
We thank the reviewers for their helpful comments and suggestions. Due to space limitation, we focus on 1) role of1

doubly-robustness, 2) comparison with Bastani and Bayati, 3) hyperparameters and 4) real-world experiments.2

Role of Doubly-Robustness (DR): A key strength of doubly-robust (DR) method is to obtain an estimate of the reward3

corresponding to the average context b̄(t). Since b̄(t) satisfies the compatibility condition, we can make use of the4

fast convergence of the Lasso estimator. If the reward for every arm is observed, the problem becomes much easier.5

However in bandits, only ra(t)(t) is observed and the rewards of other arms remain missing. In missing data literature,6

there are two approaches: inverse probability weighting (IPW) and imputing (IMP). IPW and IMP require correct7

specification of the probability of observation and the imputation model, respectively. DR method uses both auxiliary8

models, but the consistency of the estimator is guaranteed when either of the models is correctly specified. In the9

bandit setting, the probability of observation is known, thus both IPW and DR yield consistent and unbiased10

estimators. IPW was used in the EXP4.P bandit algorithm of Beygelzeimer et al. (2011). Another strength of11

DR is that when both models are correctly specified, the resulting estimator has the minimum variance. This12

efficiency is obtained by projecting the IPW estimating function on to the tangent space spanned by nuisance parameters13

in the probability of observation (or allocation in bandit setting). The form of r̂ reflects this adjustment from an14

IPW form. We show below that our DR estimator r̂(t) guarantees efficiency gain over the IPW estimator. Let r̃(t)15

denote the IPW esimator of the reward corresponding to b̄(t) and let r̂(t) be the DR estimator as defined in the text.16

Hence, r̃(t) =
ra(t)(t)

Nπa(t)(t)
and r̂(t) = r̃(t) + b̄(t)T β̂(t− 1)− ba(t)(t)

T β̂(t−1)

Nπa(t)(t)
. The variance of r̃(t) given filtration Ft−117

is E
[{

ηa(t)(t)

Nπa(t)(t)
+

ba(t)(t)
T β

Nπa(t)(t)
− b̄(t)Tβ

}2∣∣∣Ft−1

]
. Due to Assumption 4 on the sub-gaussian error η, the first term18

ηa(t)(t)/Nπa(t)(t) is bounded by a constant when πa(t)(t) ≥ O
(

1
N

√
(logd+ logt)/t

)
. However, the second term19

ba(t)(t)
T β

Nπa(t)(t)
can still be large. Constant variance is important because the variance (R̃2 in the text) appears in the regret20

bound in Theorem 4.1. To achieve a constant variance, we need πa(t)(t) be larger than a predetermined constant21

value, 1
N pmin. Simply truncating the value will produce a biased estimate when πa(t)(t) is actually smaller than22

1
N pmin, and the Lasso property (Lemma 3.2) will not hold either. If we instead directly constrain πa(t)(t) to be23

larger than 1
N pmin, this will lead to suboptimal choices of arms and Theorem 4.1 will not hold. In contrast, the variance24

of r̂(t) is E
[{

ηa(t)(t)

Nπa(t)(t)
+
ba(t)(t)

T β∗

Nπa(t)(t)
− b̄(t)Tβ∗

}2∣∣∣Ft−1

]
, where β∗ =(β−β̂(t− 1)). Now, we have a constant variance25

under πa(t)(t) ≥ O
(

1
N

√
(logd+ logt)/t

)
with high-probability due to the fact ||β∗||1≤O

(√
(logd+ logt)/t

)
with26

high-probability (∵ Lemma 3.2 on observations until t − 1). The regret bound in Theorem 4.1 holds under (i)27

πa(t)(t)≥O
(

1
N

√
(logd+ logt)/t

)
but not under (ii) πa(t)(t)≥ 1

N pmin. (We skipped details on this part, but the relevant28

part is the bound on
∑T
t=zT

mt in Section 4.1.) Also note that the restriction (i) is much weaker than (ii) since the term29 √
(logd+ logt)/t converges to 0 as t increases, inducing exploration in early stages and greedy choices when t is large.30

Comparison with Bastani and Bayati (BB): As Reviewer 2 mentioned, our method and BB deal with different31

settings and direct comparison may not be meaningful. There are no previous works dealing with our setting32

of large N . Having said, we agree with Reviewer 2 that if we use our method in the setting of BB, when N is not33

that large, it will produce a regret of order O(s0log(dNT )
√
T ) which is larger than that of BB. We stress that our34

method and the method of BB are designed for different settings. BB guarantees the best performance when number of35

arms is moderate, and when we can assume that each arm has different regression parameter. In this case, BB has an36

advantage.However, there are cases where the number of arms is very large. Especially, when we recommend a news37

article or a shopping item, or when we place an advertisement on the web page, the number of possible action selections38

is very large. Moreover, the lists of news articles, shopping items, or advertisements change day by day (even change a39

lot in a single day). In this case, it would not be feasible to assign a different parameter for every new incoming item,40

and also to conduct forced-sampling of arms according to a predetermined schedule. Therefore, in cases where the41

number of arms is large and the arm set changes with time, our method will show advantage over BB.42

Hyperparameters: In online learning, it is difficult to simultaneously tune the hyperparameters and achieve high43

reward, and it is crucial to have a smaller number of hyperparameters. Due to difficulty in simultaneous tuning and44

optimization, at the beginning rounds, we should sacrifice learning the tuning the hyperparamters. In this stage, the45

accumulation of rewards remains slow because we do not know yet which values of hyperparameters are best suited to46

our algorithm. When we tune the values by grid search, then the amount of time required for tuning is exponential in47

the number of tuning parameters. Therefore, having one less tuning parameter can result in much short time required48

for tuning process.49

Real data experiments: We have some encouraging real data example using the YAHOO news article recommendation50

log data. We will include the results in the supplementary material in the future.51


