
We thank the reviewers for their feedback. Below we list the respective revisions that will be made (R = Reviewer).1

Conceptual and intuitive introduction to transformation learning (R1,R2,R3) We will completely revise Section2

2 which will now open with the following paragraph: "Next, we turn our attention to learning to detect transformations3

from pairs of consecutive video frames. We start with the observation that much of the change in pixel intensities in4

consecutive frames arises from a local translation of the image. For small translations pixel intensity change is given by5

a linear operator (or matrix) multiplying the vector of pixel intensity scaled by the magnitude of translation. Because,6

for a 2D image, multiple directions of translation are possible, there is a set of translation matrices with corresponding7

magnitudes. Our goal is to learn both the translation matrices from pairs of consecutive video frames and the magnitudes8

of translations for each pair. Such a learning problem will reduce to the one discussed in the previous section, but9

performed on an unusual feature – the outer product of pixel intensity and variation of pixel intensity vectors."10

Results of learning in our model (R1,R3) We will revise Section 3. Specifically, we present PCA and K-means results11

because these are well understood computations that help with an intuitive understanding of our biologically plausible12

algorithm. PCA illustrates the learning of generators in the sign-unconstrained case and K-means illustrates the effect13

of constraining the sign of the output.14

In the case of 1D translations and 2D rotations there is only one generator of transformation (for sign-unconstrained15

output), which explains the choice of K = 2 for signed-constrained output. In the case of 2D images undergoing16

both horizontal and vertical motions our model learns two different generators, left-right and up-down motion (K = 417

for sign-constrained output). Fig.1c-d-e-f show the filters learned by our model, each accounting for a motion in a18

cardinal direction. These generators were also reported in [17]. In addition, when presented with pairs of points in Rn19

transformed by the elements of group SO(n), our model learns the various generators (K > 2).20

Comparison of model predictions with the biological observations (R1,R2,R3) Our theory’s predictions are con-21

sistent with experimental measurements of physiology and anatomy of the T4 circuit including phi and reverse phi22

optical illusions. The predicted output of our detectors, integrated over the visual field is consistent with experimental23

observations such as the increase with image contrast, the oscillations in the motion signal locked to the phase of the24

visual stimulus, non-monotonic dependence of output on motion velocity. Our reference to pixels in the context of fly25

vision is justified by the facet structure of the fly eye wherein photoreceptors respond to light intensity in a hexagonal26

grid of locations in the visual field.27

Biological implementation of the algorithm (R1,R2) We will revise Section 4 to clarify the relevant biological28

mechanisms and make a stronger connection with the algorithm. In particular, it is true that backpropagating action29

potential briefly interrupts dendritic integration yet it is widely thought to underlie Hebbian-like learning [32].30

Comparison of our model with other models (R1,R2) The main difference between our model and most published31

models (including the model in ref.[28]) is that the motion detector is learned from data using biologically plausible32

learning rules in an unsupervised setting. Thus, our model can generate somewhat different receptive fields for different33

natural image statistics such as that in ON and OFF pathways potentially accounting for minor differences reported34

between T4 and T5 circuits [33]. In addition, the model in [28] is architecturally different from ours as it is composed35

of a shared non-delay line flanked by two delay lines. Our model instead uses a temporal derivative in the middle pixel36

flanked with two non-shared non-delay lines. Whereas, after integration over the visual field, the outputs predicted by37

our model, HR and [28] are algebraically the same, the predicted output of a single motion detector in our model is38

different from both HR and [28].39
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Figure 1: Robustness to noise (a) our model vs HR, (b) our model vs [28]. Learned generators on 2D images of (c-d)
horizontal motions and (e-f) vertical motions.

40 A very recent paper [1] reported experimental measurements of direction opponency (DO) in T4 and T5 cells. They41

showed that the HR model cannot account for DO and proposed a biophysical model that reproduces observed DO. Our42

model also reproduces DO, as will be demonstrated in the revised version of our paper.43

Finally, we evaluated our model against HR and [28] in terms of robustness of their output to noise. Fig.1a (resp.1b)44

show the relative difference in mean squared error (MSE) between our model and HR (resp.[28]), for different SNR and45

different number of detectors. A positive value indicates that our model is less sensitive to noise than the competition.46

For both low SNR (<0dB) and integration over a large number of detectors our model, HR, and [28] perform similarly.47

In realistic settings, however, our model is more robust to noise than the other two.48

[1] Bara A. Badwan et al. Dynamic nonlinearities enable direction opponency in drosophila elementary motion49

detectors. Nature neuroscience, 22(8):1318, 2019.50


