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Abstract

We consider the widely-used average-linkage, single-linkage, and Ward’s methods
for computing hierarchical clusterings of high-dimensional Euclidean inputs. It is
easy to show that there is no efficient implementation of these algorithms in high
dimensional Euclidean space since it implicitly requires to solve the closest pair
problem, a notoriously difficult problem.

However, how fast can these algorithms be implemented if we allow approxima-
tion? More precisely: these algorithms successively merge the clusters that are
at closest average (for average-linkage), minimum distance (for single-linkage),
or inducing the least sum-of-square error (for Ward’s). We ask whether one
could obtain a significant running-time improvement if the algorithm can merge
~-approximate closest clusters (namely, clusters that are at distance (average, min-
imum, or sum-of-square error) at most -y times the distance of the closest clusters).

We show that one can indeed take advantage of the relaxation and compute the
approximate hierarchical clustering tree using O(n) y-approximate nearest neigh-

bor queries. This leads to an algorithm running in time O(nd) + n'+°©(1/7) for
d-dimensional Euclidean space. We then provide experiments showing that these
algorithms perform as well as the non-approximate version for classic classifica-
tion tasks while achieving a significant speed-up.

1 Introduction

Hierarchical Clustering (HC) is a ubiquitous task in data science. Given a data set of n points
with some similarity or distance function over them, the goal is to group similar points together
into clusters, and then recursively group similar clusters into larger clusters. The clusters produced
throughout the procedure can be thought of as a hierarchy or a tree with the data points at the leaves
and each internal node corresponds to a cluster containing the points in its subtree. This tree is often
referred to as a “dendrogram” and is an important illustrative aid in many settings. By inspecting the
tree at different levels we get partitions of the data points to varying degrees of granularity. Famous
applications are in image and text classification [39]], community detection [28]], finance [40], and in
biology [8,[19].

Perhaps the most popular procedures for HC are Single-Linkage, Average-Linkage, and Ward’s
method. These are so-called agglomerative HC algorithms (as opposed to divisive) since they pro-
ceed in a bottom-up fashion: In the beginning, each data point is in its own cluster, and then the
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most similar clusters are iteratively merged - creating a larger cluster that contains the union of the
points from the two smaller clusters - until all points are in the same, final cluster.

The difference between the different procedures is in their notion of similarity between clusters,
which determines the choice of clusters to be merged. In Single-Linkage the distance (or dissim-
ilarity) is defined as the minimum distance between any two points, one from each cluster. In
Average-Linkage we take the average instead of the minimum, and in Ward’s method we take the
error sum-of-squares (ESS). It is widely accepted that Single-Linkage enjoys implementations that
are somewhat simpler and faster than Average-Linkage and Ward’s, but the results of the latter two
are often more meaningful. This is because its notion of distance is too sensitive and a meaningless
“chain” in the data can sabotage the resulting clustering. Extensive discussions of these procedures
can be found in many books (e.g. [21,128,137,[1]), surveys (e.g. [31,132,19]), and experimental studies
(e.g. [34]).

All of these procedures can be performed in nearly quadratic time, and the main question studied
by this paper is whether we can reduce the time complexity to subquadratic. The standard quadratic
algorithm for Single-Linkage is quite simple and can be described as follows. After computing the
n x n distance matrix of the points, we find a minimum spanning tree (MST). This first stage takes
O(n?d) time if the points are in d-dimensional Euclidean space. In the second stage we perform
merging iterations, in which the clusters correspond to connected subgraphs of the MST (initially,
each point is its own subgraph). We merge the two subgraph whose in-between edge in the MST
is the smallest. By the properties of MST, the edge between two subgraphs (clusters) is exactly the
minimum distance between them. This second stage can be done with O(n) insertions, deletions,
and minimum queries to a data structure, which can be done in near-linear time. The algorithms for
Average-Linkage and Ward’s are more complicated since the MST edges between two clusters can
be arbitrarily smaller than the average distance or the ESS between them, and we must consider all
pairwise distances in clusters that quickly become very large. Nonetheless, an O(n? log n) algorithm
(following a first stage of computing the distance matrix) has been known for many decades [31]].

Can we possibly beat quadratic time? It is often claimed (informally) that £2(n?) is a lower bound
because of the fist stage: it seems necessary to compute the distance matrix of the points whose size
is already quadratic. More formally, we observe that these procedures are at least as hard as finding
the closest pair among the set of points, since the very first pair to be merged is the closest pair. And
indeed, under plausible complexity theoretic assumptionﬁl there is an almost-quadratic n2—°(%)
lower bound for the closest pair problem in Euclidean space with dimension d = w(logn) [2} 26].
This gives a quadratic conditional lower bound for all three Single-Linkage, Average-Linkage, and
Ward’s method.

Achieving subquadratic runtime has been of interest for many decades (as can be deduced from the
survey of Murtagh [31]) and it is increasingly desirable in the era of big data. (See also the recent
work on quadratic vs. subquadratic complexity of Empirical Risk Minimization problems [5].)

In this work, we focus on worst-case guarantees while allowing for small approximation in the
answers: how fast can we perform these procedures if each iteration is allowed to pick an approxi-
mately best pair to merge? More precisely, when merging two clusters the algorithm is allowed to
do the following. If the best pair of (available) clusters has (minimum, average, or ESS) distance
d then the algorithm can choose any pair of clusters whose distance is between d and ~ - d, where
v = 1is a small constant.

When approximations are allowed the time complexity of closest pair drops, and so does the con-
ditional lower bound. Even in high dimensions, Locality Sensitive Hashing techniques can find the
~y-approximate nearest neighbors (ANN) in L;-distance with n®1/7) time per query [3, 4)]. This
gives a subqadratic n't©(1/7) algorithm for closest pahﬂ but can we achieve the same speed-up for
~-approximate Average-Linkage? Namely, can we do Average-Linkage as fast as performing 6(71)
(approximate) nearest-neighbor queries?

For the simpler ~y-approximate Single-Linkage it is rather easy to see that the answer is yes. This
essentially follows from the classical Nearest Neighbor Chain algorithm for HC [31]]. Here is a

!"These lower bounds hold under the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [23][24]
regarding the complexity of k-SAT.
2On the negative side, we know that a (1 + ¢) approximation requires quadratic time [36]).



simple way to see why subquadratic is possible in this case: The idea is to replace the expensive first
stage of the Single-Linkage algorithm (described above) with an approximate MST computation
which can be done in subquadratic time [7, [22]] using ANN queries. Then we continue to perform
the second stage of the algorithm with this tree.

Still it is of great interest to speed up the Average-Linkage and Ward’s algorithms since they typically
give more meaningful results. This is much harder and before this work, no subquadratic time
algorithm for Average-Linkage or Ward’s with provable guarantees were known. Various algorithms
and heuristics have been proposed, see e.g. [381120}27,133] 125 41], that beat quadratic time by either
making assumptions on the data or by changing the merging criteria altogether. Intuitively, while
in Single-Linkage only O(n) distances are sufficient for the entire computation (the distances in the
MST), it is far from clear why this would be true for Average-Linkage and Ward’s.

1.1 Our Contribution

Our main results are a y-approximate Ward’s algorithm, and a y-approximate Average-Linkage
algorithm that run in subquadratic O(n*+©(/7) 4 nd) time, for any v > 1, when the points are
in d-dimensional Euclidean space. Moreover, our algorithms are reductions to O(n) approximate

nearest neighbor queries in dimension O(d) with Lo distance squared (for Ward’s) or L distance
(for Average-Linkage). Thus, further improvements in ANN algorithms imply faster approximate
HC, and more importantly, one can use the optimized ANN libraries to speed up our algorithm in a
black-box way. In fact, this is what we do to produce our experimental results. Our theorems are as
follows.

Theorem 1.1. Given a set of n. points in R and a \/y-Approximate Nearest Neighbor data structure
which supports insertion, deletion and query time in time T, there exists a v(1 + €)-approximation
of Ward’s Method running in time O(n - T - =2 log(An) log n), where A is the aspect ratio of the
point set.

Theorem 1.2. Given a set of n points in R¢ and a data structure for vy-Approximate Nearest Neigh-
bor under the Li-norm which supports insertion, deletion and query time in time T, there exists a
v(1 + ¢)-approximation of Average Linkage running in timen - T -2 logo(l) (An), where A is the
aspect ratio of the point set.

Our algorithm for approximating Ward’s method is very simple: We follow Ward’s algorithm and
iteratively merge clusters. To do so efficiently, we maintain the list of centroids of the current clusters
and perform approximate nearest neighbor queries on the centroids to find the closest clusters. Of
course, this may not be enough since some clusters may be of very large size compared to others
and this has to be taken into account in order to obtain a ~y-approximation. We thus partition the
centroids of the clusters into buckets that represents the approximate sizes of the corresponding
clusters and have approximate nearest neighbor data structure for each bucket. Then, given a cluster
C, we identify its closest neighbor (in terms of Ward’s objective) by performing an approximate
nearest neighbor query on the centroid of C' for each bucket and return the best one.

Our algorithm for Average-Linkage is slightly more involved. Our algorithm adapts the standard
Average-Linkage algorithm, with a careful sampling scheme that picks out representatives for each
large cluster, and a strategic policy for when to recompute nearest neighbor information. The other
sections of this paper are dedicated to explaining the algorithm. Implementation-wise it is on the
same order of complexity as the standard Average-Linkage algorithm (assuming a nearest neighbor
data structure is used as a black-box), while efficiency-wise it is significantly better as it goes below
quadratic time. The gains increase as we increase the tolerance for error, in a controlled way.

We focus our empirical analysis on Ward’s method. We show that even for a set of parameters induc-
ing very loose approximation guarantees, the hierarchical clustering tree output by our algorithm is
as good as the hierarchical clustering tree produced by Ward’s method in terms of classification for
most of several classic datasets. On the other hand, we show that even for moderately large datasets,
e.g.: sets of 20-dimensional points of size 20000, our algorithm offers a speed-up of 2.5 over the
popular implementation of Ward’s method of sci-kit learn.



1.2 Related Works

A related but orthogonal approach to ours was taken by a recent paper [[14]. The authors design
an agglomerative hierarchical clustering algorithm, also using LSH techniques, that at each step,
with constant probability, performs the merge that average linkage would have done. However, with
constant probability, the merge done by their algorithm is arbitrary, and there is no guarantee on
the quality of the merge (in terms of average distance between the clusters merged compared to the
closest pair of clusters). We believe that our approach may be more robust since we have a guarantee
on the quality of every merge, which is the crux of our algorithms. Moreover, they only consider
Average-Linkage but not Ward’s method.

Strengthening the theoretical foundations for HC has always been of interest. Recently, an influ-
ential paper of Dasgupta [17] pointed to the lack of a well-defined objective function that HC al-
gorithms try to optimize and proposed one such function. Follow up works showed that Average-
Linkage achieves a constant factor approximation to (the dual of) this function [[L6} [29], and also
proposed new polynomial time HC algorithms for both worst-case and beyond-worst-case scenarios
that can achieve better approximation factors [35,110% 15,111, 112]]. Other theoretical works prove that
Average-Linkage can reproduce a “correct” clustering, under some stability assumptions on the data
[6]]. Our work takes a different approach. Rather than studying the reasons for the widespread em-
pirical findings of the utility of HC algorithms (and mainly Average-Linkage and Ward’s), we take
it as a given and ask: how fast can we produce results that are as close as possible to the output of
Average-Linkage and Ward’s. In some sense, the objective function we try to optimize is closeness
to whatever Average-Linkage or Ward’s produce.

1.3  On our Notion of Approximation

The approximate Average-Linkage notion that we define (y-AL) guarantees that at every step, the
merged pair is y-close to the best one. But can we prove any guarantees on the quality of the final
tree? Will it be “close” to the output of (exact) AL? (The same applies for Ward’s, but let us focus
on AL in this subsection.)

One approach is to look at certain objective functions that measure the quality of a hierarchical
clustering tree, such as the ones mentioned above ([[16}, 29]] and by [17]] for similarity graphs), and
compare the guarantees of AL and our v-AL w.r.t. these objective functions. It is likely that one
can prove that y-AL is guaranteed to give a solution that is no worse than an O(~) factor from the
guarantees of (exact) AL w.r.t. to these objective functions. However, such a theorem may not have
much value because (as shown by Charikar et al. [11]) the guarantees of AL are no better than those
of a random recursive partitioning of the dataset. Therefore, such a theorem will only prove that
~-AL is not-much-worse than random, which dramatically understates the quality of v-AL. In fact,
in our experiments with a standard classification task, y-Ward’s is very close to Ward’s and is much
better than random (random has a 1/k success rate, which is 0.1 or less in case of digits, while ours
achieves 0.5 — 0.8).

Another approach would be to prove theorems pertaining to an objective function for HC that offers
the guarantee that given two trees, if their costs are close then the structures of their HCs are similar.
Unfortunately, we are not aware of any such objective functions (this is also the case for flat cluster-
ings such as k-median, k-means, etc.). In particular, with the functions of [[16} |29]] the trees output
by AL and by a random recursive partitioning have the same cost, while their structure may be very
different.

Besides the empirical evidence, let us mention two more points in support of our algorithms. First,
our algorithms are essentially reductions to Approximate Nearest Neighbor (ANN) queries, and
ANN queries (using LSH for example) perform very well in practice. In fact, on real world inputs,
the algorithm often identifies the exact nearest neighbor and then performs the same merge as in AL.
Second, we can provide a theoretical analysis of the following form in support of y-AL. It is known
that if the input data is an ultrametric, then AL (and also Single-Linkage or Complete-Linkage) does
recover the underlying ultrametric tree (see e.g. [16]) . Now, assume that the ultrametric is clear
in the sense that if d(a,b) > d(a,c) then d(a,b) > ~vd(a,c) for some constant . In this case, our
algorithm will provably recover the ultrametric in n'*?(1/7) time, whereas AL would need Q(n?)
time. Notably, in this setting, obtaining an O(1)-approximation w.r.t. the objective functions of
[16} 29] does not mean that the solution is close to the ultrametric tree.



2 A v-Approximation of Ward’s Method

2.1 Preliminaries

Let P — R? be a set of n points. Up to rescaling distances we may assume that the min-
imum distance between any pair of points is 1. Let A denote the aspect ratio of P, namely
A = max, yep dist(u, v). Let v > 1 be a fixed parameter. Our goal is to build a y-approximation
of Ward’s hierarchical clustering.

Let C' be a cluster, then define the error sum-of-square as

ESS(C) = ). (& — pu(C)"(z — u(C))
zeC

where p(C) = \%I D e T We let the error sum-of-square of a clustering C = {C4,...,Cy} be

ESS(C) = > ESS(C).
CeC

Thus, Ward’s algorithm constructs a hierarchy of clusters where each level represents a clustering of
the points and where clusters at a given level ¢ are subsets of clusters of level £+ 1. Ward’s algorithm
builds this hierarchy in a bottom-up fashion, starting from n clusters (each point is itself a cluster).
Then, given the clustering of a given level ¢, Ward’s algorithm obtains the clustering of the next
level by merging the two clusters that yield the clustering of minimal ESS. More formally, consider
a clustering C = {C1, ..., Cy}. To find the clustering of minimum ESS obtained by merging a pair
of clusters of C, it is enough to minimize the increase in the ESS induced by the merge. Therefore,
we want to identify the clusters C;, C; that minimize the following quantity.
|Cil| Gy

AESS(C;,Cy) = m”#(@) — u(Cy)l]3 )]

We will also make use of the following fact.
Fact 1. Given two set of points A, B with corresponding centroids j1(A), u(B) respectively, we have
that the centroid of A U B is on the line joining u(A) to u(B), at distance %HM(A) — u(B)|3

Sfrom u(A).

Let v > 0 be a parameter, P a set of points in R%. Let D be a data structure that for any set P of
n points in R? where d = O(logn), supports the following operations. Insertion of a point in P in
time O(n/ (")), for some function f. Deletion of a point in P in time O(n/(")); Given a point p € P,
outputs a point inserted to the data structure at Lo — distance at most y times the distance from p
to the closest point inserted to the data structure, in time O(n/ ().

There are data structures based on locality sensitive hashing for f(y) = 1 + O(1/4?), see for
example [4]].

2.1.1 Finding The Nearest Neighbour Cluster

Our algorithm relies on a Nearest Neighbour Data Structure for clusters, where the distance between
two clusters A, B is given by ESS(A u B) — ESS(A) — ESS(B). Given a parameter € > 0, our
Nearest Neighbour Data Structure D(+, €) for clusters consists of O(¢~! log n) Nearest Neighbour
Data Structures for points with error parameter /7 defined as follows. There is a data structure Dt
foreach £ € {(1+¢€)" |i€e[1,...,log,,.n]}. The data structure works as follows.

Insertion(C): Inserting a cluster of a set C' of points is done by inserting 1(C') in the D such that
I+e)t<|Cl<(1+e)t

Query(C): Foreachi e {(1+¢€)" |i€[1,...,log, . n]} perform a nearest neighbor data query
for ;1(C') in D, let N.N;(C) be the result. Output N'N;(C) that minimizes AESSc y,(c)-

The proof of the following lemma is in the appendix.

Lemma 2.1. Forany ¢ > 0, the above nearest neighbour data structure for clusters with parameters
v, €, D(v,¢) has the following properties:



e The insertion time is O(n'VVe=1logn);

o On Query(C), it returns a clusters C' such that ESS(C v C") — ESS(C) — ESS(C) <
(1 +¢e)ymingep(e ) (ESS(C L B) — ESS(C) — ESS(B)).

e The query time is O(nf Ve~ log(nA)).

2.1.2 The Main Algorithm

We define the value of merging two clusters A,B as ESS(Au B)— ESS(A)— ESS(B). Our algo-
rithm starts by considering each point as its own cluster, together with the Nearest Neighbour Cluster
Data Structure described above. Then, the algorithm creates a logarithmic number of rounded merge
values that partition the range of possible merge values. Let 7 be the sequence of all possible merge
values in increasing order.

Given a set of n points with minimum pairwise distance 1 and maximum pairwise distance A, we
have that the total number of merge value 3 is O(log(nA)).

The algorithm maintains a clustering and at each step decides which two clusters of the current
clustering should be merged. The clusters of the current clustering are called unmerged clusters.
The algorithm iterates over all merge values in an increasing order while maintaining the following
invariant:

Invariant 2.2. When the algorithm reaches merge value 0, for any pair of unmerged cluster C, C’
we have ESS(C u C') — ESS(C) — ESS(C') = §/~.

We now give a complete description of our algorithm.

1. Let £ be the list of unmerged clusters, initially it contains all the points.
2. Foreachv e I:
(a) ToMerge < L
(b) While ToMerge is not empty:
i. Pick a cluster C' from ToMerge, and remove it from ToMerge.
ii. NN(C) « Approximate Nearest Neighbour Cluster of C.
iii. f ESS(CUNN(C))—ESS(C)—ESS(NN(C)) <wv:
A. Merge C and NN (C). Let C’ be the resulting cluster.
B. Remove NN (C) from ToMerge and add C’ to ToMerge; u(C”) follows imme-
diately from u(C), u(NN(C)),|C| and [NN(C)| (see Fact|l)
C. Remove C, NN(C) from £ and add C" to L

The running time analysis and proof of correctness of the algorithm are deferred to the appendix.

3 A y-Approximation of Average-Linkage

3.1 Preliminaries

For two sets of points A, B, we let avg(A, B) = ﬁ D aed 2vep d(a,b). The following simple
lemma is proved in the appendix.

Lemma 3.1. Consider three sets of points A, B,C. We have that avg(A,C) = avg(C,A) <
avg(A, B) + avg(B,C)

3.2 Overview and Main Data Structures

Our goal is to design a y-approximate Average-Linkage algorithm. The input is a set P of n points
in a d-dimensional Euclidean space. The algorithm starts with a clustering where each input point is
in its own cluster. The algorithm then successively merges pairs of clusters. When two clusters are
merged, a new cluster consisting of the union of the two merged clusters is created. The unmerged
clusters at a given time of the execution of the algorithm are the clusters that have not been merged so
far. More formally, at the start the set of unmerged clusters is the set of all clusters. Then, whenever



two clusters are merged, the newly created cluster is inserted to the set of unmerged clusters while
the two merged clusters are removed from the set. The algorithm merges clusters until all the points
are in one cluster.

To be a y-approximation to Average-Linkage, our algorithm must merge clusters according to the
following rule: If the minimum average distance between a pair of unmerged clusters is v then the
algorithm is not allowed to merge two unmerged clusters with average distance larger than v - v.

Let e > 0 and v > 1 be parameters. We will show how to use a ~y-approximate nearest neighbor
data structure (on points) to get a 7/-approximate Average-Linkage algorithm where v = (1+¢) 7.

We make use of the following key ingredients.

e We design a sampling scheme that allows to choose at most poly logn points per cluster
while preserving the average distance up to (1 + ¢)-factor with probability at least 1 —1/n.

e We design a data structure that given a set of clusters, allows to answer approximate nearest
neighbor queries (on clusters) according to the average distance.

e Finally we provide a careful scheme for the merging steps that allows to bound the number
of times the nearest neighbor queries for a given cluster have to be performed.

3.3 The Algorithm

We are now ready to describe our algorithm. Our algorithm starts with all input points in their
own clusters and performs a nearest neighbor query for each of them. The algorithm maintains a
partition of the input into clusters that we call the unmerged clusters, identical to average linkage.
The algorithm proceeds in steps. Each step consists of merging several pairs of clusters. For each
step we associate a value v, which we refer to as the merge value of the step, which is a power
of (1 + ¢) and we will show the invariant that at the end of the step associated with value v, the
unmerged clusters are at distance greater than v/((1 + €)?). Let Z be the set of all merge values.

For each cluster C', we will maintain a sample of its points by applying the sampling procedure
(see supplementary materials for more details). To avoid recomputing a sample too often, we set a
variable s(C') which corresponds to the size of the cluster the last time the sampling procedure was
called.

Lazy sampling. Every time two clusters C7,Cs are merged by the algorithm to create a new
cluster, the following operations are performed:

L If|Cy U Cs) = (1+€2/(1+7)) max(s(C), s(C2)), then the sampling procedure is called
on C u C5 and an approximate nearest cluster query is performed using the nearest cluster
data structure (see supplementary materials). Then, s(C; u C2) is set to |Cy U Cy|. The
resolution parameter for sampling is the value of the current step divided by n. Namely, if
the value of the current step is v, we set ac, ¢, = v for the sampling procedure.

2. Otherwise, s(C1 U Cb) is set to max(s(C1), s(Cz)) and the algorithm uses the sample of
argmaxce(c, c,3|C| as the sample for C1 U Ca.

Once the above has been performed, a y-approximate nearest cluster query is performed using the
sample defined for the cluster resulting of the merge.

Thus, at each step, all the clusters have a v(1 + O(e))-approximate nearest neighbor among the
clusters. We denote v,(C') the approximate nearest neighbor for cluster C' at the ¢th step. This
approximate nearest neighbor is computed using our data structure (see supplementary materials).
We let v(C) = 14y (C), where t(C) is the step at which C' was created.

Pseudocode for our algorithm

1. Let £ be the list of unmerged clusters, initially it contains all the points.
2. Foreachv e I:

(a) ToMerge «— L

(b) While ToMerge is not empty:



i. Pick a cluster C' from ToMerge, and remove it from ToMerge.

ii. NN(C) < Approximate Nearest Neighbour Cluster of C.

iii. If avg(C, NN(C)) < v:
A. Merge C and NN (C). Let C’ be the resulting cluster.
B. Perform the Lazy Sampling procedure on C’ and insert it into the ANN data

structure.

C. Remove NN (C) from ToMerge and add C’ to ToMerge;
D. Remove C, NN(C) from £ and add C’ to £

See supplementary materials for the proof of correctness.

4 Experiments

Our experiments focus on Ward’s method and its approximation since it is a simpler algorithm in
contrast with average-linkage. We implemented our algorithm using C++11 on 2.5 GHz 8 core CPU
with 7.5 GiB under the Linux operating system. Our algorithm takes a dynamic Nearest Neighbour
data structure as a block box. In our implementation, we are using the popular FLANN library [30]
and our own implementation of LSH for performing approximate nearest neighbor queries. We
compare our algorithm to the sci-kit learn implementation of Ward’s method [34]] which is a Python
library that also uses C++ in the background.

Our algorithm has different parameters for controlling the approximation factor. These parameters
have a significant effect on the performance and the precision of the algorithm. The main parameter
that we have is € which determines the number of data structures to be used (recall that we have one
approximate nearest neighbor data structure for each (1 + €)%, for representing the potential cluster
sizes) and the sequence of merge values. Moreover, we make use of FLANN library procedure for
finding approximate nearest neighbors using KD-trees. This procedure takes two parameters the
number of trees t and the number of leaves visited f. The algorithm builds ¢ randomized KD-trees
over the dataset. The number of leaves parameter controls how many leaves of the KD-trees are
visited before stopping the search and returning a solution. These parameters control the speed and
precision of the nearest neighbor search. For instance, increasing the number of leaves will lead to
a high precision but at the expense of a higher running time. In addition, decreasing the number of
KD-Tree increases the performance but it decreases the precision. For LSH, we use the algorithm
of Datar et al. [18] which has mainly two parameters, H the number of hash functions used and r
controlling the ’collision’ rate (see details in [18]]).

To study the effects of these parameters, we did different experiments that combine several param-
eters and we report and discuss the main results in Table 1. The main data that is used in these
experiments are classic real-world datasets from the UCI repository and the sci-kit-learn library.
Iris contains 150 points in 4 dimensions, Digits 1797 in 64 dimensions, Boston 506 points in 13
dimensions, Cancer 569 points in 3 dimensions, and Newsgroup 11314 points in 2241 dimensions.

To measure the speed-up achieved by our algorithm, we focus our attention on a set of parameters
which gives classification error that is similar to Ward’s on the real-world datasets, and then run
our algorithm (with these parameters) on synthetic dataset of increasing sizes. These parameters are
precisely € = 8, number of trees 7' = 2, the number of visited leaves L = 10. The datasets are
generated using the blobs procedure of sci-kit learn. The datasets generated are d-dimensional for
d = {10, 20} and consists of a number of points ranging from 10 000 to 20 000. In both dimensions,
we witness a significant speed-up over the sci-kit learn implementation of Ward’s algorithm. Perhaps
surprisingly, the speed-up is already significant for moderate size datasets. We observe that the
running time is similar for LSH or FLANN.

Acknowledgements. Ce projet a bénéficié d’une aide de 1'Etat gérée par I’ Agence Nationale de la
Recherche au titre du Programme FOCAL portant la référence suivante : ANR-18-CE40-0004-01.
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Iris | Cancer | Digits | Boston | Newsgroup

Ward’s 0.67 | 0.46 0.82 0.80 0.146

Ward-FLANN (e =0.5,7'=16, L=5) | 0.62 | 0.53 0.79 0.80 < 0.05

Ward-FLANN (e =4,7 =16, L =128) | 0.76 | 0.47 0.56 0.78 < 0.05

Ward-FLANN (e=8,T'=2,L=10) | 0.75 | 0.1 0.47 0.80 < 0.05

Ward-LSH (¢ = 10, r = 3, H = n'/1%) | 0.69 | 0.58 0.58 0.82 < 0.05

Ward-LSH (¢ = 10,7 = 3, H =n/?) | 0.72 | 048 | 0.73 | 0.83 0.104

Ward-LSH (¢ = 2,7 = 3, H =n'/?) | 0.72 | 0.57 0.63 0.83 0.113

Table 1: We report the normalized mutual information score of the clustering output by the different
algorithms compared to the ground-truth labels for each dataset. We note that 0.05 can obtained on
Newsgroup through a random labelling of the vertices (up to +0.02). Hence LSH seems a more
robust approach for implementing approx-ward.
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datasets of sizes ranging from 10 000 points to 20 000
points in R?°. We observe that our algorithm is more
than 2.5 faster on datasets of size 20 000. Interestingly,
it seems that the dimension has little influence on both
our algorithm and Ward’s method.
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