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Abstract

A spatial point process can be characterized by an intensity function which predicts
the number of events that occur across space. In this paper, we develop a method to
infer predictive intensity intervals by learning a spatial model using a regularized
criterion. We prove that the proposed method exhibits out-of-sample prediction
performance guarantees which, unlike standard estimators, are valid even when the
spatial model is misspecified. The method is demonstrated using synthetic as well
as real spatial data.

1 Introduction

Spatial point processes can be found in a range of applications from astronomy and biology to ecology
and criminology. These processes can be characterized by a nonnegative intensity function λpxq
which predicts the number of events that occur across space parameterized by x P X [8, 4].

A standard approach to estimate the intensity function of a process is to use nonparametric kernel
density-based methods [6, 7]. These smoothing techniques require, however, careful tuning of kernel
bandwidth parameters and are, more importantly, subject to selection biases. That is, in regions
where no events have been observed, the intensity is inferred to be zero and no measure is readily
available for a user to assess the uncertainty of such predictions. More advanced methods infer the
intensity by assuming a parameterized model of the data-generating process, such as inhomogeneous
Poisson point process models. One popular model is the log-Gaussian Cox process (LGCP) model [9]
where the intensity function is modeled as a Gaussian process [22] via a logarithmic link function
to ensure non-negativity. However, the infinite dimensionality of the intensity function makes this
model computationally prohibitive and substantial effort has been devoted to develop more tractable
approximation methods based on gridding [9, 13], variational inference [15, 12], Markov chain
Monte Carlo [2] and Laplace approximations [20] for the log and other link functions. A more
fundamental problem remains in that their resulting uncertainty measures are not calibrated to the
actual out-of-sample variability of the number of events across space. Poor calibration consequently
leads to unreliable inferences of the process.

In this paper, we develop a spatially varying intensity interval with provable out-of-sample perfor-
mance guarantees. Our contributions can be summarized as follows:

• the interval reliably covers out-of-sample events with a specified probability by building on
the conformal prediction framework [19],
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• it is constructed using a predictive spatial Poisson model with provable out-of-sample
accuracy,

• its size appropriately increases in regions with missing data to reflect inherent uncertainty
and mitigate sampling biases,

• the statistical guarantees remain valid even when the assumed Poisson model is misspecified.

Thus the proposed method yields both reliable and informative predictive intervals under a wider
range of conditions than standard methods which depend on the assumed model, e.g. LGCP [9], to
match the unknown data-generating process.

Notations: Enras “ n´1
řn
i“1 ai denotes the sample mean of a. The element-wise Hadamard

product is denoted d.

2 Problem formulation

Figure 1: Unknown intensity function λpxq (solid) expressed in number of counts per unit of area,
across a one-dimensional spatial domain X “ r0, 200s which is discretized into 50 regions. Intensity
interval Λαpxq with 1 ´ α “ 80% out-of-sample coverage (3) inferred using n “ 50 samples.
Estimated intensity function pλpxq (dashed). Data is missing in the regions r30, 80s and r160, 200s
where the intensity interval increases appropriately.

The intensity function λpxq of a spatial process is expressed as the number of events per unit area
and varies over a spatial domain of interest, X , which we equipartition into R disjoint regions:
X “

ŤR
r“1 Xr Ă Rd and is a common means of modelling continuous inhomogeneous point

processes, see [9, 13]. The function λpxq determines the expected number of events y P t0, . . . , Y u
that occur in region Xr by

Ery|rs “
ż

Xr

λpxqdx, (1)

where r is the region index and Y is the maximum number of counts.

We observe n independent samples drawn from the process,

pri, yiq „ pprqppy|rq, (2)

where the data-generating distribution is unknown. Let the collection of pairwise datapoints be
denoted pr,yq “ tpr1, y1q, . . . , prn, ynqu. Given this dataset, our goal is to infer an intensity interval
Λpxq Ă r0, 8q of the unknown spatial point process, which predicts the number of events per unit
area at location x. See Figure 1 for an illustration in one-dimensional space. A reliable interval
Λαpxq will cover a new out-of-sample observation y in a region r with a probability of at least 1´ α.
That is, for a specified level α the out-of-sample coverage is

Pr
!

y P Λαpxq|Xr|, @x P Xr
)

ě 1´ α, (3)

where |Xr| is the area of the rth region. Since the trivial noninformative interval r0, 8q also satisfies
(3), our goal is to construct Λαpxq that is both reliable and informative.
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3 Inference method

We begin by showing that an intensity interval Λαpxq with reliable out-of-sample coverage can
be constructed using the conformal prediction framework [19]. Note that obtaining tractable and
informative intervals in this approach requires learning an accurate predictor in a computationally
efficient manner. We develop such a predictor and prove that it has finite-sample and distribution-
free performance guarantees. These guarantees are independent of the manner in which space is
discretized.

3.1 Conformal intensity intervals

Let Eθry|rs denote a predictor parameterized by a vector θ. For a given region r, consider a new data
point pr, ryq, where ry represents number of counts and takes a value between r0, Y s. The principle of
conformal prediction is to quantify how well this new point conforms to the observed data pr,yq.
This is done by first fitting parameters θ1 to the augmented set pr,yqY pr, ryq and then using the score

πpryq “
1

n` 1

n`1
ÿ

i“1

I
´

ei ď
ˇ

ˇ

ry ´ Eθ1ry|rs
ˇ

ˇ

¯

P p0, 1s, (4)

where Ip¨q is the indicator function and ei “ |yi ´ Eθ1ry|ris| are residuals for all observed data
points i “ 1, . . . , n. When a new residual

ˇ

ˇ

ry ´ Eθ1ry|rs
ˇ

ˇ is statistically indistinguishable from
the rest, πpryq corresponds to a p-value [19]. On this basis we construct an intensity interval Λαpxq
by including all points ry that conform to the dataset with significance level α, as summarized in
Algorithm 1. Using [14, thm. 2.1], we can prove that Λαpxq satisfies the out-of-sample coverage (3).

Algorithm 1 Conformal intensity interval

1: Input: Location x, significance level α, data pr,yq
2: for all ry P t0, . . . , Y u do
3: Set r if x P Xr
4: Update predictor Eθry|rs using augmented data pr,yq Y pr, ryq
5: Compute score πpryq in (4)
6: end for
7: Output: Λαpxq “ try : pn` 1qπpryq ď rpn` 1qαsu{|Xr|

While this approach yields reliable out-of-sample coverage guarantees, there are two possible limita-
tions:

1. The residuals can be decomposed as e “ pEry|rs ´ Eθry|rsq ` ε, where the term in
brackets is the model approximation error and ε is an irreducible zero-mean error. Obtaining
informative Λαpxq across space requires learned predictors with small model approximation
errors.

2. Learning methods that are computationally demanding render the computation of Λαpxq
intractable across space, since the conformal method requires re-fitting the predictor multiple
times for each region.

Next, we focus on addressing both limitations.

3.2 Spatial model

We seek an accurate model pθpy|rq of ppy|rq, parameterized by θ. For a given r, we quantify the
out-of-sample accuracy of a model by the Kullback-Leibler divergence per sample,

Rpθq “ 1

n
Ey|r

„

ln
ppy|rq

pθpy|rq



ě 0, for which Rpθq “ 0 ô pθpy|rq ” ppy|rq (5)

In general, the unknown intensity function underlying ppy|rq has a local spatial structure and can
be modeled as smooth since we expect counts in neighbouring regions to be similar in real-world
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applications. On this basis, we consider following the class of models,

Pθ “
!

pθpy|rq is Poisson with mean Eθry|rs “ exppφJprqθq, θ P RR
)

,

where φprq is Rˆ 1 spatial basis vector whose components are given by the cubic b-spline function
[21] (see supplementary material). The Poisson distribution is the maximum entropy distribution
for count data and is here parameterized via a latent field tθ1, . . . , θRu across regions [4, ch. 4.3].
Using a cubic b-spline basis [21], we model the mean in region r via a weighted average φprqJθ
of latent parameters from neighbouring regions, where the maximum weight in φprq is less than 1.
This parameterization yields locally smooth spatial structures and is similar to using a latent process
model for the mean as in the commonly used LGCP model [9, sec. 4.1].

The unknown optimal predictive Poisson model is given by

θ‹ “ arg min
θ

Rpθq (6)

and has an out-of-sample accuracyRpθ‹q.

3.3 Regularized learning criterion

We propose learning a spatial Poisson model in Pθ using the following learning criterion

pθ “ arg min
θ

´ n´1 ln pθpy|rq ` n´γ ||w d θ||1, (7)

where ln pθpy|rq is the log-likelihood, which is convex [18], andw is a given vector of regularization
weights. The regularization term in (7) not only mitigates overfitting of the model by penalizing
parameters in θ individually, it also yields the following finite sample and distribution-free result.

Theorem 1 Let γ P p0, 1
2 q, then the out-of-sample accuracy of the learned model is bounded as

Rppθq ď Rpθ‹q ` 2n´γ ||w d θ‹||1 (8)

with a probability of at least

max
´

0, 1´ 2R exp
!

´
w2
on

1´2γ

2Y 2

)¯

, where wo “ min
k“1,...,R

wk.

We provide an outline of the proof in Section 3.3.1, while relegating the details to the Supplementary
Material. The above theorem guarantees that the out-of-sample accuracyRppθq of the learned model
(7) will be close toRpθ‹q of the optimal model (6), even if the model class (3.2) does not contain the
true data-generating process. As γ is increased, the bound tightens and the probabilistic guarantee
weakens, but for a given data set one can readily search for the value of γ P p0, 0.5q which yields the
most informative interval Λαpxq.

The first term of (7) contains inner products φJprqθ which are formed using a regressor matrix.
To balance fitting with the regularizing term in (7), it is common to rescale all columns of the
regressor matrix to unit norm. An equivalent way is to choose the following regularization weights
wk “

a

Enr|φkprq|2s, see e.g. [3]. We then obtain a predictor as

E
pθry|rs “ exppφJprqpθq

and predictive intensity interval Λαpxq via Algorithm 1. Setting wk ” 0 in (7) yields a maximum
likelihood model with less informative intervals, as we show in the numerical experiments section.

3.3.1 Proof of theorem

The minimizer pθ in (7) satisfies

pRppθq ď pRpθ‹q ` ρfpθ‹q ´ ρfppθq, (9)

where pRpθq “ n´1 ln ppy|rq
pθpy|rq

is the in-sample divergence, corresponding to (5), fpθq “ ||w d θ||1

and ρ “ n´γ .
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Using the functional form of the Poisson distribution, we have

´ ln pθpy|rq “
n
ÿ

i“1

´ ln pθpyi|riq “
n
ÿ

i“1

Eθryi|ris ´ yi lnpEθryi|risq ` lnpyi!q

Then the gap between the out-of-sample and in-sample divergences for any given model θ is given
by

Rpθq ´ pRpθq “
1

n

”

ln pθpy|rq ´ Ey|rrln pθpy|rqs ` Ey|rrln ppy|rqs ´ ln ppy|rq
ı

“ En
”

py ´ Ey|rrysqφprq
ıJ

θ `
1

n
K,

(10)

where the second line follows from using our Poisson model Pθ and K “ Ey|rrln ppy|rqs ´
ln ppy|rq `

řn
i“1 Ey|rrlnpyi!qs ´ lnpyi!q is a constant. Note that the divergence gap is linear in θ,

and we can therefore relate the gaps for the optimal model pθ with the learned model θ‹ as follows:
“

Rpθ‹q ´ pRpθ‹q
‰

´
“

Rppθq ´ pRppθq
‰

“ gJpθ‹ ´ pθq, (11)

where
g ” BθrRpθq ´ pRpθqs

ˇ

ˇ

θ“pθ
“

”

Enrz1s, . . . ,EnrzRs
ıJ

,

is the gradient of (10) and we introduce the random variable zk “ py ´ Ey|rrysqφkprq P r´Y, Y s
for notational simplicity (see supplementary material).

Inserting (9) into (11) and re-arranging yields

Rppθq ď Rpθ‹q ´ gJpθ‹ ´ pθq ` ρfpθ‹q ´ ρfppθq, (12)

where the RHS is dependent on pθ. Next, we upper bound the RHS by a constant that is independent
of pθ.

The weighted norm fpθq has an associated dual norm

rfpgq “ sup
θ:fpθqď1

gJθ ”
||g||8
wo

“ max
k“1,...,R

|Enrzks|
wo

see the supplementary material. Using the dual norm, we have the following inequalities

´gJθ‹ ď rfpgqfpθ‹q and gJpθ ď rfpgqfppθq

and combining them with (12), as in [23], yields

Rppθq ď Rpθ‹q ` pρ` rfpgqqfpθ‹q ` p rfpgq ´ ρqfppθq ď Rpθ‹q ` 2ρfpθ‹q (13)

when ρ ě rfpgq. The probability of this event is lower bounded by

Pr
`

ρ ě rfpgq
˘

ě 1´ 2R exp
”

´
w2
on

1´2γ

2Y 2

ı

(14)

We derive this bound using Hoeffding’s inequality, for which

Prp|Enrzks ´ Erzks| ď εq ě 1´ 2 exp
”

´
nε2

2Y 2

ı

, (15)

and Erzks “ Er
“

pEy|rrys ´ Ey|rrysqφkprq
‰

“ 0. Moreover,

Pr
´

max
k“1,...,R

|Enrzks| ď ε
¯

“ Pr
´

R
č

k“1

|Enrzks| ď ε
¯

ě 1´ 2R exp
”

´
nε2

2Y 2

ı

,

using DeMorgan’s law and the union bound (see supplementary material). Setting ε “ woρ, we
obtain (14) Hence equation (13) and (14) prove Theorem 1. It can be seen that for γ P p0, 1

2 q, the
probability bound on the right hand side increases with n.
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3.3.2 Minimization algorithm

To solve the convex minimization problem (7) in a computationally efficient manner, we use
a majorization-minimization (MM) algorithm. Specifically, let V pθq “ ´n´1 ln pθpy|rq and
fpθq “ ||w d θ||1 then we bound the objective in (7) as

V pθq ` n´γfpθq ď Qpθ; rθq ` n´γfpθq, (16)

where Qpθ; rθq is a quadratic majorizing function of V pθq such that Qprθ; rθq “ V prθq, see [18, ch. 5].
Minimizing the right hand side of (16) takes the form of a weighted lasso regression and can therefore
be solved efficiently using coordinate descent. The pseudo-code is given in Algorithm 2, see the
supplementary material for details. The runtime of Algorithm 2 scales as OpnR2q i.e. linear in
number of datapoints n. This computational efficiency of Algorithm 2 is leveraged in Algorithm 1
when updating the predictor Eθry|rs with an augmented dataset pr,yq Y pr, ryq. This renders the
computation of Λαpxq tractable across space.

Algorithm 2 Majorization-minimization method

1: Input: Data pr,yq, parameter γ P p0, 1
2 q and Y

2: Form weights wk “
a

Enr|φkprq|2s for k “ 1, . . . , R

3: Set rθ :“ 0
4: while
5: Form quadratic approximation at rθ: Qpθ; rθq ` n´γ ||w d θ||1
6: Solve qθ :“ arg min

θ
Qpθ; rθq ` n´γ ||w d θ||1 using coordinate descent

7: rθ :“ qθ
8: until ||pθ ´ qθ|| ě ε

9: Output: pθ “ qθ and E
pθry|rs “ exppφJprqpθq

The code for algorithms 1 and 2 are provided on github.

4 Numerical experiments

We demonstrate the proposed method using both synthetic and real spatial data.

4.1 Synthetic data with missing regions

To illustrate the performance of our learning criterion in (7), we begin by considering a one-
dimensional spatial domain X “ r0, 100s, equipartitioned into R “ 20 regions. Throughout we
use γ “ 0.499 in (7).

Comparison with log-Gaussian Cox process model

We consider a process described by the intensity function

λpxq “ 10 exp
´

´
x

50

¯

, (17)

and sample events using a spatial Poisson process model using inversion sampling [5]. The distribution
ppy|rq is then Poisson. Using a realization pr,yq, we compare our predictive intensity interval Λαpxq

with a p1´ αq%-credibility interval rΛαpxq obtained by assuming an LGCP model for the λpxq [9]
and approximating its posterior belief distribution using integrated nested Laplace approximation
(INLA) [17, 11]. For the cubic b-splines in Pθ, the spatial support of the weights in φprq was set to
cover all regions.

We consider interpolation and extrapolation cases where the data is missing across r30, 80s and
r70, 100s, respectively. Figures 2a and 2b show the intervals both cases. While rΛαpxq is tighter than
Λαpxq in the missing data regions, it has no out-of-sample guarantees and therefore lacks reliability.
This is critically evident in the extrapolation case, where Λαpxq becomes noninformative further
away from the observed data regions. By contrast, rΛαpxq provides misleading inferences in this case.
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(a) Interpolation with data miss-
ing in r30, 80s

(b) Extrapolation with data miss-
ing in r70, 100s
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50

(c) Average interval size with data
missing in r50, 90s

Figure 2: (a) Interpolation and (b) extrapolation with Λαpxq (grey) and rΛαpxq (green) with 1´ α “
80%, for a given realization of point data (black crosses). The unknown intensity function λpxq
(red) gives the expected number of events in a region, see (1). (c) Misspecified case with average
intensity interval size |Λαpxq|, using nonzero (blue) and zero (red) regularization weights in (7). Data
in r50, 90s is missing. The different markers correspond to three different spatial processes, with
intensity functions λ1pxq, λ2pxq and λ3pxq. The out-of-sample coverage (3) was set to be at least
1´ α “ 80% and the empirical coverage is given in 1.

Empirical coverage of Λαpxq [%]
α “ 0.2 Proposed Unregularized

λ1 97.05 97.37
λ2 91.05 98.32
λ3 81.37 95.37

Table 1: Comparison of empirical coverage of Λαpxq, using the proposed regularized vs. the
unregularized maximum likelihood method. We target ě 1´ α “ 80% coverage.

Comparison with unregularized maximum likelihood model

Next, we consider a three different spatial processes, described by intensity functions

λ1pxq “
500

?
2π252

exp
“

´
px´ 50q2

2ˆ 252
‰

, λ2pxq “ 5 sinp
2π

50
xq ` 5, λ3pxq “

3

8

?
x.

For the first process, the intensity peaks at x “ 50, the second process is periodic with a period of 50
spatial units, and for the third process the intensity grows monotonically with space x. In all three
cases, the number of events in a given region is then drawn as y „ ppy|rq using a negative binomial
distribution, with mean given by (1) and number of failures set to 100, yielding a dataset pr,yq. Note
that the Poisson model class Pθ is misspecified here.

We set the nominal out-of-sample coverage ě 80% and compare the interval sizes |Λαpxq| across
space and the overall empirical coverage, when using regularized and unregularized criteria (7),
respectively. The averages are formed using 50 Monte Carlo simulations.

Figure 2c and Table 1 summarize the results of comparison between the regularized and unregularized
approaches for the three spatial processes. While both intervals exhibit the same out-of-sample
coverage (table 1), the unregularized method results in intervals that are nearly four times larger than
those of the proposed method (figure 2c) in the missing region.

4.2 Real data

In this section we demonstrate the proposed method using two real spatial data sets. In two-
dimensional space it is challenging to illustrate a varying interval Λαpxq, so for clarity we show its
maximum value, minimium value and size as well as compare it with a point estimate obtained from
the predictor, i.e.,

pλpxq “
R
ÿ

r“1

Ipx P Xrq
E
pθry|rs

|Xr|
(18)

Throughout we use γ “ 0.4 in (7).
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Figure 3: # trees per m2. Nominal coverage set to 1´ α “ 80%. The dashed boxes mark missing
data regions.
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(a) |Λαpxq|
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(b) |rΛαpxq|

Figure 4: # trees per m2. Comparison between proposed intensity interval and credibility intensity
interval from approximate posterior of LGCP model.

Hickory tree data

First, we consider the hickory trees data set [1] which consists of coordinates of hickory trees in a
spatial domain X Ă R2, shown in Figure 3a, that is equipartitioned into a regular lattice of R “ 52
hexagonal regions. The dataset pr,yq contains the observed number of trees in each region. The
dashed boxes indicate regions data inside which is considered to be missing. For the cubic b-splines
in Pθ, the spatial support was again set to cover all regions.

We observe that the point predictor pλpxq interpolates and extrapolates smoothly across regions and
appears to visually conform to the density of the point data. Figures 3b and 3c provide important
complementary information using Λαpxq, whose upper limit increases in the missing data regions,
especially when extrapolating in the bottom-right corner, and lower limit rises in the dense regions.

The size of the interval |Λαpxq| quantifies the predictive uncertainty and we compare it to the
p1´αq% credibility interval |rΛαpxq| using the LGCP model as above, cf. Figures 4a and 4b. We note
that the sizes increase in different ways for the missing data regions. For the top missing data region,
|rΛαpxq| is virtually unchanged in contrast to |Λαpxq|. While |rΛαpxq| appears relatively tighter than
|Λαpxq| across the bottom-right missing data regions, the credible interval lacks any out-of-sample
guarantees that would make the prediction reliable.

Crime data

Next we consider crime data in Portland police districts [16, 10] which consists of locations of
calls-of-service received by Portland Police between January and March 2017 (see figure 5a). The
spatial region X Ă R2 is equipartitioned into a regular lattice of R “ 494 hexagonal regions.
The dataset pr,yq contains the reported number of crimes in each region. The support of the cubic
b-spline is taken to be 12 km.

The point prediction pλpxq is shown in Figure 5a, while Figures 5b and 5c plot the upper and lower
limits of Λαpxq, respectively. We observe that pλpxq follows the density of the point pattern well,
predicting a high intensity of approximately 60 crimes/km2 in the center. Moreover, upper and lower
limits of Λαpxq are both high where point data is dense. The interval tends to being noninformative
for regions far away from those with observed data, as is visible in the top-left corner when comparing
Figures 5b and 5c.
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Figure 5: # crimes per km2 in Portland, USA. Nominal coverage set to 1´ α “ 80%.

5 Conclusion

We have proposed a method for inferring predictive intensity intervals for spatial point processes. The
method utilizes a spatial Poisson model with an out-of-sample accuracy guarantee and the resulting
interval has an out-of-sample coverage guarantee. Both properties hold even when the model is
misspecified. The intensity intervals provide a reliable and informative measure of uncertainty of the
point process. Its size is small in regions with observed data and grows along missing regions further
away from data. The proposed regularized learning criterion also leads to more informative intervals
as compared to an unregularized maximum likelihood approach, while its statistical guarantees
renders it reliable in a wider range of conditions than standard methods such as LGCP inference. The
method was demonstrated using both real and synthetic data.
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