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Abstract

We propose a recurrent neural-network for real-time reconstruction of acoustic
camera spherical maps. The network, dubbed DeepWave, is both physically and
algorithmically motivated: its recurrent architecture mimics iterative solvers from
convex optimisation, and its parsimonious parametrisation is based on the natural
structure of acoustic imaging problems. Each network layer applies successive
filtering, biasing and activation steps to its input, which can be interpreted as gener-
alised deblurring and sparsification steps. To comply with the irregular geometry of
spherical maps, filtering operations are implemented efficiently by means of graph
signal processing techniques. Unlike commonly-used imaging network architec-
tures, DeepWave is moreover capable of directly processing the complex-valued
raw microphone correlations, learning how to optimally back-project these into
a spherical map. We propose moreover a smart physically-inspired initialisation
scheme that attains much faster training and higher performance than random ini-
tialisation. Our real-data experiments show DeepWave has similar computational
speed to the state-of-the-art delay-and-sum imager with vastly superior resolution.
While developed primarily for acoustic cameras, DeepWave could easily be adapted
to neighbouring signal processing fields, such as radio astronomy, radar and sonar.

1 Introduction

Motivation An acoustic camera (AC) [26, 8, 18, 24] is a multi-modal imaging device that allows
one to visualise in real-time sound emissions from every direction in space. This is typically achieved
by overlaying on the live video from an optical camera a heatmap representing the intensity of the
ambient directional sound field, recovered from the simultaneous recordings of a microphone array
[3, 42]. Most commercial acoustic cameras recover the sound intensity field by combining linearly
the correlated microphone recordings with a Delay-And-Sum (DAS) beamformer [42, Chapter 5]. The
beamformer acts as an angular filter [20, 21], steering sequentially the array sensitivity pattern –or
beamshape– towards various directions where the sound intensity field is probed. Acoustic images
obtained this way are cheap to compute, but are blurred by the beamshape of the microphone array,
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and hence exhibit poor angular resolution [49, 7, 48]. The severity of this blur can be shown [53] to
be proportional to the ratio λ/D, where D is the diameter of the microphone array and λ the sound
wavelength. Because of the relatively large wavelengths of acoustic waves in the audible range, this
blur can be significant in practice: a 30 cm diameter microphone array has an angular resolution at
5 kHz (an E[) of approximately 10 degrees, against 7·10−4 degrees for a standard optical camera
at 790 THz (violet). Moreover, acoustic cameras are often deployed in confined environments [34],
requiring them to be as compact and portable as possible, which limits3 further the achievable angular
resolution.

The advent of compressed sensing techniques [14, 44] –and their wide adoption in imaging sciences
[54, 4, 32]– have inspired algorithmic solutions [48, 7, 11, 12] to the acoustic imaging problem,
promising vastly improved angular resolutions. Unfortunately, these methods proved ill-suited for
real-time purposes. Indeed, they often rely on iterative solvers, such as proximal gradient descent
(PGD) [37] or its accelerated variants [2, 31]. While exhibiting a fast convergence rate [2], such
methods still require on the order of a few dozen iterations to converge in practice, making them
unable to cope with the high refresh-rate4 of acoustic cameras. For this reason, and despite their
clear superiority in terms of resolving power, nonlinear imaging methods have not yet replaced the
suboptimal DAS imager in the software stack of commercial acoustic cameras.
The recent eruption of deep learning [33, 56, 10] in the field of imaging sciences may however seal
the fate of DAS for good. Indeed, this new imaging paradigm leverages neural-networks [28] to
reduce dramatically the image formation time. Unlike compressed-sensing methods which proceed
iteratively, neural networks encode the image reconstruction process in a cascade of linear and
nonlinear transformations trained on a very large number of input/output example pairs. Once
properly trained, a neural-network can be efficiently evaluated for some input data to produce
images of high quality, with similar accuracy and resolution as state-of-the-art compressed-sensing
methods [33]. Network architectures used for inverse imaging [22, 17, 56, 10, 40] are most often
convolutional neural-networks (CNNs), directly adapted from generic architectures developed for
image classification and segmentation [45]. While suitable for image processing tasks such as
denoising, super-resolution or deblurring [38, 6], such architectures are ill-suited [33] for more
complex image reconstruction problems where the input data may not consist of an image, as is
the case in biomedical imagery [4, 32], interferometry [54] or acoustic imaging. Moreover, and
particularly limiting for our current purposes, standard convolutional architectures cannot handle
images with non-Euclidean domains [13] such as spherical maps [41] produced by omnidirectional
acoustic or optical cameras.
To overcome these limitations, recurrent architectures [16, 50, 30, 33] have been proposed, by
unrolling iterative convex optimisation algorithms. Such networks are not only able to handle non-
image inputs, but also have greater interpretability than generic CNNs. For example, Gregor and
LeCun proposed in their pioneering work [16] a recurrent neural-network (RNN) dubbed LISTA5,
inspired from the popular iterative soft-thresholding algorithm (ISTA)[2].6 Their network can be seen
as generalising ISTA, allowing for the normally fixed gradient and proximal steps occurring at each
iteration of the algorithm to be learnt from the data: update steps of ISTA are replaced by a cascade
of recurrent layers with trainable parameters. The depth of the resulting RNN is typically much
smaller than the number of iterations required for ISTA to converge. Roughly speaking, the network
is learning shortcuts in the reconstruction space, allowing it to achieve a prescribed reconstruction
accuracy faster than gradient-based iterative methods.7
While the effectiveness of LISTA was verified on small images from the MNIST dataset (784 pixels)
[16], its application to large-scale imaging problems remains challenging. This is mainly due to the
huge number of weights parametrising the network which, in the fully-connected case, grows as
the number of pixels to the square. Storing8 –let alone learning– all those weights quickly becomes
intractable for increasing resolutions. As a potential fix, Gregor and LeCun recommended sparsifying
the network by pruning layer connections. While they showed that such a pruning could reduce the
number of parameters in the network by 80% without affecting too much the performance of the

3Remember that the blur spread is inversely proportional to the microphone array diameter.
4An acoustic camera typically updates the acoustic image a dozen times per second.
5LISTA stands for learned iterative soft-thresholding algorithm.
6ISTA is an instance of proximal gradient descent for penalised basis pursuit problems [52].
7Of course, such shortcuts will most likely only be valid for the distribution of inputs and outputs implicitly

defined by the training set, which should hence be carefully crafted for the network to generalise well in practice.
8For a 1 megapixel image, the weights parametrising the network would be approximately 8 Gb in size.
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Figure 1: DeepWave’s recurrent architecture (1) for L = 2 layers and random initialisation. Learnable
parameters of the network are denoted by dashed boxes. Affine operations are denoted by white
boxes and nonlinear activations by grey boxes.

latter, this is still insufficient for large-scale problems, and additional structure must be considered on
network layers. Such structure is however often very dependent on the problem at hand.

Contributions In this work, we propose the first realistic architecture of a LISTA neural-network
adapted to acoustic imaging. Our custom architecture, dubbed DeepWave, is capable of rendering
high-resolution spherical maps of real-life sound intensity fields in milliseconds. DeepWave is
tailored to the acoustic imaging problem, leveraging fully its underlying structure so as to minimise
the number of network parameters. The latter is easy to train, with a typical training time of less
than an hour on a general-purpose CPU. Unlike most state-of-the-art neural-network architectures, it
moreover readily supports complex-valued input vectors, making it capable of directly processing
the raw correlated microphone recordings. Assuming a microphone array with M microphones,
the instantaneous covariance matrix Σ̂ ∈ CM×M of the microphone recordings is processed by the
network as follows (see also fig. 1):

xl = σ
(
Pθ (L) xl−1 +

[
B ◦B

]H
vec(Σ̂)− τ

)
, l = 1, . . . , L, (1)

where vec : CM×M → CM2

is the vectorisation operator and ◦ denotes the Khatri-Rao product
(see appendix A9 for definitions). The neurons {x1, . . . ,xL} ⊂ RN+ at the output of each layer l
of the depth L neural-network correspond to the acoustic image as it is processed by the network,
with N the number of pixels. The neuron x0 ∈ RN+ defines the initial state of the network. The
nonlinear activation function10 σ : R→ R induces sparsity in the acoustic image, and is inspired by
the proximal operator of an elastic-net penalty [37]. The remaining quantities, namely Pθ(L), B
and τ are trainable parameters of the network, with various roles:

• Deblurring: the matrix Pθ(L) :=
∑K
k=0 θkL

k ∈ RN×N can be interpreted as a deblurring
matrix, cleaning potential artefacts from the array beamshape. Following the approach
of [41], it is defined as a polynomial of the graph Laplacian L ∈ RN×N based on the
connectivity graph of the spherical tessellation in use, with learnable coefficients θ =
[θ0, . . . , θK ] ∈ RK+1. Such parametrisation permits notably the interpretation of Pθ(L) as
a finite-support filter defined on the tessellation graph. Moreover, fast graph convolution
algorithms are available for such filters [13].

• Back-projection: the operation
[
B ◦B

]H
vec(Σ̂) = diag

(
BHΣ̂B

)
(A.8) is a back-

projection, mapping the raw microphone correlations to the image domain. Thanks to
the convenient Khatri-Rao structure, this linear operation depends only on the matrix
B ∈ CM×N .

9In all that follows, labels prefixed with roman letters refer to elements of the supplementary material.
10Typified by a rectilinear unit.
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• Bias: the vector τ ∈ RN is a non-uniform bias, boosting or shrinking the neurons of
the network. Since only positive neurons are activated by the nonlinearity σ, this biasing
operation helps sparsify the final acoustic image.

The total number of learnable coefficients in DeepWave is linear in the number of pixels. The
rationale behind DeepWave’s architecture is detailed in section 2, with theoretical justifications
for the structures of the deblurring and back-projection linear operators. In section 3, we discuss
network training, including initialisation and regularisation. We moreover derive the forward- and
backward-propagation recursions11 for our custom architecture, required for forming gradient steps.
Finally, we test the architecture on synthetic as well as real data acquired with the Pyramic array
[5, 46]. DeepWave is shown to have similar resolving power as state-of-the-art compressed-sensing
methods, with a computational overhead similar to the DAS imager. To our knowledge, this is the first
time a nonlinear imager of the kind achieves real-time performance on a standard computing platform.
While developed primarily for acoustic cameras, DeepWave can easily be applied in neighbouring
array signal processing fields [27], including radio astronomy, radar and sonar technologies.

2 Network architecture

In this section, we proceed similarly to [16, 50, 30] and construct DeepWave by studying the update
equations of an iterative solver, namely proximal gradient descent applied to acoustic imaging.

2.1 Proximal gradient descent for acoustic imaging

In all that follows, we model the sound intensity field as a discrete spherical map with resolution
N , specified by an intensity vector x ∈ RN+ and a tessellation Θ = {r1, . . . , rN} ⊂ S2. Spherical
tessellations [19, 15] can be viewed as pixelation schemes for spherical geometries (see appendix B.1).
As is customary in compressed-sensing, we propose to recover the sound intensity map by solving a
convex optimisation problem (see appendix C):

x̂ = arg min
x∈RN

+

1

2

∥∥∥Σ̂−A diag(x)AH
∥∥∥2
F

+ λ
[
γ‖x‖1 + (1− γ)‖x‖22

]
, (2)

where ‖·‖F denotes the Frobenius norm, γ ∈]0, 1[ and λ > 0 are hyperparameters, and Σ̂ ∈ CM×M is
the empirical covariance matrix of the microphone recordings. In a far-field context, the forward map
A ∈ CM×N –linking the intensity vector to the microphone recordings– is commonly modelled by
the so-called steering matrix [27]: [A]mn := exp (−2πj〈pm, rn〉/λ0) , where {p1, . . . ,pM} ⊂ R3

are the microphone locations and λ0 > 0 the sound wavelength. Using properties (A.5) and (A.6)
of the vectorisation operator and the Frobenius norm [23, 53], problem (2) can be re-written in
vectorised form as:

x̂ = arg min
x∈RN

+

1

2

∥∥∥vec
(
Σ̂
)
−
(
A ◦A

)
x
∥∥∥2
2

+ λ
[
γ‖x‖1 + (1− γ)‖x‖22

]
, (3)

where ◦ denotes the Khatri-Rao product (see definition A.3). Problem (3) is an elastic-net penalised
least-squares problem [57], which seeks an optimal12 trade-off between data-fidelity and group-
sparsity. Group-sparsity is in this context better suited than traditional sparsity since acoustic sources
are often diffuse. It is worth noting that, since the elastic-net functional is strictly convex for γ ∈ [0, 1[,
problem (3) admits a unique solution. The latter can moreover be approximated by means of proximal
gradient descent (PGD) [2], whose update equations are given here by (see appendix D):

xk = ReLu

xk−1 − α
(
A ◦A

)H [(
A ◦A

)
xk−1 − vec

(
Σ̂
)]
− λαγ

2λα(1− γ) + 1

 , k ≥ 1, (4)

where x0 ∈ RN is arbitrary, α ≤ 1/
∥∥A ◦A

∥∥2
2

is the step size and ReLu(x) := max(x, 0) is the
rectified linear unit [29], applied element-wise to a real vector.13 The sequence of iterates {xk}k∈N

11DeepWave implementation can be found on https://github.com/imagingofthings/DeepWave.
12The notion of optimality is defined here by the penalty parameter λ.
13Note that with x0 ∈ RN , every gradient step produces a real vector.
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defined in (4) reduces the objective function in (3) at a rate O(1/k) [2]. Accelerated variants of
proximal gradient descent have been proposed [2], which modify (4) with an extra momentum term:

yk = ReLu

xk−1 − α
(
A ◦A

)H [(
A ◦A

)
xk−1 − vec

(
Σ̂
)]
− λαγ

2λα(1− γ) + 1


xk = yk + ωk

(
yk − yk−1

) , k ≥ 1, (5)

where the momentum sequence {ωk}k∈N can be designed in various ways [31, 9]. In our experiments,
we will use (5) as a baseline for speed comparisons, where ωk is updated according to Chambolle and
Dossal’s strategy [9]: ωk = (k − 1)/(k + d), k ≥ 0, with d = 50 [31]. The accelerated proximal
gradient descent (APGD) method thus obtained is the fastest reported in the literature, with conver-
gence rate o(1/k2) [31]. Finally, we leverage the formulae

(
A ◦A

)
x = vec(A diag(x)AH) (A.5),

and
(
A ◦A

)H
vec(R) = diag(AHRA) (A.8), to compute gradient steps efficiently in (5).

2.2 DeepWave : a PGD-inspired RNN for fast acoustic imaging

In practice PGD is terminated according to some stopping criterion. The intensity map xL obtained
after L iterations of (4) can then be seen as the output of an RNN with depth L and intermediate
neurons linked by the recursion formula:

xl = ReLu
(
Dxl−1 + B vec

(
Σ̂
)
− τ

)
, l = 1, . . . , L. (6)

We call this RNN the oracle RNN, since its weights D ∈ RN×N , B ∈ CN×M2

and τ ∈ RN are not
learnt but simply given to us by identifying (6) with (4):

D =
1

β

[
I − α

(
A ◦A

)H (
A ◦A

)]
, B =

α

β

(
A ◦A

)H
, τ =

λαγ

β
1N , (7)

where β = 2λα(1− γ) + 1. An analysis of (7) allows us moreover to interpret physically the affine
operations performed by the oracle RNN. The matrix B first is a back-projection operator, mapping
the vectorised correlation matrix into a spherical map by applying the adjoint of the forward operator
used in (3). The resulting spherical map is called a dirty map, and is equivalent to the DAS image
[53, Section 5.2][55]. The matrix D then is a deblurring operator, which subtracts at each iteration a
fraction of the array beamshape from the spherical map, hence cleaning the latter of blur artefacts.
The vector τ finally is an affine shrinkage operator, which biases uniformly the spherical map. The
latter permits –in conjunction with the rectified linear unit– the sparsification of the spherical map
and hence improve its angular resolution.
Since the oracle RNN is merely a reinterpretation of PGD, it inherits all its properties. In particular, it
is capable of solving (3) with high accuracy for arbitrary input correlation matrices. Unfortunately,
this great generalisability is typically obtained at the price of a very large number14 of layers L,
resulting in impractical reconstruction times. If one is however willing to sacrifice some of this
generalisability, it is possible to reduce drastically the network depth by unfreezing the weights D,
B, τ in (6), and allowing them to be learnt for some specific input distribution. This idea was first
explored in the context of sparse coding by Gregor and LeCun [16], resulting in the LISTA network.
A fully-connected architecture, corresponding to unconstrained D, B and τ , would however result
in O(N2) weights to be learnt, which is unfeasible in large-scale acoustic imaging problems. To
overcome this issue, we propose in the next paragraphs a parsimonious parametrisation of D and B.
The resulting RNN architecture, dubbed DeepWave, is given in (1) and depicted in fig. 1.

Parametrisation of D Our parametrisation of D is motivated by the following result, characteris-
ing the oracle deblurring kernel for spherical microphone arrays[42] (see proof in appendix E).
Proposition 1. Consider a spherical microphone array, with diameter D and microphone directions
{p̃1, . . . , p̃M} ⊂ S2, forming a near-regular tessellation of the sphere. Then, we have[
I − α

(
A ◦A

)H (
A ◦A

)]
ij
'
[
δij − αM2 sinc2

(
D

λ0
‖ri − rj‖

)]
, ∀i, j ∈ {1, . . . , N} (8)

14Even with momentum acceleration, PGD typically requires more than 50 iterations to converge. The oracle
RNN obtained by unrolling PGD will consequently be very deep.
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Algorithm 1 DeepWave forward propagation

1: Input: Σ̂t, x0
t , x̂t, θ, B, τ , σ

2: Output: Lt ∈ R+,
{
slt
}
l=1,...,L

⊂ RN
3:
4: yt ← diag(BHΣ̂tB)− τ
5: for l in [1, . . . , L] do
6: slt ← Pθ(L)xl−1t + yt
7: xlt ← σ(slt)

8: Lt ← 1
2

∥∥x̂t − xLt
∥∥2
2
/ ‖x̂t‖22

Algorithm 2 DeepWave backward propagation

1: Input: Σ̂t, x0
t , x̂t, θ, B, σ,

{
slt
}
l=1,...,L

2: Output: ∂θ ∈ RK+1, ∂B ∈ CM×N , ∂τ ∈ RN
3: (∂x, ∂θ, ∂τ )← (

(
σ(sLt )− x̂t

)
/ ‖x̂t‖22 ,0,0)

4: for l in [L, . . . , 1] do
5: ∂s← diag

(
σ′(slt)

)
∂x

6: ∂x← Pθ(L)∂s
7: ∂τ ← ∂τ − ∂s
8: [∂θ]k ← [∂θ]k + ∂sT Tk(L)σ(sl−1t )

9: ∂B← −2Σ̂tB diag (∂τ )

Figure 2: Forward and backward algorithms to compute gradients of Lt with respect to θ,B, τ . For
notational simplicity we use the shorthand ∂α = ∂Lt/∂α, and assume σ(s0t ) = x0

t .

where λ0 is the wavelength, δij denotes the Kronecker delta and sinc(x) := sin(πx)/πx is the
cardinal sine. Moreover, the approximation (8) is extremely good for M ≥ 3b 2πDλ0

c2.

Proposition 1 tells us that, for spherical arrays with sufficient number of microphones15, the oracle
deblurring operator D in (7) corresponds actually to a sampled zonal kernel [35]: [D]ij = κ(‖ri −
rj‖) for some κ : R+ → R. Since zonal kernels are used to define spherical convolutions [35], D
can hence be seen as a discrete convolution operator over the tessellation in use Θ = {r1, . . . , rN}.
Its bandwidth is moreover essentially finite, since coefficients [D]ij decay as 1/‖ri − rj‖2. As
discussed in [41, 13], discrete spherical convolution operators with finite scope can be efficiently
represented and implemented by means of graph signal processing [47] techniques. This leads us to
consider the following parametrisation (see appendix B.3 for details): D = Pθ(L) :=

∑K
k=0 θkL

k,
where θ = [θ0, . . . , θK ] ∈ RK+1, K controls the scope of the discrete convolution and L ∈ RN×N
is the Laplacian [47] associated to the convex-hull graph of Θ. Note that with this parametrisation,
the number of parameters characterising D drops from N2 to K + 1, with K � N .

Parametrisation of B The oracle back-projection operator (7) admits a factorisation in terms of the
Khatri-Rao product. We decide hence to equip B with a similar structure: B = (B ◦B)H for some
learnable matrix B ∈ CM×N . With such a parametrisation, the number of parameters characterising
B drops from NM2 to NM . The Khatri-Rao structure guarantees moreover real-valued –and hence
physically-interpretable– dirty maps.

3 Network training

To facilitate the description of the training procedure, we adopt the following shorthand notations.

• DeepWave(Ω, L) denotes a specific instance of the DeepWave network (1) with parameters
Ω := {θ,B, τ} and depth L.

• APGD(α, λ, γ) denotes an instance of APGD (5), with tuning parameters (α, λ, γ) ∈ R3
+.

The network parameters are chosen as minimisers of the following optimisation problem:

Ω̂ ∈ arg min
θ∈RK+1

B∈CM×N

τ∈RN

1

T

T∑
t=1

∥∥x̂t − xLt (Ω)
∥∥2
2

2 ‖x̂t‖22︸ ︷︷ ︸
:=Lt

+
λθ

2(K + 1)
‖θ‖22︸ ︷︷ ︸

:=Lθ

+
λB

2MN
‖B‖2F︸ ︷︷ ︸

:=LB

+
λτ
2N

∥∥∥L1/2τ
∥∥∥2
2︸ ︷︷ ︸

:=Lτ

.

(9)
The quantities {xLt (Ω)}t and {x̂t}t in (9) correspond respectively to the outputs of DeepWave(Ω, L)

and APGD(α, λ, γ) with identical example input data {(Σ̂t,x
0
t )}t. The first term 1

T

∑T
t=1 Lt is a

15For a spherical array with diameter D = 30 cm operating at 1 kHz, M ≥ 90 is sufficient.
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data-fidelity term, which attempts to bring x̂t and xLt (Ω) as close as possible from one another.16 The
additional terms Lθ,LB,Lτ are smoothing regularisers, fighting against overfitting, a common issue
in deep learning. Since the shrinkage operator τ is defined over an irregular spherical tessellation,
the smoothing term Lτ is defined via the Laplacian L ∈ RN×N associated to the connectivity graph
of the tessellation, as is customary in graph signal processing (see appendix B.3).
Optimisation of (9) is carried out by stochastic gradient descent (SGD) with momentum acceleration
[51]. Gradients of Lt with respect to θ,B, τ are efficiently evaluated using reverse-mode algorithmic
differentiation [1, 25] and are given in algorithms 1 and 2 (see appendix F for a derivation). While
random initialisation of neural-networks is a common practice in deep learning [51], this strategy
failed for our specific architecture, leading to poor validation loss and considerably increased training
times. Instead, we hence use the oracle parameters (7) to initialise SGD:

θ0 := arg min
θ∈RK+1

‖Pθ(L)−D‖2F , B0 :=

√
α

β
A, τ 0 :=

λαγ

β
1N . (10)

For greater numerical stability during training, we follow [41] and reparameterise the deblurring
filter as Pθ(L̃) =

∑K
k=0 θkTk(L̃), where Tk(·) is the Chebychev polynomial of order k and L̃ is the

normalised Laplacian with spectrum in [−1, 1] (see appendix B.3 for implementation details). Finally,
we substitute the ReLu activation function by a scaled rectified tanh to avoid the exploding gradient
problem [39].17

4 Experimental results

In this section, we compare the accuracy, resolution and runtime performance of DeepWave to
DAS and APGD on real-world (RW) and simulated (SIM) datasets. More comprehensive dataset
descriptions and additional results, including an ablation study, are provided in appendices G to I.

Dataset 1 [36] (RW) reproduces a conference room setup depicted in figs. 3a and 3b, where 8
people18 are gathered around a table and speak either in turns or simultaneously (with at most 3
concurrent speakers). Recordings of the conversation are collected by the 48-element Pyramic array
[46] (fig. 3f) positioned at the centre of the table. Since human speech is wide-band, the audible range
[1500, 4500] Hz in the latter are pre-processed every 100 ms and split into 9 uniform bins to form
a suitable training set {(Σ̂t, x̂t,x

0
t )}t of 2760 data points per frequency band for DeepWave (with

N = 2234). (See appendix G.2.) Frequency channels are processed independently by each algorithm.
DeepWave is trained by splitting the data points into a training and validation set (respectively 80%
and 20% in size). For each frequency band, we chose an architecture with 5 layers.
In fig. 3, figs. G.4 and H.3 respectively, we compare the accuracy and runtime of DeepWave, DAS
and APGD. A video showing the evolution in time of DeepWave and DAS azimuthal sound fields (as
in figs. 3a and 3b) is also available.19 In terms of resolution, DeepWave and APGD perform similarly,
outperforming DAS by approximately 27%. The mean contrast scores for DeepWave and DAS over
the test set of Dataset 1 are 0.99 (±0.0081) and 0.89 (±0.07), respectively. Note that since the metrics
used for assessing resolution and contrast20 are not perfectly reflective of human-eye perception, the
reported image quality improvements appear even more striking through visual inspection of the
sound intensity fields (see for example fig. 3).

Dataset 2 [43] (RW) consists of 2700 template recordings from the Pyramic array taken in an
anechoic chambre at an angular resolution of 2 degrees in azimuth and three different elevations (-15,
0, 15 degrees). Recordings contain both male and female speech samples to cover a wide audible
range. The audio samples can be combined to simulate complex multi-source sound fields, hence we
leverage this property to augment the dataset to 5700 distinct recordings with one, two, or three active
speakers simultaneously. The raw time-series are then pre-processed as for Dataset 1 to obtain a

16in a mean relative squared-error sense.
17An alternative is to use a truncated ReLu. Given initialisation strategy 10, network training will still

converge with similar step sizes as those used with tanh non-linearities.
18The 8 people are represented in the experiment by loadspeakers playing male and female speech samples.
19Available online: https://www.youtube.com/watch?v=PwB3CS2rHdI
20As is customary, resolution is measured as the width at half-maximum of the impulse response of the

algorithms. Contrast is measured as the difference between the maximum and mean of the greyscale image.
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(a) DAS azimuthal sound field. (b) DeepWave azimuthal sound field.

(c) DAS spherical sound field (resolution: 25.3◦ , RMS contrast: 0.78). (d) Frequency-colour mapping.

(e) DeepWave spherical sound field (resolution: 18.5◦ , contrast: 0.97). (f) Pyramic array.

Figure 3: Snapshots at time t = 1.7 s of the sound intensity fields produced by DeepWave and DAS
for the Pyramic recordings with speakers 2, 6 and 16 active. Sound frequencies range from 1.5 to 4.5
kHz and were mapped to true colours (see fig. 3d, colour shades correspond to lower intensities). The
spherical maps of DAS and DeepWave are plotted in figs. 3c and 3e, respectively. In figs. 3a and 3b
we plot the azimuthal projections of figs. 3c and 3e, respectively.

training set of 151980 data points per frequency band (with N = 1568). Network training is identical
to that of Dataset 1, except that 10 azimuth directions are also witheld from the training set to assess
how well the network generalises to emissions from unseen directions.
Figures 4a and 4b show sample DAS and DeepWave reconstructions with real sources from directions
withheld from the training set. Similarly, fig. 4c shows sample reconstructions when the network is
trained on real data but tested on synthetic narrow-band covariance matrices induced by sources from
directions absent from the training set. In both cases we see that DeepWave outperforms DAS in
resolution and contrast (i.e. sharper blobs and darker background).

Dataset 3 (SIM) finally is a dataset with recordings from a spherical microphone array using a
narrow-band point-source data-model at 2 kHz [53]. The sources are randomly positioned over a
120◦ field-of-view, with up to 10 concurrent sources per recording. Experiment results available in
fig. H.1 corroborate the real-data results, hence showing that DeepWave generalises well to a large
number of sources with unconstrained positions. We further investigated in fig. H.2 the influence of
network depth, and concluded that 5 or 6 layers are generally sufficient for the investigated dataset.
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(a) DAS/DeepWave sound fields for Dataset 2. (b) DAS/DeepWave sound fields for Dataset 2.

(c) DAS/DeepWave sound fields for synthetic data trained on Dataset 2.

Figure 4: Snapshots of the sound intensity fields produced by DeepWave and DAS when trained
on Dataset 2 (with 10 held-out source directions). Each subplot contains a DAS image (top) and a
DeepWave image (bottom). The frequency color mapping is identical to fig. 3d. Figures 4a and 4b
show azimuthal sound field slices on [−20◦, 150◦] using real-world covariance matrices with sources
from unseen directions during training. Figure 4c shows a full 360◦ sound field on a synthetic
covariance matrix from unseen directions during training. Elevations span [−15◦,+15◦].

In terms of runtimes finally, DeepWave and DAS both reach real-time requirements (6.5 ms and 2.0
ms respectively), largely outperforming APGD (211 ms). (See fig. H.3 for more details.)

5 Conclusion

We introduced DeepWave, the first recurrent neural-network for real-time and high resolution acoustic
imaging. It mimics iterative solvers from convex optimisation, while using the natural structure
of acoustic imaging problems for efficient training and operation. Our real and simulated data
experiments show DeepWave has similar computational speed to the state-of-the-art DAS imager
with vastly superior resolution and contrast.

For future work, one of our goals is to make DeepWave time-aware, by training it on sequences of
consecutive measurements in time. To this end, we plan to connect multiple DeepWave networks
together, one for each time, and train them end-to-end. In such an architecture, the output neurons
from one network would serve as initial neural state x0 for the next network in line. This can be
interpreted as warm-starting the network with the sound field estimated at the previous time instant.
Additionally, we would like to propose a frequency-invariant DeepWave architecture, allowing to
train a single network for all frequency bands. Properties of the oracle weights (7) suggest that this
should be possible. This would considerably facilitate the training of the network, since the training
set would be augmented and the number of trainable parameters reduced.
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