT COUNT( ℓ0 : col ), ℓ∗
1

WHERE ℓ∗
2

INTERSECT ℓ?
4
: sql EXCEPT ℓ?

5
: sql

WHERE ℓ0 : col = $terminal

Figure 4: Five examples of commonly used idioms from the Hearthstone and Spider datasets.

Figure 5: The distribution of used idioms in the inferred ASTs on the Hearthstone test set. Left: in
the ASTs exactly matched with ground truth; Right: all ASTs.

generalize well to the whole data distribution. As mentioned above, we compare only to the same
baseline architecture for fairness, but PATOIS could also be easily implemented on top of the struc-
tural CNN decoder of Sun et al. [35], the current state of the art on the Hearthstone dataset.

Figure 4 shows some examples of idioms that were frequently used by the model. On Hearthstone,
the most popular idioms involve common syntactic elements (e.g. class and function definitions) and
domain-specific APIs commonly used in card implementations (e.g. CARD_RARITY enumerations or
copy.copy calls). On Spider, they capture the most common combinations of SQL syntax, such
as a SELECT query with a single COUNT column and optional INTERSECT or EXCEPT clauses. Notably,
popular idioms are also often big: for instance, the first idiom in Figure 4 expands to a tree fragment
with more than 20 nodes. Emitting it in a single step vastly simplifies the decoding process.

We further conducted qualitative experiments to analyze actual idiom usage by PATOIS on the
Hearthstone test set. Figure 5 shows the distribution of idioms used in the inferred (not ground
truth) ASTs. A typical program involves 7 idioms on average, or 6 for the programs that exactly

match the ground truth. Despite the widespread usage of idioms, not all of the mined idioms Ĩ were
useful: only 51 out of K = 80 idioms appear in the inferred ASTs. This highlights the need for an
end-to-end version of PATOIS where idiom mining would be directly optimized to benefit synthesis.

6 Related Work

Program synthesis & Semantic parsing Program synthesis from natural language and input-
output examples has a long history in Programming Languages (PL) and Machine Learning (ML)
communities (see Gulwani et al. [15] for a survey). When an input specification is limited to natu-
ral language, the resulting problem can be considered semantic parsing [22]. There has been a lot
of recent interest in applying recurrent sequence-based and tree-based neural networks to semantic
parsing [11, 18, 21, 38, 40]. These approaches commonly use insights from the PL literature, such
as grammar-based constraints to reduce the search space, non-deterministic training oracles to en-
able multiple executable interpretations of intent, and supervision from program execution. They
typically either supervise the training on one or more golden programs, or use reinforcement learn-
ing to supervise the training from a neural program execution result [26]. Our PATOIS approach is
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applicable to any underlying neural semantic parsing model, as long as it is supervised by a corpus
of golden programs. It is, however, most easily applicable to tree-based and graph-based models,
which directly emit the AST of the target program. In this work we have evaluated PATOIS as applied
on top of the sequence-to-tree decoder of Yin and Neubig [38], and extended it with a novel training
regime that teaches the decoder to emit idiom operators in place of the idiomatic code fragments.

Sketch generation Two recent works [12, 25] learn abstractions of the target program to compress
and abstract the reasoning process of a neural synthesizer. Both of them split the generation process
into sketch generation and sketch completion, wherein the first stage emits a partial tree/sequence
(i.e. a sketch of the program) and the second stage fills in the holes in this sketch. While sketch
generation is typically implemented with a neural model, sketch completion can be either a different
neural model or a combinatorial search. In contrast to PATOIS, both works define the grammar of
sketches manually by a deterministic program abstraction procedure and only allow a single top-
level sketch for each program. In addition, an earlier work of Bošnjak et al. [6] also formulates
program synthesis as sketch completion, but in their work program sketches are manually provided
rather than learned. In PATOIS, we learn the abstractions (code idioms) automatically from a corpus
and allow them to appear anywhere in the program, as is common in real-life programming.

Learning abstractions Recently, Ellis et al. [13] developed an Explore, Compress & Com-
pile (EC2) framework for automatically learning DSLs for program synthesis from I/O examples
(such as the DSLs used by FlashFill [14] and DeepCoder [5]). The workflow of EC2 is similar to
PATOIS, with three stages: (a) learn new DSL subroutines from a corpus of tasks, (b) train a recogni-
tion model that maps a task specification to a distribution over DSL operators as in DeepCoder [5],
and (c) use these operators in a program synthesizer. PATOIS differs from EC2 in three aspects: (i)
we assume a natural language specification instead of examples, (ii) to handle NL specifications,
our synthesizer is a neural semantic parser instead of enumerative search, and (iii) most importantly,
we discover idioms that compress general-purpose languages instead of extending DSLs. Unlike
for inductive synthesis DSLs such as FlashFill, the existence of useful DSL abstractions for general-
purpose languages is not obvious, and our work is the first to demonstrate them.

Concurrently with this work, Iyer et al. [17] developed a different approach of learning code idioms
for semantic parsing. They mine the idioms using a variation of byte-pair encoding (BPE) compres-
sion extended to ASTs and greedily rewrite all the dataset ASTs in terms of the found idioms for
training. While the BPE-based idiom mining is more computationally efficient than non-parametric
Bayesian inference of PATOIS, introducing ASTs greedily tends to lose information about overlap-
ping idioms, which we address in PATOIS using our novel training objective described in Section 4.2.

As described previously, our code idiom mining is an extension of the procedure developed by Alla-
manis et al. [2, 3]. They are the first to use the tree substitution grammar formalism and Bayesian
inference to find non-trivial common idioms in a corpus of code. However, their problem formaliza-
tion does not involve any application for the learned idioms beyond their explanatory power.

7 Conclusion

Semantic parsing, or neural program synthesis from natural language, has made tremendous progress
over the past years, but state-of-the-art models still struggle with program generation at multiple lev-
els of abstraction. In this work, we present a framework that allows incorporating learned coding
patterns from a corpus into the vocabulary of a neural synthesizer, thus enabling it to emit high-level
or low-level program constructs interchangeably at each generation step. Our current instantiation,
PATOIS, uses Bayesian inference to mine common code idioms, and employs a novel nondeterminis-
tic training regime to teach a tree-based generative model to optionally emit whole idiom fragments.
Such dataset abstraction using idioms improves the performance of neural program synthesis.

PATOIS is only the first step toward learned abstractions in program synthesis. While code idioms
often correlate with latent semantic concepts and our training regime allows the model to learn
which idioms to use and in which context, our current method does not mine them with the intent to
directly optimize their usefulness for generation. In future work, we want to alleviate this by jointly
learning the mining and synthesis models, thus optimizing the idioms’ usefulness for synthesis by
construction. We also want to incorporate program semantics into the idiom definition, such as data
flow patterns or natural language phrases from task specs.
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