
Certifiable Robustness to Graph Perturbations: Author Response1
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(a) Runtime: local (VI).
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(b) Runtime: global (RLT).
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(c) Bound on certifiable accuracy.

R1/R2/R3: Limited Focus. As suggested, we will clarify in the paper that our focus2

is on certifying PPNP and label/feature propagation; and not every possible GNN.3

Certifying any of these approaches is highly relevant: e.g. label propagation is quite4

popular in practice (often as part of more complicated pipelines in industry), and5

the strong empirical performance of PPNP has already been independently verified6

[1]. We can also trivially extend our approach to certify a recently proposed model7

termed Simple Graph Convolution (SGC) [2] which is equivalent to feature propagation.8

Certifying SGC is useful since it is one of the few GNNs that demonstrates scalability9

to graphs with millions of nodes. In future work, we can extend our approach to GCNs10

by using a similar analysis to Xu et al. [3] (Theorem 1) which shows that the influence11

between nodes in a k-layer GCN is proportional to a k-step random walk distribution12

by e.g. bounding the influence with (truncated) PageRank to obtain a certificate.13

R2: SDP relaxation. Let (y1, y2, . . . ) be the variables corresponding to β0
ij , x

0
ij , etc.14

The SDP relaxation replaces the product terms yiyj by an element Yij of an n × n15

matrix Y and adds the constraint Y − yyT � 0. Since in the original QCLP there16

are no terms of the form yiyi corresponding to the elements on the diagonal, we can17

make the diagonal elements Yii arbitrarily high to make the matrix Y − yyT positive18

semidefinite and trivially satisfy the constraint.19

R2: NP-hard proof. We provide a proof sketch that adding the global budget makes20

the problem NP-hard by constructing a polynomial reduction from the 1-IN-3SAT21

problem which is NP-complete. The problem: Given a boolean 3-CNF formula s.t.22

the clauses contain only un-negated atoms, does there exist a truth assignment s.t. in23

each clause, exactly one literal is true. First, add a single node t, and one node for each24

literal l1, . . . , ln and each clause c1, . . . , cm. Let Ef (non-fragile set) contain: one edge25

from each node to t, one edge from t to each clause cj , and one edge from each clause26

cj to its three literals (3m in total). Let F (fragile set) contain 3m edges, one from each27

literal li to its clauses, and let E = Ef ∪ F . Set the global budget B = 2m, and the teleport vector and reward vector28

as z = r = et. Such reward means that we are maximizing the PageRank π(z)t of the single node t, or equivalently29

minimizing the expected first hitting time ht to t. Intuitively, for this graph removing any fragile edge decreases ht,30

which means we can always improve the objective by removing more edges, up to the budget B = 2m. Thus, there31

are exactly m fragile edges left (i.e. 2m removed) in the optimal configuration O∗. Let fj be the number of fragile32

edges in O∗ pointing to clause cj . Claim: 1-IN-3SAT is satisfiable iff in the optimal solution each fj = 1. First note33

that for any optimal solution, if one edge from some literal is in O∗ then all edges from that literal are in O∗ (up to the34

budget). The reason is that adding an additional edge from a literal already in O∗ to some clause leads to a smaller35

ht increase than adding an edge from a literal not yet in O∗ to some clause. Given this, the right-to-left direction of36

the claim above is trivial: Since each fj = 1, every clause has exactly one literal set to true. It follows: 1-IN-3SAT37

is satisfiable. Left-to-right: Given that 1-IN-3SAT is satisfiable. Assume that the optimal configuration O′ contains38

some clause c1 with f1 = 2. Since |O′| = m, there must be a clause c2 6= c1 with f2 = 0. Now c1 forms 2 cycles39

with its literals which increases ht, but having f2 = 0 decreases ht. The former increase is always larger then the later40

decrease, thus a configuration where some cj’s have fj = 2 always has a larger ht compared to any configuration where41

all fj = 1. Since such a configuration exists (satisfiability holds), O′ cannot be optimal. Similarly, this holds if some42

fj = 3. Thus, it follows that if 1-IN-3SAT is satisfiable O∗ recovers the truth assignment and all fj = 1.43

R2: Only global budget. Our approach is not designed to handle only global budget since the proposed upper bounds44

explicitly depend on having local budget. Deriving tight upper bounds for the "global only" case is left for future work.45

R2/R3: Runtime. To show how the runtime scales with number of nodes we randomly generate SBM graphs of46

increasing size. In Fig. 1a we see the mean runtime for local budget (VI algorithm). Even for graphs with more than47

10K nodes the certificate runs in a few seconds. Similarly, Fig. 1b shows the runtime for global budget (RLT relaxation).48

The runtime can be easily reduced by: (i) stopping early whenever the worst-case margin becomes negative, (ii) using49

Gurobi’s distributed optimization capabilities to reduce solve times, and (iii) having single preprocessing for all nodes.50

R3: Overall accuracy. Notice that the ratio of nodes that are both certifiably robust and at the same time have a correct51

prediction is a lower bound on the overall classification accuracy since the worst-case perturbation can be different for52

each node. We plot this ratio in Fig. 1c for Citeseer. We will include this finding in the updated paper.53

[1] Fey, M. and Lenssen, J. E. Fast graph representation learning with pytorch geometric. arXiv:1903.02428, 2019.54

[2] Wu et al. Simplifying graph convolutional networks. In ICML 2019.55

[3] Xu, K. et al. Representation learning on graphs with jumping knowledge networks. In ICML 2018.56


