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Abstract

The exploration bonus is an effective approach to manage the exploration-
exploitation trade-off in Markov Decision Processes (MDPs). While it has been
analyzed in infinite-horizon discounted and finite-horizon problems, we focus on
designing and analysing the exploration bonus in the more challenging infinite-
horizon undiscounted setting. We first introduce SCAL", a variant of SCAL [1]],
that uses a suitable exploration bonus to solve any discrete unknown weakly-
communicating MDP for which an upper bound c on the span of the optimal bias
function is known. We prove that SCAL" enjoys the same regret guarantees as
SCAL, which relies on the less efficient extended value iteration approach. Fur-
thermore, we leverage the flexibility provided by the exploration bonus scheme
to generalize SCAL" to smooth MDPs with continuous state space and discrete
actions. We show that the resulting algorithm (SCCAL") achieves the same regret
bound as UCCRL [2] while being the first implementable algorithm for this setting.

1 Introduction

While learning in an unknown environment, a reinforcement learning (RL) agent must trade off the
exploration needed to collect information about the dynamics and reward, and the exploitation of
the experience gathered so far to gain reward. An effective strategy to trade off exploration and
exploitation is the optimism in the face of uncertainty (OFU) principle. A popular technique to
ensure optimism is to use an exploration bonus. This approach has been successfully implemented in
H-step finite-horizon and infinite-horizon y-discounted settings with provable guarantees in finite
MDPs. Furthermore, its simple structure (i.e., it only requires solving an estimated MDP with a
reward increased by the bonus) allowed it to be integrated in deep RL algorithms [e.g., 3| 4} 5] |6]].
As the exploration bonus is designed to bound estimation errors on the value function, it requires
knowing the maximum reward 7,,,x and the intrinsic horizon of the problem [e.g.,[7, 8, 9] (e.g.,
H in finite-horizon and 1/(1 — «) in discounted problems). Here we consider the challenging
infinite-horizon undiscounted setting [10, Chap. 8], which generalizes the two previous settings when
H — oo and v — 1. While several algorithms implementing the OFU principle in this setting have
been proposed [[L1} 12} [12} [1,|13]], none of them exploits the idea of an exploration bonus.

In this paper we study the problem of defining and analysing an exploration bonus approach in the
infinite-horizon undiscounted setting. Contrary to the other settings, in average reward there is no
information about the intrinsic horizon. As a consequence, we follow the approach in [14, /1] and we
assume that an upper-bound c on the range of the optimal bias (i.e., value function) is known. We

define SCAL* and we show that its regret is bounded by O ( max{c, rmax } VI'SAT) w.h.p. for any
MDP with S states, A actions and I" possible next states. We prove that the bonus used by SCAL*
ensures optimism using a novel technical argument. We no longer use an inclusion argument (i.e.,
the true MDP is contained in a set of plausible MDPs) but we reason directly at the level of the
Bellman operator. We show that the optimistic Bellman operator defined by the empirical MDP with
optimistic reward 7°(s, a) 4 b(s, a) dominates the Bellman operator of the true MDP when applied to
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the optimal bias function. This is sufficient to prove that the solution of the optimistic MDP is indeed
(gain-)optimistic. This proof technique has two main advantages w.r.t. the inclusion argument. First,
it directly applies to slightly perturbed empirical MDPs, without re-deriving confidence sets. Second,
as we study the optimistic Bellman operator applied only to the optimal bias function (rather than
all possible vector in R¥), we save a factor /T in designing the exploration bonus, compared to the
(implicit) bounds obtained by algorithms relying on confidence sets on the MDP. Furthermore, as
SCAL" only solves the estimated MDP with optimistic reward, it is computationally cheaper than
UCRL-based algorithms, which require computing the optimal policy for an extended MDP with a
continuous action space defined by the confidence set over MDPs.

Surprisingly, the “tighter” optimism of SCAL* does not translate into a better regret, which actually
matches the one of SCAL and still depends on the factor v/T. We isolate and discuss where the
term /T appears in the proof sketch of Sect. While Azar et al. [8], Jin et al. [9] managed to
remove the /T term in the finite-horizon setting, their proof techniques cannot be directly applied
to the infinite-horizon case. Recently Ortner [15]] derived an algorithm achieving O (\/tmiXS AT)
regret bound under the assumption that the true MDP is ergodic (tnix denotes the maximum mixing
time of any policy). It remains an open question if a regret scaling with /S (instead of v/T'S) can
be achieved in the infinite-horizon case without any ergodicity assumption. We report preliminary
experiments showing that the exploration bonus may indeed limit over-exploration and lead to better
empirical performance w.r.t. approaches based on confidence intervals on the MDP itself (i.e., UCRL
and SCAL). A more detailed comparison to existing literature is postponed to App. [Al

To further illustrate the generality of the exploration bonus approach, we also present SCCAL", an
extension of SCAL" to continuous state MDPs. As in [2| [16]], we require the reward and transition
functions to be Holder continuous with parameters py, and a. SCCAL" is also the first implementable
algorithm in continuous average reward problems with theoretical guarantees (existing algorithms with
theoretical guarantees such as UCCRL [2] cannot be implemented). The key result is a regret bound
of O(max{c, rmax }pr VAT " */2+2) wh.p. Finally, we provide an empirical comparison of
SCCAL" with a Q-learning algorithm with exploration bonus for average reward problems (RVIQ-
UCB) inspired by [[17, 9] and the results in this paper (to deal with continuous states).

2 Preliminaries

We consider a weakly-communicating MDP [10, Sec. 8.3] M = (S, A, p,r) with state space S
and action space A. Every state-action pair (s, a) is characterized by a reward distribution with
mean (s, a) and support in [0, ryax], and a transition distribution p(-|s, @) over next states. In this
section, we assume the finite case (i.e., | S|, | A| < 400), although all following definitions extend to
continuous state spaces under mild assumptions on 7 and p (see Sect. . We denote by S = |S| and
A = | A| the number of states and action, by I'(s, a) = ||p(+|s, a)||o the number of states reachable
by selecting action a in state s, and by I' = max, , I'(s,a) its maximum. A stationary Markov
randomized policy 7 : S — P(.A) maps states to distributions over actions. The set of stationary
randomized (resp. deterministic) policies is denoted by ISR (resp. II5P). Any policy 7 € IISR has an
associated long-term average reward (or gain) and a bias function defined as

77(5)i= i BF| 1Y r(snan)| and 47(s)i= ¢l Ez[émst,a»g”(s») ,

T—~+o00 et T—~+o00

where ET denotes the expectation over trajectories generated starting from s, = s with a; ~ 7(s¢).
The bias h™(s) measures the expected total difference between the reward and the stationary reward
in Cesaro-limit (denoted by C-lim). Accordingly, the difference of bias h™(s) — h™ (s’) quantifies
the (dis-)advantage of starting in state s rather than s’. We denote by sp (h™) := max, h™(s) —
ming h™(s) the span of the bias function. In weakly communicating MDPs, any optimal policy
7* € arg max, g™ (s) has constant gain, i.e., g™ (s) = g* for all s € S. Moreover, there exists a
policy 7* € arg max,_ g™ (s) for which (¢*, h*) = (g™ , h™ ) satisfy the optimality equation,

Vs €S, h*(s) + g* = Lh*(s) := mea%{r(s, a) +p(-|s,a)Th*}, (1)

where L is the optimal Bellman operator. Finally, D = max,.s{7(s — s’)} denotes the diameter
of M, where 7(s — s') is the minimal expected number of steps needed to reach s’ from s.



Input: Confidence § €]0, 1], "max, S (Z for SCCAL"), A, ¢ > 0 (and pr. and o for SCCAL™)

For episodes k = 1,2, ... do

1. Sett, = ¢ and episode counters v (s, a) =

2. Compute estimates py (1(s")|1(s),a), 7 (I ( ),a), bi(I(s),a) (Eq. orEl) and build the MDP ZT/[\,j
(SCALY) or M (SCCAL").

3. Compute an T‘;‘:" -approximate solution of Eq.for Z/W\,j (SCAL"Y) or J/\/[\,‘Cngr (SCCAL") using SCOPT

4. Sample action a; ~ 7 (-|1(s¢)).

5. While vy (I(s¢),ar) < max{1, Ni(I(s¢),a:)} do

(a) Execute a¢, obtain reward r, and observe next state S¢41.
(b) Increment counter vy (s¢, at) += 1.
(c) Sample action a¢+1 ~ 7 (-[1(s¢+1)) and increment ¢ += 1.

6. Increment counters Ny11(s, a) := Ni(s,a) + vi(s,a) for all s, a.

Figure 1: Shared pseudo-code for SCAL* and SCCAL". For SCAL* I(s) = s by definition.

Learning Problem. Let M* be the true MDP. We consider the learning problem where S, A and
Tmax are known, while rewards r and dynamics p are unknown and need to be estimated on-line.
We evaluate the performance of a learning algorithm 2{ after T time steps by its cumulative regret

ARLT) = ZtT:l(g* — r¢(8¢, at)). Finally, we make the following assumption.
Assumption 1. There exists a known upper-bound ¢ > 0 to the optimal bias span i.e., ¢ > sp (h*).

This assumption is common in the literature [see e.g., (18,12} [1]. Such a bound to the “range” of the

value function is already available in discounted and finite horizon problems (i.e., as ﬁ and H),

so Asm. is not more restrictive. While the span sp (h*) is a non-trivial function of the dynamics
and the rewards of the MDP, some intuition about how the cumulative reward varies depending on
different starting states is often available. Furthermore, as sp (h*) < rya.xD [e.g.,[14], it is sufficient
to have prior knowledge about the diameter D and the range of the reward 7., to provide a rough
upper-bound on the span.

3 SscAL*: scAL with exploration bonus

In this section, we introduce SCAL", the first online RL algorithm —in the infinite horizon undiscounted
setting— that leverages an exploration bonus to achieve near-optimal regret guarantees. Similar to
SCAL [1l], SCAL" takes as input an upper-bound ¢ on the optimal bias span (i.e., sp (h*) < ¢) to
constrain the planning problem solved over time. The crucial difference is that SCAL* does not
compute an optimistic MDP within a high-probability confidence set, but it directly computes the
optimal policy of the estimated MDP, with the reward increased by an exploration bonus. The bonus
is carefully tuned so as to guarantee optimism and small regret at the same time (Thm. [T).

3.1 The Algorithm

Similar to other OFU-based algorithms, SCAL™ proceeds in episodes (see Fig. Denote by t, the
starting time of episode k, N(s, a, s") the number of observations of tuple (s, a, s") before episode
kand Ni(s,a) :== ), Ni(s,a,s’). We define the estimators of the transitions and rewards as

~+

pk (S/|S7a) = (2)

N, ! I(s'=5 — ’ ) =5
k(s a,s") N (s =73) (s Z t(st,ae)1((se,a) = (s,a))
Ni(s,a)+1  Ng(s,a)+1 — Ni(s,a)

where 5 € S is an arbitrary state and 74 (s, @) := Tmax, Py (5’8, a) = 1/S when Ny, (s, a) = 0. The
transition model p; (s'|s, a) is a biased (but asymptotically consistent) estimator of p(s’|s, a). We
further define the exploration bonus

o In (20SAN; (s,a)/9) c
bi(s,a) := (¢ + Tmax) \/ N7 (s, 0) Ne(s.a) 110 3)
=

!The algorithm is reported in its general form, which applies to both discrete and continuous state space.



where N, (s,a) = max{1, Ni(s,a)}. Intuitively, the exploration bonus is large for poorly visited
state-action pairs, while it decreases with the number of visits. A crucial aspect in the formulation
of by is that it scales with the span c. In fact, the exploration bonus is not used to obtain an upper-
confidence bound on the reward (setting by (s, a) = S;* would be sufficient), but it is designed to
take into consideration how estimation errors on p and 7, which are bounded by /37, may propagate
to the bias and gain through repeated applications of the Bellman operator. As the span ¢ provides
prior knowledge about the “range” of the optimal bias function, the exploration bonus is obtained by
considering that “local” estimation errors may be amplified up to a factor c. The specific shape of by,
and (37 and their theoretical properties are derived in Lem. [T} At each episode k, SCAL* builds an

MDP 1/, o = (S, A", p},7) obtained by duplicating every action in .4 with transition probabilities
unchanged and optimistic reward set to 0. Formally, let AT := A x {1,2} and we denote any pair
(a,i) € A x {1,2} by a;. We then define 7}/ (s,a;) := (Ti(s,a) + by(s,a)) - L(i = 1). SCAL*

proceeds by computing the optimal policy of the MDP M, ,j subject to the constrains on the bias span:

my=arg  sup  {g"}; ge (M) = sup_ {g"}, )
rell, (1u+) mell, (M*)
where the constraint set is I, (M) := {m € I’} : sp (h™) < ¢ A sp (¢g™) = 0}. The optimal policy

is executed until the number of v1s1ts in at least one state-action pair durmg the episode has doubled.

Problemlls well posed and can be solved using ScOpT.Let L* be the optlmal Bellman operator
associated to M, given v € RS and ¢ > 0, we define the value operator 7. : RS — RS as

Lto(s) Vs € {s € S|Ltv(s) < ming{LTv(s)} + c}

- 4)
c+ming{LTv(s)}  otherwise

Pty = LBty = {
where I, is the span constrain projection operator (see [1, App. D] for details). In other words,
operator T+ applies a span truncation to the one-step application of L*, which guarantees that
sp(T(jr v) < c. Given a vector vy € RS and a reference state 5, SCOPT runs relative value iteration
where L is replaced by 7. as v, 11 = T-F v, — T v, (S)e. The policy 7y, returned by ScOPT takes
action in the augmented set A* and it can be “projected” on A as (s, a) < mx(s,a1) + 7 (s, az)
(we use the same notation for the two policies), which is th/e\ policy actually executed through the

episode. Following similar steps as in [[1], we can prove that M ,j satisfies all sufficient conditions for
ScOPT to converge and return the optimal policy (see App.[B).

Proposition 1. The MDP M, ,j satisfies the following properties: 1) the associated optimal Bellman
operator LV is a y-span-contraction; 2) all policies are unichain; 3) the operator T.} is globally fea-

sible at any vector v € R® such that sp (v) < ¢, i.e., forall s € S, minge4{r(s,a)+p(-|s,a)Tv} <
ming {Lv(s")} + c. As a consequence, SCOPT converges and returns a policy T, solving

3.2 Optimistic Exploration Bonus

All regret proofs for OFU-based algorithms rely on the property that the optimal gain of the MDP used
to compute 7y (M, ,j in our case) is an upper-bound on g*. If we want to use the same proof technique
for SCAL*, we need to ensure that the policy 7, is gain-optimistic, i.e., g = g (M,j) > g*.

Recall that the optimal gain and bias of the true MDP (g*, h*) satisfy the optimality equation
Lh* = h*+g*ewheree = (1,...,1). Since sp (h*) < ¢ (by assumption), we also have sp (Lh*) =
sp(h* 4+ g*e) = sp(h*) < cand so T.h* = Lh*. A minor variation to Lemma 8 of Fruit et al. [1]]
shows that a sufficient condition to prove optimistic gain is to show that the operator 7" is optimistic
w.r.t. its exact version when applied to the optimal bias function, i.e., (see Prop.3]in App.[B)
THR* > h* + g*e = TLh*.

As the truncation operated by T, (i.e., I';) is monotone, this inequality is implied by f?h* > Lh*.
Finally, since p} (s'|s, a1) = Py (s'|s,a2) = pi(s'|s, a) and 7} (s, a2) < 7} (s, a1) it is immediate to
see that L;:h* = Lih*, thus implying that a sufficient condition for ﬁ,j > g*istohave Lyh* > Lh*,

which reduces to verifying optimism for the Bellman operator of M, ,j when applied to the exact
optimal bias function. The exploration bonus is tailored to achieve this condition with high probability.



Lemma 1. Denote by Ek the optimal Bellman operator of M, w. With probability at least 1 — 2, for
allk > 1, Zkh* > Lh* (componentwise) and as a consequence §g > 9.

Proof (see App.[D). By using Hoeffding-Azuma inequality and union bound, we can show that for
all k > 1, [Ti(s,a) — r(s,a)| < rmaxBi® and [(p(-]s,a) — p(-|s,a))T h*| < ¢ Bi* whp. (p, is
the MLE of p). We also need to take into account the small bias introduced by Py (-|s, a) compared to
D (s, a) which is not bigger than ¢/(Ng(s, a) + 1) by definition. Then, with high probability, for
all k > 1,7, (s,a) + br(s,a) + pr(-|s,a)Th* > r(s,a) + p(-|s,a)Th* forall (s,a) € S x A. O

The argument used to prove optimism (Lem.[T))) significantly differs from the one used for UCRL and
SCAL. Confidence-based methods compute the optimal policy of an extended MDP that “contains”
the true MDP M* (w.h.p.), which directly implies that the gain of the extended MDP is bigger than
g*. The main advantage of our argument is that it allows for a “tighter” optimism (i.e., less prone

to over-exploration). In fact, the exploration bonus quantifies by how much f;h* is bigger than
Lh* and it approximately scales as by (s, a) = é( max{rmax, ¢} /v/Ni(s,a)). In contrast, UCRL
and SCAL use an optimistic Bellman operator L such that Lh* is bigger than Lh* by respectively
é(rmaxD I'/Nj(s,a)) (UCRL) and é( max{rmax, ¢} /T /Ni(s,a)) (SCAL). In other words, the
optimism in SCAL" is tighter by a multiplicative factor /T

3.3 Regret Analysis of SCAL*

We report the main result of this section.

Theorem 1. For any weakly communicating MDP M such that sp (h*) < ¢, with probability at
least 1 — § it holds that for any T' > 1, the regret of SCAL" is bounded as

A(SCAL®,T) = O(max{rmm ¢} (\/( Za I'(s, a))Tln (T/6) + S>Aln? (?)))

Since the optimism in SCAL* is tighter than in UCRL and SCAL by a factor /T, one may expect to get
aregret bound scaling as cv/ S AT instead of cv/I'S AT, thus matching the lower bound of Jaksch et al.
[11] as for the dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL*
(and even SCAL) due to the correlation between hy, and p;, (see App. @]) Azar et al. [8] managed to
achieve the optimal dependence in S in finite-horizon problems. In this setting, the definition of regret
is different and it is not clear whether it is possible to adapt their guarantees and techniques to infinite
horizon without introducing a ©(T")-term. Agrawal and Jia [19] showed the optimistic posterior

sampling has a regret of 5(D\/ SAT) in the infinite horizon undiscounted setting. Unfortunately,
their proof critically relies on the concentration inequality |(Dy(-|s,a) — p(+|s,a)) Thi| < rmaxDBE
which is incorrect It remains as an open question whether the /T term can be actually removed.

Finally, SCAL*’s regret does not scale min{ry,D, ¢} as for SCAL, implying that SCAL* may
perform worse when c is too large. The difference resides in the fact SCAL builds an extended MDP
that contains the true MDP (w.h.p.). The shortest path between two states in the extended MDP is
therefore shorter than in the true MDP and consequently, the diameter of the extended MDP is smaller
than the true diameter D. This explains why the regret of SCAL depends on both D and ¢ (which is
provided as input to the algorithm). Unfortunately, in SCAL" it is not clear how to bound the diameter

of M ,j and the only information that can be exploited to bound the regret is the constraint c.

4 SccCAL*: SCAL* for continuous state space

We now consider an MDP with continuous state space S = [0, 1] and discrete action space A. In
general, it is impossible to learn an arbitrary real-valued function with only a finite number of samples.
We therefore introduce the same smoothness assumption as Ortner and Ryabko [2]:

Assumption 2 (Holder continuity). There exist py,, > 0 s.t. for any two states s, s’ € S and any
actiona € A, |r(s,a) —r(s’,a)| < rmaxpr|s — §'|* and ||p(:|s,a) —p(-|s',a)|l1 < pr|s —s'|*

As in Sec. 3] we start by introducing our proposed algorithm SCCAL* which is a variant of SCAL*
for continuous state space (Sec.[d.1)), and then analyze its regret (Sec. [4.2)).

?See https://arxiv.org/abs/1705.07041,
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4.1 The algorithm

In order to apply SCAL" to a continuous problem, we discretize the state space as in [2]. We
partition S into S intervals defined as I; := [0, 4] and I, = | 552, £] for k = 2,..., S. The set of
aggregated states is then Z := {I1,..., I} (|Z| = S). The number of intervals S is a parameter of
the algorithm and plays a central role in its performance. Note that the terms Ny (s, a, s’) and Ny (s, a)
defined in Sec. are still well-defined for s and s’ lying in [0, 1] but are 0 except for a finite number
of s and s’. For any subset I C S, the sum Zse ;1 Us 18 also well-defined as long as the collection
(us) 4y contains only a finite number of non-zero elements. We can therefore define the aggregated

counts, rewards and transition probabilities for all 1, J € Z as: Ni.(I,a) := Y .; Ni(s,a),

tr—1 !
1 > weg 2ser Ni(s,a,8")
—ag I = § IL 6]7 — 5% <]I7 = s'e] sel ’
Ty (I, a) Ni(I,a) — il oo =4 B > ser Ni(s,a)

Similar to Eq.[3] we define the exploration bonus of an aggregated state as

a —« ¢
bk(I7a) 3:(0 + rmax) (Blg + pLS ) + m (6)

where 3{¢ is defined in (3). The main difference is an additional O(cpr,S~™%) term that accounts for
the fact that the states that we aggregate are not completely identical but have parameters that differ by

atmost p, S, We pick an arbitrary reference aggregated state T and define M, W= (I, A, 00, 710),
the aggregated (discrete) analogue of Mj, defined in Sec. [3} where 7Y = 7Y + b), and
Fo (1, a) = elbaBe (L) U =1)

k Ni(I,a)+1 Ni(I,a) +1
Similarly we “augment” M?Y into M" = (T, AT,p29",729%) (analogue of M," in Sec. [3)
by duplicating each transition in M;?. At each episode k, SCCAL" uses SCOPT (with the same

parameters as in Sec. [3) to solve optimization problem (@) on M, *. This is possible because although

the state space of M™ is uncountable, M i * has only S < 400 states. SCOPT returns an optimistic
optimal policy 7 satisfying the span constraint. This policy is defined in the discrete aggregated
state space but can easily be extended to the continuous case by setting 7 (s, a) := 7 (I(s), a) for
any (s,a) (with I(s) mapping a state to the interval containing it).

4.2 Regret Analysis of SCCAL*

This section is devoted to the regret analysis of SCCAL*, with the main result summarized in Thm[2]

Theorem 2. For any MDP M satisfying Asm. and such that sp (h};) < ¢, with probability at least
1 — ¢ it holds that for any T > 1, the regret of SCCAL" is bounded as

A(SCCALY,T) = O(max {"max; ¢} <Sq/ATln(T/5) + 52A1n? (T/6) + pLSO‘T>>

e +1) - 1 o (a42)
By setting S = (apL \/g) the bound becomes: O ( max{rmax, c}pé‘”” A2 Tat2) )

Thm. [2| shows that SCCAL™ achieves the same regret as UCCRL [2] while being the only imple-
mentable algorithm with such theoretical guarantees for this setting. Thm. 2] can be extended to
the more general case where S is d-dimensional. As pointed out by [2], in this case S¢ intervals
are needed for the discretization leading to a regret bound of order O(T** * /(¢ +2) after tuning
S = T'/4+22) _Finally, we believe that SCCAL" can be extended to the setting considered by [16]
where, in addition to Holder conditions, the transition function is assumed to be x-times smoothly
differentiable. In the case of Lipschitz model, i.e., @ = 1, this means that it is possible obtain an

asymptotic regret (as x — 00) of O(T*/3) while SCCAL" is achieving O(T3/%).
Proof sketch. Thm. [2]can be seen as a generalization of Thm. [T|but the continuous nature of the state
space makes the analysis more difficult. The main technical challenge lies in relating two MDPs

with different state spaces: M;? (with finite state space) and M* (with continuous state space). For
instance, It is necessary to compare these two MDPs to prove optimism. To facilitate the comparison,

we introduce an “intermediate” MDP M, . which has continuous state space like M *, but which also
depends on the samples collected before episode k like M.



Definition 1 (Empirical MDP with continuous state space). Let M, x = (S, A, D, Tr;) be the continu-
ous state space MDP s.t. for all (s,a) € S x A, Ti(s,a) :=7.7(1(s),a),

Ni(I(s), a)p(s'ls,a)  §-1(s" € I(5))
Ni(I(s),a) +1 Ni(I(s),a) +1
where I : S — T is the function mapping a state s to the interval containing s, and p,,(s'|s, a) is the

Z s) Nk(x,a,sl)

Radon-Nikodym derivative of the cumulative density function F'(s) = 3 - Tejif(k OK)

Tr(s,a) :=T(s,a) + by (I(s),a) and Dp(s'|s,a) =

MDP Mj, is designed so that: 1) the reward function is piece-wise constant over any interval in Z and
matches the reward function of M, 2) the transitions integrated over s’ € J € T are piece-wise

constant and match the transitions of the discrete state space MDP M +9. More precisely, V.J € Z,
J;Pp(s'[s,a)ds” = (J|I(s),a) and so V(s, J) € S x I:

L NUEL,aR () S [, 1 € 1(5)ds
/p’“(‘”s’“)ds_ Nel(s),a) 41 Ne(I(s),a) +1

= (JH(s),a) (D

This ensures that M"Y and M, can be easily compared (and as a consequence, so can M;"" and
M ,j , the augmented versions of M, and M)},) although they have different state spaces and obtain:

Lemma 2. Forany k > 1, §Zg+ =g (M\gg"') = ﬁ,‘: =g (Z/W\,j')

Proof (see App.[C.2)). We notice that for any continuous function v(s) defined on S and piece-wise
constant on the intervals of Z, we can associate a discrete function v’(I) (defined on Z) such that
forall s € S, v/(I(s)) = v(s). Let vy = 0 (continuous function) and denote by vy its discrete

analogue. We define the sequences (v, )nen and (u, )nen by recursively applying ﬁ* and Tgﬁ
respectively: v, 41 = fj vy and Up 41 = fgﬁun with ug = v{. It is easy to show that for all
n, vy, is piece-wise constant and its discrete analogue is u,, i.e., u, = v),. Therefore the sequences
Unt1(8) — vn(s) and w41 (I(s)) — un(I(s)) have the same limits, respectively g,” and gi/". O

Leveraging Lem. 2| it is sufficient to compare the gains of M, ,j and M™ to prove optimism. Since
both MDPs have the same (continuous) state space, we can proceed as in Sec. and just show that

Ekh* > Lh* (analogue of Lem. , with the difference that A" is defined on a continuous space.

Lemma 3. Denote by Ek the optimal Bellman operator of M, k. With probability at least 1 — g, for
all k > 1 we have Zkh* > Lh* (on the whole state space) and as a consequence §Zg+ >g*.

Proof (see Lem. | and[3) in App.[C). The proof is similar to Lem.[I} we compare 7, and pj, with the
true reward function r and transition probabilities p using concentration inequalities. Due to the
aggregation of states, there are two major differences with the discrete case. The first difference is
that py, is even more biased than before. Thanks to the smoothness assumption (Asm. , the extra
bias is only of order O(LS~%) (this explains why this term appears in the definition of the bonus
in (6))). The second difference is that since there are uncountably many states, it is impossible to use a
union bound argument on the set of states (like in Lem. [I). Instead, we show using optional skipping
that the terms of interest are martingales and we apply Azuma’s and Freedman’s inequalities. [

The rest of the proof is similar to SCAL" with additional steps to deal with the continuous state space.

5 Numerical Simulations

We design experiments to investigate the learning performance in discrete and continuous MDP
(see App. [E for details). In the discrete case, the main theoretical open question is whether the
tighter exploration bonus does translate in a better regret, that is, whether the dependency on the
branching factor I' in the regret bound is due to the analysis or not. Unfortunately, it is difficult
to design experiments to thoroughly investigate the actual dependency. First, it is challenging to
design MDPs with all parameters fixed (i.e., gain, span, diameters, number of states and actions)
but I' (e.g., the bigger I, the smaller the span as the MDP is more connected). Furthermore, the
regret bound is worst-case w.r.t. all MDPs with a given set of parameters, which is difficult to
design in practice. For these reasons, instead of investigating the exact dependency, we rather
focus on comparing the performance of SCAL* to UCRL for different values of I'. We consider
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report mean, max and min curves obtained over 50 independent runs.

the Garnet(S, A, I') family [20] of random MDPs. In all the experiments we take S = 200,
A = 3 and ¢ = 2 and we guarantee the MDPs to be communicating by setting p(sg|s,a) > 0.01
for every pair (s,a) and an arbitrary state so. In order to provide a fair comparison of UCRL,
SCAL and SCAL"*, we consider Hoeffdin-based confidence bounds with standardized constants:
Br(s,a) = Tmax\/Lk/Nk(s,a) and B,(s,a) = /I'Ly/Ni(s,a) with L, = log(SA/dx)/4 for
UCRL and SCAL, and by (s, a) = Sj.(s,a) + ¢4 (s,a) for SCAL". Since Garnet(S, A, I') defines
a distribution over MDPs, we evaluate the algorithms on the MDP with median bias span (since
the distribution shows relatively long tails, see App.[E). According to the theoretical analysis, the
per-episode regret of UCRL scales as O(sp (hy) v/T'), where sp (hy,) is the span of the optimistic
MDP, while SCAL* has regret O(cv/T), where ¢ is an upper-bound on sp (h*). While in the worst
case sp (hx) < D, in the MDP we selected, UCRL always generates optimistic MDPs with span
sp (hi) smaller than sp (h*) < c. In this favorable case for UCRL, the only hope for SCAL* to
achieve better performance is if the tighter optimism translates into a per-episode regret of O(c), with
no dependency on I'. This is indeed what we observed empirically. When I = 5, as expected, UCRL
outperforms SCAL" as sp (hy) VT < ¢ for most of the episodes. On the other hand, when I' = 144,
the tighter optimism of SCAL™ allows a faster convergence to the optimal solution compared to UCRL
as sp (h) VT > c. Although this result does not provide a definite answer on whether and how the
regret of SCAL" scales with T’ it hints to the fact that tighter optimism does indeed translate to better
empirical performance w.r.t. confidence-based algorithms such as UCRL.

As SCCAL" is the first implementable model-based algorithm with regret guarantees in continuous
MDPs, we compare it to model-free heuristic variants. We consider RVI Q-learning [17] with either
e-greedy and UCB [9] explorationE] Since Q-learning is model-free, it does not perform planning and
updates the policy at each time step (the action selection is greedy w.r.t. the current estimate). Even
in this case we harmonize the bonus such that b(s,a) = 87 (s, a) + ¢8P(s,a) + (Fmax + ¢)prS™.
We use the same uniform discretization of the state space for all the algorithms. We considering a
continuous version of the RiverSwim [7] discretized into S = 50 states (pp, = a =1,¢ = 30,5 C R)
and the ShipSteering domain [21] with S = |Z| = 512 discrete states (pp, = 5, = 1, ¢ = 1.5,
S C R?) (see the App. E] for MountainCar [22]). In both cases, RVIQ shows an unstable behaviour.
In the RiverSwim it outperforms the other approaches when optimistically initialized (i.e., g9 = ¢)
while the same configuration fails to learn in the ShipSteering. Moreover, RVIQ with gy = 0 shows
the ability to learn in the ShipSteering but also high variance. This undesired behavior is typical
of unstable algorithms (we observed linear regret in some run). RVIQ-UCB is able to learn in the
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RiverSwim but not in the ShipSteering. The only stable algorithm in both domains is SCCAL*.

6 Conclusion

We derive the first regret analysis of exploration bonus for average reward with discrete and continuous
state space by leveraging on an upper-bound to the range of the optimal bias function to properly scale
the bonus (as done in other settings). It is an open question whether an exploration bonus approach
is still possible when no prior knowledge on the span of the optimal bias function is available [see
e.g.,[11,23]. Despite the /T improvement in the definition of the exploration bonus (i.e., optimism)
compared to confidence-set-based algorithms, the final regret still scales with I leaving it as an open

question whether such dependency can be actually removed in non-ergodic MDPs.

3Refer to App. for details about RVIQ and RVIQ-UCB. There is no known regret bound for model-free

algorithms in average reward, we think this is an interesting line of research for future work.
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