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Abstract

Model-agnostic meta-learners aim to acquire meta-learned parameters from similar
tasks to adapt to novel tasks from the same distribution with few gradient updates.
With the flexibility in the choice of models, those frameworks demonstrate appeal-
ing performance on a variety of domains such as few-shot image classification and
reinforcement learning. However, one important limitation of such frameworks is
that they seek a common initialization shared across the entire task distribution,
substantially limiting the diversity of the task distributions that they are able to learn
from. In this paper, we augment MAML [5] with the capability to identify the mode
of tasks sampled from a multimodal task distribution and adapt quickly through
gradient updates. Specifically, we propose a multimodal MAML (MMAML) frame-
work, which is able to modulate its meta-learned prior parameters according to the
identified mode, allowing more efficient fast adaptation. We evaluate the proposed
model on a diverse set of few-shot learning tasks, including regression, image
classification, and reinforcement learning. The results not only demonstrate the
effectiveness of our model in modulating the meta-learned prior in response to the
characteristics of tasks but also show that training on a multimodal distribution
can produce an improvement over unimodal training. The code for this project is
publicly available at https://vuoristo.github.io/MMAML.

1 Introduction

Humans make effective use of prior knowledge to acquire new skills rapidly. When the skill of interest
is related to a wide range of skills that one have mastered before, we can recall relevant knowledge of
prior skills and exploit them to accelerate the new skill acquisition procedure. For example, imagine
that we are learning a novel snowboarding trick with knowledge of basic skills about snowboarding,
skiing, and skateboarding. We accomplish this feat quickly by exploiting our basic snowboarding
knowledge together with inspiration from our skiing and skateboarding experience.

Can machines likewise quickly master a novel skill based on a variety of related skills they have
already acquired? Recent advances in meta-learning [48, 6, 4] have attempted to tackle this problem.
They offer machines a way to rapidly adapt to a new task using few samples by first learning an
internal representation that matches similar tasks. Such representations can be learned by considering
a distribution over similar tasks as the training data distribution. Model-based (i.e. RNN-based)
meta-learning approaches [4, 52, 27, 25] propose to recognize the task identity from a few sample
data, use the task identity to adjust a model’s state (e.g. RNN’s internal state or an external memory)
and make the appropriate predictions with the adjusted model. Those methods demonstrate good
performance at the expense of having to hand-design architectures, yet the optimal strategy of
designing a meta-learner for arbitrary tasks may not always be obvious to humans. On the other hand,
model-agnostic meta-learning frameworks [5, 7, 15, 18, 8, 28, 36, 35] seek an initialization of model
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parameters that a small number of gradient updates will lead to superior performance on a new task.
With the flexibility in the model choices, these frameworks demonstrate appealing performance on a
variety of domains, including regression, image classification, and reinforcement learning.

While most of the existing model-agnostic meta-learners rely on a single initialization, different tasks
sampled from a complex task distributions can require substantially different parameters, making it
difficult to find a single initialization that is close to all target parameters. If the task distribution is
multimodal with disjoint and far apart modes (e.g. snowboarding, skiing), one can imagine that a
set of separate meta-learners with each covering one mode could better master the full distribution.
However, associating each task with one of the meta-learners not only requires additional task identity
information, which is often not available or could be ambiguous when the modes are not clearly
disjoint, but also disables transferring knowledge across different modes of the task distribution. To
overcome this issue, we aim to develop a meta-learner that is able to acquire mode-specific prior
parameters and adapt quickly given tasks sampled from a multimodal task distribution.

To this end, we leverage the strengths of the two main lines of existing meta-learning techniques:
model-based and model-agnostic meta-learning. Specifically, we propose to augment MAML [5]
with the capability of generalizing across a multimodal task distribution. Instead of learning a single
initialization point in the parameter space, we propose to first compute the task identity of a sampled
task by examining task related data samples. Given the estimated task identity, our model then
performs modulation to condition the meta-learned initialization on the inferred task mode. Then,
with these modulated parameters as the initialization, a few steps of gradient-based adaptation are
performed towards the target task to progressively improve its performance. An illustration of our
proposed framework is shown in Figure 1.

To investigate whether our method can acquire meta-learned prior parameters by learning tasks sam-
pled from multimodal task distributions, we design and conduct experiments on a variety of domains,
including regression, image classification, and reinforcement learning. The results demonstrate the
effectiveness of our approach against other systems. A further analysis has also shown that our
method learns to identify task modes without extra supervision.

The main contributions of this paper are three-fold as follows:

• We identify and empirically demonstrate the limitation of having to rely on a single initialization
in a family of widely used model-agnostic meta-learners.
• We propose a framework together with an algorithm to address this limitation. Specifically, it

generates a set of meta-learned prior parameters and adapts quickly given tasks from a multimodal
task distribution leveraging both model-based and model-agnostic meta-learning.
• We design a set of multimodal meta-learning problems and demonstrate that our model offers a

better generalization ability in a variety of domains, including regression, image classification,
and reinforcement learning.

2 Related Work

The idea of empowering the machines with the capability of learning to learn [44] has been widely
explored by the machine learning community. To improve the efficiency of handcrafted optimizers,
a flurry of recent works has focused on learning to optimize a learner model. Pioneered by [38,
2], optimization algorithms with learned parameters have been proposed, enabling the automatic
exploitation of the structure of learning problems. From a reinforcement learning perspective, [21]
represents an optimization algorithm as a learning policy. [1] trains LSTM optimizers to learn update
rules from the gradient history, and [34] trains a meta-learner LSTM to update a learner’s parameters.
Similar approach for continual learning is explored in [49].

Recently, investigating how we can replicate the ability of humans to learn new concepts from one or a
few instances, known as few-shot learning, has drawn people’s attention due to its broad applicability
to different fields. To classify images with few examples, metric-based meta-learning frameworks
have been proposed [16, 48, 42, 41, 43, 29, 3], which strive to learn a metric or distance function that
can be used to compare two different samples effectively. Recent works along this line [29, 53, 19]
share a conceptually similar idea with us and seek to perform task-specific adaptation with different
type transformations. Due to the limited space, we defer the detailed discussion to the supplementary
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material. While impressive results have been shown, it is nontrivial to adopt them for complex tasks
such as acquiring robotic skills using reinforcement learning [12, 22, 14, 33, 9, 10, 20].

On the other hand, instead of learning a metric, model-based (i.e. RNN-based) meta-learning models
learn to adjust model states (e.g. a state of an RNN [25, 4, 51] or external memory [37, 27]) using
a training dataset and output the parameters of a learned model or the predictions given test inputs.
While these methods have the capacity to learn any mapping from datasets and test samples to their
labels, they could suffer from overfitting and show limited generalization ability [6].

Model-agnostic meta-learners [5, 7, 15, 18, 8, 28, 36, 35] are agnostic to concrete model configura-
tions. Specifically, they aim to learn a parameter initialization under a certain task distribution, that
aims to provide a favorable inductive bias for fast gradient-based adaptation. With its model agnostic
nature, appealing results have been shown on a variety of learning problems. However, assuming
tasks are sampled from a concentrated distribution and pursuing a common initialization to all tasks
can substantially limit the performance of such methods on multimodal task distributions where the
center in the task space becomes ambiguous.

In this paper, we aim to develop a more powerful model-agnostic meta-learning framework which is
able to deal with complex multimodal task distributions. To this end, we propose a framework, which
first identifies the mode of sampled tasks, similar to model-based meta-learning approaches, and then
it modulates the meta-learned prior parameters to make the model better fit to the identified mode.
Finally, the model is fine-tuned on the target task rapidly through gradient steps.

3 Preliminaries

The goal of meta-learning is to quickly learn task-specific functions that map between input data and
the desired output (xk, yk)

Kt

k=1 for different tasks t, where the number of data Kt is small. A task is
defined by the underlying data generating distribution P(X) and a conditional probability Pt(Y | X).
For instance, we consider five-way image classification tasks with xk to be images and yk to be the
corresponding labels, sampled from a task distribution. The data generating distribution is unimodal
if it contains classification tasks that belong to a single input and label domain (e.g. classifying
different combination of digits). A multimodal counterpart therefore contains classification tasks
from multiple different input and label domains (e.g. classifying digits vs. classifying birds). We
denote the later distribution of tasks to be the multimodal task distribution.

In this paper, we aim to rapidly adapt to a novel task sampled from a multimodal task distribution.
We consider a target dataset D consisting of tasks sampled from a multimodal distribution. The
dataset is split into meta-training and meta-testing sets, which are further divided into task-specific
training Dtrain

T and validation Dval
T sets. A meta-learner learns about the underlying structure of the

task distribution through training on the meta-training set and is evaluated on meta-testing set.

Our work builds upon Model-Agnostic Meta-Learning (MAML) algorithm [5]. MAML seeks an
initialization of parameters θ for a meta-learner such that it can be optimized towards a new task with
a small number of gradient steps minimizing the task-specific objectives on the training data Dtrain

T ,
with the adapted parameters generalize well to the validation data Dval

T . The initialization of the
parameters is trained by sampling mini-batches of tasks from D, computing the adapted parameters
for all Dtrain

T in the batch, evaluating adapted parameters to compute the validation losses on the Dval
T

and finally update the initial parameters θ using the gradients from the validation losses.

4 Method

Our goal is to develop a framework to quickly master a novel task from a multimodal task distribution.
We call the proposed framework Multimodal Model-Agnostic Meta-Learning (MMAML). The main
idea of MMAML is to leverage two complementary neural networks to quickly adapt to a novel task.
First, a network called the modulation network predicts the identity of the mode of a task. Then the
predicted mode identity is used as an input by a second network called the task network, which is
further adapted to the task using gradient-based optimization. Specifically, the modulation network
accesses data points from the target task and produces a set of task-specific parameters to modulate
the meta-learned prior parameters of the task network. Finally, the modulated task network (but
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Figure 1: Model overview. The modulation net-
work produces a task embedding υ , which is used
to generate parameters {τi} that modulates the
task network. The task network adapts modulated
parameters to fit to the target task.

Algorithm 1 MMAML META-TRAINING PROCEDURE.

1: Input: Task distribution P (T ), Hyper-parameters α and β
2: Randomly initialize θ and ω.
3: while not DONE do
4: Sample batches of tasks Tj ∼ P (T )
5: for all j do
6: Infer υ = h({x, y}K ;ωh) with K samples from Dtrain

Tj .
7: Generate parameters τ = {gi(υ;ωg) | i = 1, · · · , N}

to modulate each block of the task network f .
8: Evaluate ∇θLTj (f(x; θ, τ);Dtrain

Tj ) w.r.t the K samples
9: Compute adapted parameter with gradient descent:

θ′Tj = θ − α∇θLTj
(
f(x; θ, τ);Dtrain

Tj
)

10: end for
11: Update θ with β∇θ

∑
Tj∼P (T ) LTj

(
f(x; θ′, τ);Dval

Tj
)

12: Update ωg with β∇ωg

∑
Tj∼P (T ) LTj

(
f(x; θ′, τ);Dval

Tj
)

13: Update ωh with β∇ωh

∑
Tj∼P (T ) LTj

(
f(x; θ′, τ);Dval

Tj
)

14: end while

not the task-specific parameters from modulation network) is further adapted to target task through
gradient-based optimization. A conceptual illustration can be found in Figure 1.

In the rest of this section, we introduce our modulation network and a variety of modulation operators
in section 4.1. Then we describe our task network and the training details for MMAML in section 4.2.

4.1 Modulation Network

As mentioned above, modulation network is responsible for identifying the mode of a sampled task,
and generate a set of parameters specific to the task. To achieve this, it first takes the given K data
points and their labels {xk, yk}k=1,...,K as input to the task encoder f and produces an embedding
vector υ that encodes the characteristics of a task:

υ = h
(
{(xk, yk) | k = 1, · · · ,K}; ωh

)
(1)

Then the task-specific parameters τ are computed based on the encoded task embedding vector
υ, which is further used to modulate the meta-learned prior parameters of the task network. The
task network (introduced later at Section 4.2) can be an arbitrarily parameterized function, with
multiple building blocks (or layers) such as deep convolutional networks [11], or multi-layer recurrent
networks [32]. To modulate the parameters of each block in the task network as good initialization for
solving the target task, we apply block-wise transformations to scale and shift the output activation of
each hidden unit in the network (i.e. the output of a channel of a convolutional layer or a neuron of a
fully-connected layer). Specifically, the modulation network produces the modulation vectors for
each block i, denoted as

τi = gi (υ;ωg) ,where i = 1, · · · , N, (2)

where N is the number of blocks in the task network. We formalize the procedure of applying
modulation as: φi = θi � τi, where φi is the modulated prior parameters for the task network,
and � represents a general modulation operator. We investigate some representative modulation
operations including attention-based (softmax) modulation [26, 47] and feature-wise linear modula-
tion (FiLM) [31, 30, 13]. We empirically observe that FiLM performs better and more stable than
attention-based modulation (see Section 5 for details), and therefore use FiLM as default operator for
modulation. The details of these modulation operators can be found in the supplementary material.

4.2 Task Network

The parameters of each block of the task network are modulated using the task-specific parameters
τ = {τi | i = 1, · · · , N} generated by the modulation network, which can generate a mode-aware
initialization in the parameter space f(x; θ, τ). After the modulation step, few steps of gradient
descent are performed on the meta-learned prior parameters of the task network to further optimize
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Data Points Ground Truth MAML MultiMAML MMAML

Sinusoidal Linear Quadratic Transformed `1 Norm Tanh

(a) MMAML post modulation vs. other prior models

(b) MMAML post adaptation vs. other posterior models

Figure 2: Qualitative Visualization of Regression on Five-modes Simple Functions Dataset. (a): We compare
the predicted function shapes of modulated MMAML against the prior models of MAML and Multi-MAML,
before gradient updates. Our model can fit the target function with limited observations and no gradient updates.
(b): The predicted function shapes after five steps of gradient updates, MMAML is qualitatively better. More
visualizations in Supplementary Material.

the objective function for a target task Ti. Note that the task-specific parameters τi are kept fixed and
only the meta-learned prior parameters of the task network are updated. We describe the concrete
procedure in the form of the pseudo-code as shown in Algorithm 1. The same procedure of modulation
and gradient-based optimization is used both during meta-training and meta-testing time.

Detailed network architectures and training hyper-parameters are different by the domain of applica-
tions, we defer the complete details to the supplementary material.

5 Experiments

We evaluate our method (MMAML) and baselines in a variety of domains including regression, image
classification, and reinforcement learning, under the multimodal task distributions. We consider the
following model-agnostic meta-learning baselines:

• MAML [5] represents the family of model-agnostic meta-learners. The architecture of MAML
on each individual domain is designed to be the same as task network in MMAML.
• Multi-MAML consists of M (the number of modes) MAML models and each of them is

specifically trained on the tasks sampled from a single mode. The performance of this baseline
is evaluated by choosing models based on ground-truth task-mode labels. This baseline can be
viewed as the upper-bound of performance for MAML. If it outperforms MAML, it indicates
that MAML’s performance is degenerated due to the multimodality of task distributions. Note
that directly comparing the other algorithms to Multi-MAML is not fair as it uses additional
information which is not available in real world scenarios.

Note that we aim to develop a general model-agnostic meta-learning framework and therefore the
comparison to methods that achieved great performance on only an individual domain are omitted. A
more detailed discussion can be found in the supplementary material.

5.1 Regression Experiments

Setups. We experiment with our models in multimodal few-shot regression. In our setup, five pairs
of input/output data {xk, yk}k=1,...,K are sampled from a one dimensional function and provided to a
learning model. The model is asked to predict L output values yq1, ..., y

q
L for input queries xq1, ..., x

q
L.

To construct the multimodal task distribution, we set up five different functions: sinusoidal, linear,
quadratic, transformed `1 norm, and hyperbolic tangent functions, and treat them as discrete task
modes. We then evaluate three different task combinations with two functions, three functions and
five functions in them. For each task, five pairs of data are sampled and Gaussian noise is added to the
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Table 1: Mean square error (MSE) on the multimodal 5-shot regression with 2, 3, and 5 modes. A Gaussian
noise with µ = 0 and σ = 0.3 is applied. Multi-MAML uses ground-truth task modes to select the corresponding
MAML model. Our method (with FiLM modulation) outperforms other methods by a margin.

Method 2 Modes 3 Modes 5 Modes

Post Modulation Post Adaptation Post Modulation Post Adaptation Post Modulation Post Adaptation

MAML [5] - 1.085 - 1.231 - 1.668
Multi-MAML - 0.433 - 0.713 - 1.082
LSTM Learner 0.362 - 0.548 - 0.898 -

Ours: MMAML (Softmax) 1.548 0.361 2.213 0.444 2.421 0.939
Ours: MMAML (FiLM) 2.421 0.336 1.923 0.444 2.166 0.868

Table 2: Classification testing accuracies on the multimodal few-shot image classification with 2, 3, and 5
modes. Multi-MAML uses ground-truth dataset labels to select corresponding MAML models. Our method
outperforms MAML and achieve comparable results with Multi-MAML in all the scenarios.

Method & Setup 2 Modes 3 Modes 5 Modes

Way 5-way 20-way 5-way 20-way 5-way 20-way

Shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot

MAML [5] 66.80% 77.79% 44.69% 54.55% 67.97% 28.22% 44.09% 54.41% 28.85%
Multi-MAML 66.85% 73.07% 53.15% 55.90% 62.20% 39.77% 45.46% 55.92% 33.78%

MMAML (ours) 69.93% 78.73% 47.80% 57.47% 70.15% 36.27% 49.06% 60.83% 33.97%

output value y, which further increases the difficulty of identifying which function generated the data.
Please refer to the supplementary materials for details and parameters for regression experiments.

Baselines and Our Approach. As mentioned before, we have MAML and Multi-MAML as two
baseline methods, both with MLP task networks. Our method (MMAML) augments the task network
with a modulation network. We choose to use an LSTM to serve as the modulation network due to its
nature as good at handling sequential inputs and generate predictive outputs. Data points (sorted by
x value) are first input to this network to generate task-specific parameters that modulate the task
network. The modulated task network is then further adapted using gradient-based optimization.
Two variants of modulation operators – softmax and FiLM are explored to be used in our approach.
Additionally, to study the effectiveness of the LSTM model, we evaluate another baseline (referred
to as the LSTM Learner) that uses the LSTM as the modulation network (with FiLM) but does not
perform gradient-based updates. Please refer to the supplementary materials for concrete specification
of each model.

Results. The quantitative results are shown in Table 1. We observe that MAML has the highest
error in all settings and that incorporating task identity (Multi-MAML) can improve over MAML
significantly. This suggests that MAML degenerates under multimodal task distributions. The LSTM
learner outperforms both MAML and Multi-MAML, showing that the sequence model can effectively
tackle this regression task. MMAML improves over the LSTM learner significantly, which indicates
that with a better initialization (produced by the modulation network), gradient-based optimization
can lead to superior performance. Finally, since FiLM outperforms Softmax consistently in the
regression experiments, we use it for as the modulation method in the rest of experiments.

We visualize the predicted function shapes of MAML, Multi-MAML and MMAML (with FiLM) in
Figure 2. We observe that modulation can significantly modify the prediction of the initial network
to be close to the target function (see Figure 2 (a)). The prediction is then further improved by
gradient-based optimization (see Figure 2 (b)). tSNE [23] visualization of the task embedding (Figure
3) shows that our embedding learns to separate the input data of different tasks, which can be seen as
a evidence of the mode identification capability of MMAML.

5.2 Image Classification

Setup. The task of few-shot image classification considers the problem of classifying images
into N classes with a small number (K) of labeled samples available (i.e. N -way K-shot). To
create a multimodal few-shot image classification task, we combine multiple widely used datasets
(OMNIGLOT [17], MINI-IMAGENET [34], FC100 [29], CUB [50], and AIRCRAFT [24]) to form a
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(a) Regression (b) Image classification (c) RL Reacher (d) RL Point Mass

Figure 3: tSNE plots of the task embeddings produced by our model from randomly sampled tasks; marker
color indicates different modes of a task distribution. The plots (b) and (d) reveal a clear clustering according
to different task modes, which demonstrates that MMAML is able to identify the task from a few samples
and produce a meaningful embedding υ. (a) Regression: the distance between modes aligns with the intuition
of the similarity of functions (e.g. a quadratic function can sometimes be similar to a sinusoidal or a linear
function while a sinusoidal function is usually different from a linear function) (b) Few-shot image classification:
each dataset (i.e. mode) forms its own cluster. (c-d) Reinforcement learning: The numbered clusters represent
different modes of the task distribution. The tasks from different modes are clearly clustered together in the
embedding space.

meta-dataset following the train/test splits used in the prior work, similar to [46]. The details of all
the datasets can be found in the supplementary material.

We train models on the meta-datasets with two modes (OMNIGLOT and MINI-IMAGENET), three
modes (OMNIGLOT, MINI-IMAGENET, and FC100), and five modes (all the five datasets). We use a
4-layer convolutional network for both MAML and our task network.

Results. The results are shown in Table 2, demonstrating that our method achieves better results
against MAML and performs comparably to Multi-MAML. The performance gap between ours and
MAML becomes larger when the number of modes increases, suggesting our method can handle
multimodal task distributions better than MAML. Also, compared to Multi-MAML, our method
achieves slightly better results partially because our method learns from all the datasets yet each
Multi-MAML is likely to overfit to a single dataset with a smaller number of classes (e.g. MINI-
IMAGENET and FC100). This finding aligns with the current trend of meta-learning from multiple
datasets [46]. The detailed performance on each dataset can be found in the supplementary material.

To gain insights to the task embeddings υ produced by our model, we randomly sample 2000 5-mode
5-way 1-shot tasks and employ tSNE to visualize υ in Figure 3 (b), showing that our task embedding
network captures the relationship among modes, where each dataset forms an individual cluster. This
structure shows that our task encoder learns a reasonable task embedding space, which allows the
modulation network to modulate the parameters of the task network accordingly.

5.3 Reinforcement Learning

(a) Point Mass (b) Reacher (c) Ant (d) Ant Goal Distribution

Figure 4: RL environments. Three environments are used to explore the capability of MMAML to adapt
in multimodal task distributions in RL. In all of the environments the agent is tasked to reach a goal marked
by a star of a sphere in the figures. The goals are sampled from a multimodal distribution in two or three
dimensions depending on the environment. In POINT MASS (a) the agent navigates a simple point mass agent in
2-dimensions. In REACHER (b) the agent controls a 3-link robot arm in 2-dimensions. In ANT (c) the agent
controls four-legged ant robot and has to navigate to the goal. The goals are sampled from a 2-dimensional
distribution presented in figure (d), while the agent itself is 3-dimensional.
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Figure 5: Visualizations of MMAML and ProMP trajectories in the 4-mode Point Mass 2D envi-
ronment. Each trajectory originates in the green star. The contours present the multimodal goal
distribution. Multiple trajectories are shown per each update step. For each column: the leftmost
figure depicts the initial exploratory trajectories without modulation or gradient adaptation applied.
The middle figure presents ProMP after one gradient adaptation step and MMAML after a gradient
adaptation step and the modulation step, which are computed based on the same initial trajectories.
The figure on the right presents the methods after two gradient adaptation steps in addition to the
MMAML modulation step.

ProMP MMAML

Re
ac

he
r

An
t

Figure 6: Visualizations of MMAML and ProMP trajectories in the ANT and REACHER environments.
The figures represent randomly sampled trajectories after the modulation step and two gradient steps
for REACHER and three for ANT. Each frame sequence represents a complete trajectory, with the
beginning, middle and end of the trajectories captured by the left, middle and right frames respectively.
Videos of the trained agents can be found at https://vuoristo.github.io/MMAML/.

Setup. Along with few-shot classification and regression, reinforcement learning (RL) has been a
central problem where meta-learning has been studied [40, 39, 52, 5, 25, 35]. Similarly to the other
domains, the objective in meta-reinforcement learning (meta-RL) is to adapt to a novel task based
on limited experience with the task. For RL problems, the inner loop updates of gradient-based
meta-learning take the form of policy gradient updates. For a more detailed description of the
meta-RL problem setting, we refer the reader to [35].

We seek to verify the ability of MMAML to learn to adapt to tasks sampled from multimodal task
distributions based on limited interaction with the environment. We do so by evaluating MMAML
and the baselines on four continuous control environments using the MuJoCo physics simulator [45].
In all of the environments, the agent is rewarded on every time step for minimizing the distance
to the goal. The goals are sampled from multimodal goal distributions with environment specific
parameters. The agent does not observe the location of the goal directly but has to learn to find it
based on the reward instead. To provide intuition on the environments, illustrations of the robots are
presented in Figure 4. Examples of trajectories are presented in Figure 5 for POINT MASS and in
Figure 6 for ANT and REACHER. Complete details of the environments and goal distributions can be
found in the supplementary material.

Baselines and Our Approach. To identify the mode of a task distribution with MMAML, we
run the initial policy to interact with the environment and collect a batch of trajectories. These
initial trajectories are used for two purposes: computing the adapted parameters using a gradient-
based update and modulating the updated parameters based on the task embedding υ computed
by the modulation network. The modulation vectors τ are kept fixed for the subsequent gradient
updates. Descriptions of the network architectures and training hyperparameters are deferred to
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Table 3: The mean and standard deviation of cumulative reward per episode for multimodal reinforcement
learning problems with 2, 4 and 6 modes reported across 3 random seeds. Multi-ProMP is ProMP trained on an
easier task distribution which consists of a single mode of the multimodal distribution to provide an approximate
upper limit on the performance on each task.

Method POINT MASS 2D REACHER ANT

2 Modes 4 Modes 6 Modes 2 Modes 4 Modes 6 Modes 2 Modes 4 Modes

ProMP [35] -397 ± 20 -523 ± 51 -330 ± 10 -12 ± 2.0 -13.8 ± 2.5 -14.9 ± 2.9 -761 ± 48 -953 ± 46
Multi-ProMP -109 ± 6 -109 ± 6 -92 ± 4 -4.3 ± 0.1 -4.3 ± 0.1 -4.3 ± 0.1 -624 ± 38 -611 ± 31

Ours -136 ± 8 -209 ± 32 -169 ± 48 -10.0 ± 1.0 -11.0 ± 0.8 -10.9 ± 1.1 -711 ± 25 -904 ± 37

the supplementary material. Due to credit-assignment problems present in the MAML for RL
algorithm [5] as identified in [35], we optimize our policies and modulation networks with ProMP [35]
algorithm, which resolves these issues.

We use ProMP both as the training algorithm for MMAML and as a baseline. Multi-ProMP is an
artificial baseline to show the performance of training one policy for each mode using ProMP. In
practice we train an agent for only one of the modes since the task distributions are symmetric and
the agent is initialized to a random pose.

Results. The results for the meta-RL experiments presented in Table 3 show that MMAML consis-
tently outperforms the unmodulated ProMP. The good performance of Multi-ProMP, which only
considers a single mode suggests that the difficulty of adaptation in our environments results mainly
from the multiple modes. We find that the difficulty of the RL tasks does not scale directly with the
number of modes, i.e. the performance gap between MMAML and ProMP for POINT MASS with
6 modes is smaller than the gap between them for 4 modes. We hypothesize the more distinct the
different modes of the task distribution are, the more difficult it is for a single policy initialization to
master. Therefore, adding intermediate modes (going from 4 to 6 modes) can in some cases make the
task distribution easier to learn.

The tSNE visualizations of embeddings of random tasks in the POINT MASS and REACHER domains
are presented in Figure 3. The clearly clustered embedding space shows that the task encoder
is capable of identifying the task mode and the good results MMAML achieves suggest that the
modulation network effectively utilizes the task embeddings to tackle the multimodal task distribution.

6 Conclusion

We present a novel approach that is able to leverage the strengths of both model-based and model-
agnostic meta-learners to discover and exploit the structure of multimodal task distributions. Given
a few samples from a target task, our modulation network first identifies the mode of the task
distribution and then modulates the meta-learned prior in a parameter space. Next, the gradient-based
meta-learner efficiently adapts to the target task through gradient updates. We empirically observe
that our modulation network is capable of effectively recognizing the task modes and producing
embeddings that captures the structure of a multimodal task distribution. We evaluated our proposed
model in multimodal few-shot regression, image classification and reinforcement learning, and
achieved superior generalization performance on tasks sampled from multimodal task distributions.
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