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Abstract

We revisit two algorithms, matrix stochastic gradient (MSG) and `2-regularized
MSG (RMSG), that are instances of stochastic gradient descent (SGD) on a convex
relaxation to principal component analysis (PCA). These algorithms have been
shown to outperform Oja’s algorithm, empirically, in terms of the iteration com-
plexity, and to have runtime comparable with Oja’s. However, these findings are
not supported by existing theoretical results. While the iteration complexity bound
for `2-RMSG was recently shown to match that of Oja’s algorithm, its theoretical
efficiency was left as an open problem. In this work, we give improved bounds
on per iteration cost of mini-batched variants of both MSG and `2-RMSG and
arrive at an algorithm with total computational complexity matching that of Oja’s
algorithm.

1 Introduction

Principal component analysis (PCA) is a fundamental dimensionality reduction tool used by statisti-
cians and machine learning practitioners alike. In this paper, we study PCA in a streaming setting
wherein we receive a stream of high dimensional vectors sampled from an unknown distribution. The
goal is to project each point to a lower dimensional space such that most of the information in data,
as measured by variance, is preserved.

Formally, we are given a stream of data vectors (xt)Tt=1 ⇢ Rd, such that each point is sampled
i.i.d. from a distribution xt ⇠ D, with covariance matrix C = Ex⇠D[xx>] 2 Rd⇥d. Assuming the
distribution is zero-mean, the problem is to output an orthonormal Ut 2 Rd⇥k, after observing xt,
which tries to minimize Ex⇠D[kUU>x � xk22] over all possible orthonormal matrices U 2 Rd⇥k.
Equivalently, we are interested in solving the following non-convex stochastic optimization problem
in a streaming setting:

maximize
U2Rd⇥k

Tr
�
U>CU

�

subject to U>U = Ik
. (1)

There have been two classes of algorithms that have been proposed to solve Problem 1. One is based
on the stochastic power method, also known as Oja’s algorithm and is essentially stochastic gradient
descent (SGD) on Problem 1 (De Sa et al., 2014; Hardt & Price, 2014; Balcan et al., 2016; Jain et al.,
2016; Shamir, 2016a,b; Allen-Zhu & Li, 2017; Li et al., 2018); note, however, that Problem 1 is
non-convex. The second approach consists of relaxing the constraint set and reformulating PCA
as an equivalent but convex optimization problem. This latter formulation was initially studied by
Warmuth & Kuzmin (2008) in the non-stochastic (online) setting and later revisited by Arora et al.
(2013) in a stochastic setting. Formally, the equivalent convex problem to Problem 1 is given as
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follows:
maximize
P2Rd⇥d

Tr (PC)

subject to Tr (P)  k, 0 � P � I,P> = P
. (2)

Stochastic gradient descent on Problem 2 yields what is referred to as matrix stochastic gradient, or
MSG, in the existing literature (Arora et al., 2013). MSG and its variants, e.g. `2-regularized MSG
(RMSG) (Mianjy & Arora, 2018), admit suboptimality guarantees through standard analysis of SGD.
This convex relaxation, however, comes at a cost. In particular, it is possible that in the worst case the
per-iteration computational cost of the MSG algorithm is of order O(d3). This is clearly not desirable
and far from the efficient per iteration cost of O(dk) for Oja’s algorithm.

Although the worst-case runtime of MSG is pessimistic, in practice it has been observed that MSG is
efficient and compares favourably to Oja’s algorithm in terms of total iteration complexity as well as
overall runtime (Arora et al., 2012, 2013; Mianjy & Arora, 2018; Grabowska & Kotłowski, 2018).
A potential conjecture, stemming from previous work, is that the efficiency of MSG is due to rank
control inherent in MSG updates. In this work, we take a significant step towards unraveling this
puzzling phenomenon underlying the efficiency of both the matrix stochastic gradient (MSG) of
Arora et al. (2013) and `2-regularized MSG algorithm of Mianjy & Arora (2018). It turns out that the
rank control of the MSG update is directly related to properties of the true covariance matrix C. We
show that simple mini-batching on top of MSG and RMSG, which plays the role of variance reduction
for the stochastic gradients, ensures a per iteration complexity of at most Õ( dk

3

(�k(C)��k+1(C))2 ) for
both algorithms. Combining the improved per iteration cost of mini-batched RMSG, with a careful
analysis, we show that the total computational complexity for achieving an ✏-suboptimal solution for
Problem 1 is Õ

⇣
dk

2

✏(�k(C)��k+1(C))2 min{d(�k(C)� �k+1(C)), 1}
⌘

. This matches the complexity
of Oja’s algorithm, up to a factor of k, for solving Problem 1 when �k(C)� �k+1(C) � ⌦(1/d) and
improves on the complexity of Oja in the case when �k(C)� �k+1(C)  o(1/(kd)).

While we use the variance reduction for the stochastic gradients in the classical way, guaranteeing
improved objective progress in the proof of Theorem 4.3, it also plays a different and somewhat
unusual role. In particular, the variance reduction is needed to guarantee that the iterates remain
rank-k projection matrices, which is key in showing all of our results.

2 Related Work

The convex relaxation of the PCA problem in Equation (2) can be traced back to the work of Warmuth
& Kuzmin (2008) who pose the non-convex PCA formulation in the online learning setting as
choosing the best k out of d experts. While somewhat obfuscated, the convex relaxation arises
naturally by considering prediction with expert advice. Warmuth & Kuzmin (2008) then solve the
problem using the Matrix Exponentiated Gradient (MEG) algorithm, a natural extension of the
Hedge algorithm (Freund & Schapire, 1997). In the stochastic setting, MEG needs O(k log (d) /✏2)
iterations to achieve ✏-suboptimal solution, however its per iteration cost is O(d3).

The connection between the two formulations was formally presented in Arora et al. (2013) who also
proposed the matrix stochastic gradient (MSG) algorithm which is a variant of stochastic gradient
descent on Problem 2. The MSG updates are given as follows

P
t+ 1

2
= Pt + ⌘tCt

Pt+1 = ⇧(P
t+ 1

2
)
, (3)

where Ct = xtx>t is an unbiased estimator of the gradient (aka C) of the objective in Problem 2 based
on a single sample, ⇧ is a projection onto the convex set of constraints {P 2 Rd⇥d : Tr (P) = k, 0 �
P � Id} with respect to Frobenius norm, and ⌘t is the step size. This algorithm, if implemented
carefully, has per iteration complexity of the order O(d rank(Pt)2) and has iteration complexity
O(k/✏2). In theory, the rank of Pt can grow as large as d, however, empirically the authors observed
that the rank did not grow much more than k. While in an optimistic scenario, this algorithm is better
than MEG, it still has roughly the same iteration complexity for ✏-suboptimality, which in some
regimes is worse than Õ(k/(✏(�k(C)� �k+1(C))2)) of Oja’s algorithm.
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A partial resolution to this problem was given by Mianjy & Arora (2018), and comes in the form
of considering a regularized convex problem. In particular, the authors consider the following
`2-regularized PCA problem:

maximize
P2Rd⇥d

Tr (PC)� �

2
kPk2

F

subject to Tr (P)  k, 0 � P � I,P> = P

, (4)

where � is the regularization parameter. It is shown that as long as � is less than the eigengap at
k, i.e., � < �k(C) � �k+1(C), solving Problem 4 recovers a solution to Problem 1. Furthermore,
because the objective is �-strongly convex, the iteration complexity of SGD on the above problem,
dubbed RMSG, is of the order O(k/(�2

✏)). The RMSG updates are given as follows:

P
t+ 1

2
= (1� ⌘t�)Pt + ⌘tCt

Pt+1 = ⇧(P
t+ 1

2
).

(5)

Even though RMSG matches the iteration complexity of Oja’s algorithm, it suffers the same worst
case per iteration complexity as MSG. Again, it is demonstrated empirically that the rank of the
iterates of RMSG do not grow significantly beyond k, making the algorithm efficient in practice.

Thus, a natural question to ask is: “Can an algorithm based on a convex relaxation of PCA be shown
to have good per iteration complexity?” Or, do we necessarily have to pay a price in terms of the
overall computational cost? A recent work of Garber (2018) addresses this question partly when
analyzing the Oja’s algorithm for a mixed setting of adversarially and stochastically generated data. In
particular, the authors show that a slightly modified version of MSG achieves per-iteration complexity
of the order Õ(d/(�k(C) � �k+1(C))2); however, the proposed analysis works only for the case
when k = 1 and the modifications of the algorithm require a warm start initialization P1, together
with variance reduced gradients Ct (Garber, 2018). Our work builds on these ideas and we extend
these results to arbitrary k for slight modifications of both MSG and RMSG. We note that, even
though the algorithms we study use the same variance reduction and warm start tricks, our proof
techniques are different from Garber (2018). In particular, we leverage the recently developed high
probability convergence results for the last iterate of SGD (Harvey et al., 2018) to guarantee that each
intermediate iterate is a rank-k matrix.

Finally, we would like to note that there has been a vast number of papers solving a somewhat related
problems of matrix sketching and low rank approximation in streams, however, to the extent of our
knowledge these works differ from ours in two significant ways – they do not assume that data is
sampled i.i.d. from a distribution and hence, their guarantees are much weaker than ours. Since the
goal of this paper is to solve the problem described in Section 1, we do not discuss such works further.

3 Notation

We use bold-face lower-case letters to denote vectors x 2 Rd, bold-face upper-case letters to denote
matrices A 2 Rd⇥d, Id denotes the d⇥ d identity matrix. For matrices A 2 Rd⇥n1 and B 2 Rd⇥n2 ,
[A,B] 2 Rd⇥(n1+n2) denotes the matrix formed by appending the columns of B to the columns
of A. We use k · k to denote the `2 norm of a vector and the 2-norm of a matrix and use k · kF to
denote the Frobenius norm of a matrix. Tr (·) denotes the trace operator and hA,Bi = Tr

�
A>B

�

denotes the standard inner product between matrices. The convex set of constraints is Pk = {P 2
Rd⇥d : Tr (P) = k, 0 � P � Id} and the projection onto the set Pk with respect to Frobenius norm
is denoted as ⇧(·). A � B denotes that A is less than B in the positive-semidefinite order. We use
�k(A) to denote the k-th eigenvalue of A and �(A) = �k(A)� �k+1(A) to denote the eigengap at
k. Asymptotic notation with a tilde on top, e.g. Õ or ⌦̃, hides poly-logarithmic factors. The operator
Top-k(A) returns a projection matrix onto the span of the eigenvectors of A corresponding to the top
k eigenvalues of A.
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Algorithm 1 Mini-batched MSG (MB-MSG)

Input: Stream of data {xtl} of d-dimensional vectors, parameters �(C), probability of failure �,
number of components k

Output: PT 2 Rd⇥d

1: n = ⌦̃
⇣

k
2

�(C)3

⌘

2: P1 = Top-k( 1
n

P
n

l=1 x0lx
>
0l) %% {x0l}nl=1 is the warm-start mini-batch

3: n = ⌦̃
⇣

k
3

�(C)2

⌘

4: for t = 1, . . . , T � 1 do

5: ⌘t = Õ

⇣
1/

r
t+ k2

�(C)2

⌘

6: Ct  1
n

P
n

l=1 xtlx
>
tl

%% {xtl}nl=1 is the mini-batch for the t
th epoch

7: P
t+ 1

2
 Pt + ⌘tCt

8: Pt+1 = ⇧(P
t+ 1

2
)

9: end for

4 Algorithm and Main Result

For simplicity of presentation, we assume that kxtk  1 for all t, and that kC� CtkF  1. The first
assumption implies that �1(C)  1 and �1(Ct)  1. These assumptions are somewhat benign, and
primarily for notational convenience when stating the main results and writing the proofs; these are
also standard in previous analyses of Oja’s algorithm. We also note that the algorithms proposed
here require the knowledge of the eigengap �(C). While knowing the exact eigengap is unlikely
in practical scenarios, we treat the eigengap as a hyperparameter that can be tuned on a grid. We
emphasize that even Oja’s algorithm requires the knowledge of the eigengap.

4.1 Mini-batched MSG (MB-MSG)

We begin with a variant of MSG (pseudocode given in Algorithm 1) with two simple modifications.
First, we initialize P1 sufficiently close to the optimal solution P⇤, and second, we use mini-batches
to form a variance reduced estimate of Ct based on multiple samples. We note that the resulting
algorithm does not improve over Oja’s algorithm; however, it helps illustrate the techniques that form
the basis for the design of the main algorithm in the next section (pseudocode in Algorithm 2).

We initialize the proposed algorithms with a warm start, with the iterate P1 set to the projection matrix
onto the span of top-k eigenvectors of the empirical covariance matrix, computed using ⌦̃

�
k
2

�(C)3

�

samples. The stream is then broken into epochs, each of size ⌦̃
�

k
3

�(C)2

�
. We compute the estimate of

the gradient, Ct, based on the minibatch at the tth epoch, and perform an update of MSG. This ensures
that Ct is close enough to C so that we can guarantee each of the iterates remain rank k. The step
size also slightly differs from ⌘t =

1p
T

, used in the vanilla MSG routine. Such a step size is needed
because of the warm start initialization, together with guarantees for the final iterate convergence.

We refer to Algorithm 1 as mini-batched MSG (MB-MSG). It enjoys the following guarantee.

Theorem 4.1. The following holds for Algorithm 1: with probability at least 1� �, for all t  T

hP⇤ � Pt,Ci  O

0

@k
4 log (1/�) (log (T ))2q

t+ 1
�

1

A ,

where � = O

⇣
�(C)2

(k log(1/�))2

⌘
. Further, it holds that Pt is a rank-k projection matrix.

The above theorem improves over the result in Arora et al. (2013) in three ways. First, it guarantees
the convergence of the last iterate whereas the previous results for MSG have only been for the
average iterate. Second, it is a high probability bound, while the previous results for MSG have only
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Algorithm 2 Mini-batched `2-Regularized MSG (MB-RMSG)

Input: Stream of data {xtl} of d-dimensional vectors, parameters �(C), probability of failure �,
number of components k

Output: PT 2 Rd⇥d

1: n = log (3ed/�) 128k log(3e/�)
�(C)5

2: P1 = Top-k( 1
n

P
n

l=1 x0lx
>
0l) %% {x0l}nl=1 is the warm-start mini-batch

3: n = log
�
T3ed
�

� 8(k+1)2

�(C)2

4: for t = 1, . . . , T � 1 do

5: ⌘t =
1

�(C)
2

 
t+

128 log( 1
� )

�(C)3

!

6: Ct  1
n

P
n

l=1 xtlx
>
tl

%% {xtl}nl=1 is the mini-batch for the t
th epoch

7: P
t+ 1

2
 (1� �(C)

2 ⌘t)Pt + ⌘tCt

8: Pt+1 = ⇧(P
t+ 1

2
)

9: end for

been in expectation. Lastly, it guarantees that every iterate Pt is rank k. Compared to MSG, however,
MB-MSG has a higher sample complexity, due to mini-batching at every iteration.

4.2 Mini-batched RMSG (MB-RMSG)

Next, we propose and study the mini-batched variant of RMSG, which we refer to as MB-RMSG,
detailed in Algorithm 2. MB-RMSG follows the same meta-algorithm as MB-MSG except that it
builds on the `2-regularized MSG rather than MSG. Again, we initialize P1 sufficiently close to P⇤

and then use mini-batches to reduce the variance of Ct. The update on line 7 is an iteration of SGD on
the regularized objective in Equation 4, with � = �(C)/2. The choice of � ensures that the solutions
to Problem 1 and Problem 4 are identical, as stated in Lemma 2.2 of Mianjy & Arora (2018). Our
main result is the following high probability bound for MB-RMSG.
Theorem 4.2. The following holds for Algorithm 2: with probability at least 1� �, for all t  T

hP⇤ � Pt,Ci 
32 log (3e/�)

�(C)2
⇣
t+ 1

�
� 1

⌘ ,

where � = �(C)3

128 log(1/�) . Further, for all t  T it holds that Pt is a rank-k projection matrix.

As with Theorem 4.1, the above result improves on those in Mianjy & Arora (2018) by giving both a
high-probability bound on the convergence rate and guaranteeing that each iterate Pt has rank k.

Computational Cost. A naive implementation of MB-RMSG requires O(d2k3/�(C)2) opera-
tions per epoch. However, a careful implementation of Algorithm 2 where we maintain an up-
to-date singular value decomposition (SVD) of rank-k iterates, requires O(dk3/�(C)2) opera-
tions per epoch. Then, Theorem 4.2 implies that the total computational complexity to achieve
✏-suboptimality is Õ(dk3/(✏�(C)4)), which is a factor of k2�(C)4 worse than that of Oja’s com-
plexity of Õ(dk/(✏�(C)2)). Using arguments from proximal theory (Allen-Zhu, 2017), together,
with the guarantee that (Pt)Tt=1 is a sequence of rank-k projection matrices, we can further leverage
the variance reduction in gradient updates to give the following bound.

Theorem 4.3. Let A be the event that for all t 2 [T ] it holds that kCt � Ck  �(C)
8(k+1) and Pt is a

rank-k projection matrix. Then Algorithm 2 guarantees that A occurs with probability at least 1� �

and that

E [hP⇤ � PT ,Ci|A]  Õ

✓
�(C)

T
+min{d �(C), 1} 1

kT

◆
.

Our assumptions on the distribution D imply that �(C)  1/k. In this case, Theorem 4.3 implies that
the total computational complexity for achieving ✏-suboptimality is Õ

⇣
dk

2

✏�(C)2 min{d�(C)), 1}
⌘

,
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which is only a factor of k away from Oja’s algorithm whenever the gap is large, and actually
improves by a factor of 1/�(C) over Oja’s in the case when �(C) 2 o(1/kd).

5 Proof sketch

The proofs of both Theorem 4.1 and Theorem 4.2 follow the same ideas. In both cases, essentially,
we first establish a sufficient condition for Pt+1 to be rank k, given that Pt is rank k. The idea behind
this condition is based on Lemma 2 in Garber (2018) and is the following. If Pt captures the subspace
spanned by the eigenvectors of Ct corresponding to the top k eigenvalues, then the top k eigenvalues
of P

t+ 1
2

would be much larger than �k+1(Pt+ 1
2
). This in turn is sufficient for the projection operator

⇧ to set �k+1(Pt+ 1
2
) to 0. Formally, we show the following for MB-MSG.

Lemma 5.1. Suppose Pt is rank k. If hPt,Cti+ �k(U>
t
CtUt) �

P
k+1
l=1 �l(Ct), then Pt+1 is also

rank k.

Since it is hard to directly prove that the sufficient condition holds for Pt and Ct, we translate the
condition to a bound on the suboptimality, i.e., hP⇤ � Pt,Ci  ↵�(C), for some constant ↵.
Lemma 5.2. Suppose kC� Ctk  � and Pt is rank k. If

hP⇤ � Pt,Ci 
�(C)

2
� �(k + 1),

then Pt+1 is also rank k.

A similar result for MB-RMSG is given in Lemma B.1 in Appendix B. We know that the condition
holds for sufficiently large t from the analysis of SGD and SGD for strongly convex functions (Harvey
et al., 2018). The task that remains is to show that the suboptimality bound holds for small t. We
achieve this by showing that if the first iterate of SGD is initialized from a warm start and the step size
is rescaled appropriately, then the following iterates will only improve on the warm start initialization.
In the case when the objective is not strongly convex, we additionally need the gradients to be
variance reduced to control a certain martingale difference for the initial few terms. This does not
contribute to the overall cost of the algorithms, because the variance reduction is anyway needed
when translating from the sufficient condition on Ct to the suboptimality condition.

We would like to remark that the above approach is different from the one in Garber (2018), where
the rank control is due to a recurrence relation between hPt+1,P⇤i and hPt,P⇤i. To the best of our
knowledge and attempts, this relation is not easily extendable to the general k-components case.

6 Implementation details

We focus our discussion on implementing Algorithm 2, however, all of our remarks hold for Al-
gorithm 1 as well. A naive implementation of the algorithm is to form Ct and Pt directly. This
already requires O(d2) space and roughly Õ(d2/�(C)2) computation. The projection operation ⇧
also requires taking the eigendecompostion of P

t+ 1
2

which is at worst done in time Õ(dk4/�(C)4)

because the rank of P
t+ 1

2
can grow as large as Õ(k2/�(C)2). Even when one applies the trick

in (Arora et al., 2013; Mianjy & Arora, 2018) to always maintain the eigendecomposition of Pt and
perform a rank-(Ct) update as in Brand (2006), the cost is still Õ(d⇥ rank(Ct)2) = O(dk4/�(C)4).

To improve our algorithm, we can take advantage of the fact that the projection always returns a
rank-k projection matrix. In particular, ⇧ works in the following way. Once given P

t+ 1
2

, it finds
indices i

⇤ and j
⇤ such that �i(Pt+1) = 1 for all i  i

⇤ and �j(Pt+1) = 0 for all j � j
⇤. After

identifying these indices, ⇧ computes a shift si⇤,j⇤ and sets �l(Pt+1) = �l(Pt+ 1
2
� si⇤,j⇤), for

i
⇤ + 1  l  j

⇤ � 1, such that
P

j
⇤�1

l=i⇤+1 �l(Pt+1) = k � i
⇤. Once the condition of Lemma B.1 is

met, we know that i⇤ = k and j
⇤ = k + 1 and so ⇧(P

t+ 1
2
) returns the projection onto the space

spanned by the eigenvectors corresponding to the top k eigenvalues of P
t+ 1

2
. Let Pt = UtU>

t
and

write Ct = XtX>
t

, where Xt 2 Rd⇥n with the i-th column equal to xtip
n

, and n is the size of the

6
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Figure 1: Experiments on synthetic data.

mini-batch. This amounts to changing line 7 in Algorithm 2 to the following:

Ut+1 = Top-k
⇣
[
p

1��(C)⌘t/2Ut,
p
⌘tXt]

⌘
.

This changes the per iteration cost to Õ( dk
3

�(C)2 ). Additionally, because we only used the fact
that kCt � Ck  � in the proof of the sufficient condition, we can have an optimistic version of
Algorithm 2, where we only need the size of the mini-batch to be large enough, so that the following
is satisfied:

hP⇤
t
� Pt,Cti 

�(Ct)

4
, (6)

where P⇤
t

is the projection onto the subspace spanned by the top-k eigenvectors of Ct. This follows
from the proof of Lemma B.1. The optimistic version is implemented by checking if Equation 6 is
satisfied. If it is satisfied, then one proceeds to do the update with the current mini-batch. If it is not
satisfied, we double the samples until the condition is satisfied or the mini-batch size becomes greater
than the prescribed size on Line 5 of Algorithm 2.

7 Empirical results

We include experiments on synthetic data as proof of concept. We also propose more practical variants
of MB-MSG and MB-RMSG, which however, do not have theoretical guarantees. Suboptimality is
expressed in terms of hP⇤ � Pt,Ci, where P⇤ and C are calculated over a test set. We present plots
of total runtime to achieve ✏-suboptimality, and rank of the iterates throughout the iterations. The
x-axis of the plots is taken to be on a logarithmic scale. We use the k-SVD routine implemented
by Liu et al. (2013).

7.1 Synthetic data

We generate synthetic data with a large eigengap in the following way. The data is sampled from
a multi-variate Normal distribution with zero mean and diagonal covariance matrix ⌃. For each
value of k, we have ⌃i,i = 1 for 1  i  k and ⌃i,i = gap ⇥ 2�i⇥0.1 for k + 1  i  d. In our
experiments gap = 0.1, k 2 {1, 3, 7} and d = 1000.

The empirical results on the synthetic data set can be found in Figure 1. We use the efficient
implementation of MB-MSG and MB-RMSG discussed in Section 6. We also use the sufficient
condition stated in Lemma 5.1 for MB-MSG and a similar sufficient condition for MB-RMSG. This
allows us to generate mini-batches for Ct, with size which is less than the worst case possible, as
specified in Algorithm 1 and Algorithm 2. The average mini-batch size for the respective number of
components, resulting from the experiments, is given in Table 1.
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MB-MSG MB-RMSG
k=1 7.62 6.69
k=3 26.72 25.30
k=7 81.91 62.66

Table 1: Average mini-batch size on synthetic data.

k=1 k=3 k=7

Time

10 -4

10 -3

10 -2

Su
bo
pt
im
al
ity

MSG
RMSG
Oja
MB-MSG
MB-RMSG

Time

10 -3

10 -2

Su
bo
pt
im
al
ity

MSG
RMSG
Oja
MB-MSG
MB-RMSG

Time

10 -3

10 -2

10 -1

Su
bo
pt
im
al
ity

MSG
RMSG
Oja
MB-MSG
MB-RMSG

10 0 10 1 10 2 10 3 10 4

Iteration

0

2

4

6

8

10

12

R
an

k 
of

 it
er

at
es

10 0 10 1 10 2 10 3 10 4

Iteration

0

5

10

15

R
an

k 
of

 it
er

at
es

10 0 10 1 10 2 10 3 10 4

Iteration

0

5

10

15

20

25

R
an

k 
of

 it
er

at
es

Figure 2: Experiments on MNIST.

We note that we did not tune the initial step size for any of the algorithms but rather set step size as
recommended by theory. This is because the aim of the experiments is to show that MB-MSG and
MB-RMSG satisfy the conditions of Theorem 4.1 and Theorem 4.2.

We see that the average rank of the MSG and RMSG iterates is lower than the average mini-batch
size of MB-MSG and MB-RMSG found in Table 1, which determines the per iteration cost of the
mini-batched algorithms. This suggests that the total computational complexity of MSG and RMSG
is lower than MB-MSG and MB-RMSG. Overall the mini-batched versions of MSG and RMSG stay
competitive with their counterparts.

7.2 MNIST

We now present empirical results on the MNIST dataset (LeCun, 1998) for a more practical variant
of algorithms 1 and 2. The plots can be found in Figure 2. The experiments are carried out for
k 2 {1, 3, 7}. The dataset has d = 784 and the eigengap between k and k + 1 is decreasing
exponentially quickly. Instead of setting the maximal mini-batch size in accordance with the theory,
we set it to only 1% of the suggested mini-batch size. This violates the sufficient conditions and
in practice leads to rank(⇧(P

t+ 1
2
)) > k. However, due to the nature of the efficient version of the

algorithms, the rank of Pt can never grow above k. Figure 2 shows that the runtime of MB-MSG and
MB-RMSG remains comparable to the runtime of MSG and RMSG.

8 Discussion

We present two algorithms based on a convex relaxation to the PCA problem, with convergence
guarantees for both of them, which improve on previously known results. We further show that the
better of the two algorithms, Algorithm 2, almost matches the total computational complexity of Oja’s
algorithm, for reaching an ✏-suboptimal solution in the regime where �(C) is large, and outperforms
Oja’s algorithm when �(C)  o(1/(kd)). We note that the performance guarantees we give are in
terms of objective, while the guarantees for Oja’s algorithm have classically been in terms of angle
between output subspace and best subspace. We do not exclude the possibility that a different style
of analysis for Oja’s algorithm would guarantee the improved rates we achieve in the setting when
eigengap is small. Algorithmic ideas presented here can be applied to improve overall computational
complexity of algorithms based on convex relaxations of related subspace learning methods based on
partial least squares (Arora et al., 2016) and canonical correlation analysis (Arora et al., 2017).
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Lower bound in Allen-Zhu & Li (2017). Theorem 6 in Allen-Zhu & Li (2017) implies that any
algorithm which returns an orthonormal UT 2 Rd⇥k such kU>

T
(U⇤)?k2

F
 O(✏k/�(C)2), has to

see at least 1/✏ samples. Our bound in Theorem 4.3 implies that we can have hP⇤ � PT ,Ci 
Õ(✏k/�(C)2) with only dk�(C)/✏ samples. We note that this is not a contradiction even when
�(C)  o(1/(dk)), since our upper bound is in terms of objective and not angle between subspaces.

Relaxing sufficient conditions to k
0
> k. Our initial goal was to analyze the rank behavior of

MSG and RMSG. However, we only managed to analyze a modified version of these algorithms.
A first step in proceeding forward is to come up with versions of Lemmas 5.2 and B.1 where we
allow the rank of Pt to grow to k

0
> k. Unfortunately our proof techniques do not yield meaningful

bounds in this case, as the structure of P
t+ 1

2
does not retain some vital properties, whenever Pt is not

a projection matrix. We leave developing such sufficient conditions as future work.

Acknowledgements

This research was supported, in part, by NSF BIGDATA grants IIS-1546482 and IIS-1838139.

References

Allen-Zhu, Z. Katyusha: The first direct acceleration of stochastic gradient methods. The Journal of

Machine Learning Research, 18(1):8194–8244, 2017.

Allen-Zhu, Z. and Li, Y. First efficient convergence for streaming k-PCA: a global, gap-free, and near-
optimal rate. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium

on, pp. 487–492. IEEE, 2017.

Arora, R., Cotter, A., Livescu, K., and Srebro, N. Stochastic optimization for PCA and PLS. In
Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on,
pp. 861–868. IEEE, 2012.

Arora, R., Cotter, A., and Srebro, N. Stochastic optimization of PCA with capped MSG. In Advances

in Neural Information Processing Systems, pp. 1815–1823, 2013.

Arora, R., Mianjy, P., and Marinov, T. Stochastic optimization for multiview representation learning
using partial least squares. In International Conference on Machine Learning, pp. 1786–1794,
2016.

Arora, R., Marinov, T. V., Mianjy, P., and Srebro, N. Stochastic approximation for canonical
correlation analysis. In Advances in Neural Information Processing Systems, pp. 4775–4784, 2017.

Balcan, M.-F., Du, S. S., Wang, Y., and Yu, A. W. An improved gap-dependency analysis of the noisy
power method. In Conference on Learning Theory, pp. 284–309, 2016.

Brand, M. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and

its applications, 415(1):20–30, 2006.

De Sa, C., Olukotun, K., and Ré, C. Global convergence of stochastic gradient descent for some
non-convex matrix problems. arXiv preprint arXiv:1411.1134, 2014.

Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Garber, D. On the regret minimization of nonconvex online gradient ascent for online PCA. arXiv

preprint arXiv:1809.10491, 2018.

Grabowska, M. and Kotłowski, W. Online principal component analysis for evolving data streams.
In International Symposium on Computer and Information Sciences, pp. 130–137. Springer, 2018.

Hardt, M. and Price, E. The noisy power method: A meta algorithm with applications. In Advances

in Neural Information Processing Systems, pp. 2861–2869, 2014.

9



Harvey, N. J., Liaw, C., Plan, Y., and Randhawa, S. Tight analyses for non-smooth stochastic gradient
descent. arXiv preprint arXiv:1812.05217, 2018.

Jain, P., Jin, C., Kakade, S. M., Netrapalli, P., and Sidford, A. Streaming PCA: Matching matrix
bernstein and near-optimal finite sample guarantees for oja’s algorithm. In Conference on Learning

Theory, pp. 1147–1164, 2016.

LeCun, Y. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Li, C. J., Wang, M., Liu, H., and Zhang, T. Near-optimal stochastic approximation for online principal
component estimation. Mathematical Programming, 167(1):75–97, 2018.

Liu, X., Wen, Z., and Zhang, Y. Limited memory block krylov subspace optimization for computing
dominant singular value decompositions. SIAM Journal on Scientific Computing, 35(3):A1641–
A1668, 2013.

Mianjy, P. and Arora, R. Stochastic PCA with `2 and `1 regularization. In International Conference

on Machine Learning, pp. 3531–3539, 2018.

Rakhlin, A., Shamir, O., Sridharan, K., et al. Making gradient descent optimal for strongly convex
stochastic optimization. In ICML, volume 12, pp. 1571–1578. Citeseer, 2012.

Shamir, O. Convergence of stochastic gradient descent for PCA. In International Conference on

Machine Learning, pp. 257–265, 2016a.

Shamir, O. Fast stochastic algorithms for svd and PCA: Convergence properties and convexity. In
International Conference on Machine Learning, pp. 248–256, 2016b.

Shamir, O. and Zhang, T. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In International Conference on Machine Learning, pp.
71–79, 2013.

Tropp, J. A. et al. An introduction to matrix concentration inequalities. Foundations and Trends R� in

Machine Learning, 8(1-2):1–230, 2015.

Warmuth, M. K. and Kuzmin, D. Randomized online PCA algorithms with regret bounds that are
logarithmic in the dimension. Journal of Machine Learning Research, 9(Oct):2287–2320, 2008.

Yu, Y., Wang, T., and Samworth, R. J. A useful variant of the davis–kahan theorem for statisticians.
Biometrika, 102(2):315–323, 2014.

10


