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Abstract

We introduce the notion of learning from contradictions, a.k.a Universum learning,
for multiclass problems and propose a novel formulation for multiclass universum
SVM (MU-SVM). We show that learning from contradictions (using MU-SVM) in-
curs lower sample complexity compared to multiclass SVM (M-SVM) by deriving
the Natarajan dimension for sample complexity for PAC-learnability of MU-SVM.
We also propose an analytic span bound for MU-SVM and demonstrate its utility
for model selection resulting in ~ 2 — 4 x faster computation times than standard
resampling techniques. We empirically demonstrate the efficacy of MU-SVM
on several real world datasets achieving > 20% improvement in test accuracies
compared to M-SVM. Insights into the underlying behavior of MU-SVM using a
histograms-of-projections method are also provided.

1 Introduction

Many machine learning problems in domains such as, healthcare, autonomous driving, and prog-
nostics and health management involve learning from high-dimensional data with limited labeled
samples. In such domains labeling very large quantities of data is either extremely expensive, or
entirely prohibitive due to the manual effort required. Standard inductive learning methods, including
data intensive deep architectures [[1]], may not be sufficient for such high-dimensional limited-labeled-
data problems. The learning from contradictions paradigm (popularly known as Universum learning)
has shown to be particularly effective for binary classification problems of this nature [2H11]]. In
this paradigm, along with the labeled training data we are also given a set of unlabeled universum
samples. These universum samples belong to the same application domain as the training data, but
are known not to belong to either of the two classes. The rationale behind this setting comes from the
fact that even though obtaining labels is very difficult, obtaining such additional unlabeled samples
is relatively easier. These unlabeled universum samples act as contradictions and should not be
explained by the binary decision rule. However, this paradigm has been mostly limited to binary
classification problems making it impractical for most real applications involving classification of
more than two categories. Further, this limits incorporation of a priori knowledge by discarding
available universum data for such applications.

Previous works such as [[121[13]] have hinted on adopting an Error Correcting Output Code (ECOC)
based setting such as one-vs-one (OVO) and one-vs-all (OVA), where several binary Universum-
SVM [12] classifiers are combined to solve the multiclass problem. However, such studies lack
a complete formalization and analysis. An alternative is the adoption of a direct approach [14]
where the entire multiclass problem is solved through a single larger optimization formulation by
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introducing universum learning under a probabilistic framework using a logistic loss. However, the
work does not clarify as to how contradictions are captured through the proposed formulation. In this
paper, we propose a formalization for multiclass learning with contradictions. Following [[15]] for
multiclass SVM’s, we introduce the new Multiclass Universum SVM (MU-SVM) formulation. The
proposed MU-SVM provides a unified framework for multiclass learning under universum settings,
with improved performance accuracies. The main contributions of this paper are as follows:

1. Formulation: We formalize the notion of universum learning for multiclass SVM (M-SVM),
and propose a novel direct formulation called Multiclass Universum SVM (MU-SVM).

2. PAC Learnability: We derive the Natarajan dimension for the MU-SVM hypothesis class
and analyze its sample complexity for PAC learnability (Theorem[2). Our analysis shows
that MU-SVM incurs lower sample complexity compared to M-SVM.

3. Useful Properties: MU-SVM reduces to: i) standard multiclass SVM in absence of univer-
sum data and ii) binary U-SVM formulation in [[16]], for two-class problems (proposition [2)).
In addition, the proposed MU-SVM is solvable through any state-of-art M-SVM solvers

(proposition [3)).

4. Model Selection: We provide a new span definition specific to MU-SVM, and follow-
ing [17]] derive a leave-one-out bound for MU-SVM (Theorem E]) Under additional assump-
tions, a computationally efficient version of the bound is also provided (Theorem ).

5. Empirical validation: Empirical results demonstrate the efficacy of the proposed formula-
tion. We also propose a histogram-of-projections approach to analyse the results (section [4).

2  Multiclass SVM (M-SVM)

This section introduces multiclass learning under inductive settings and the popular Crammer and
Singer’s (C&S) multiclass SVM (M-SVM) formulation [[15] used in such settings. Although
several other multiclass SVM formulations have been proposed in literature [18-24], C&S’s
M-SVM is among the most widely used ones. Further, compared to the most popular mul-
ticlass formulations, C&S’s M-SVM provides the smallest estimation error while ensuring a
small approximation error (see [25] Table 1 for details). This

makes the C&S M-SVM formulation highly desirable for limited L(y.f(x)
labeled samples settings. In this paper we use the C&S’s M-
SVM with equal misclassification costs for balanced data as
an exemplar for multiclass SVM formulations under inductive
settings, and refer to it as M-SVM throughout.

+1

Definition 1. (Multiclass Learning under Inductive Setting) ,
Given i.i.d training samples 7" = (x;,y;);=y ~ D7, withx €  Wix-maxwix=0 +1
X CRlandy € ¥ = {1,...,L}, estimate a hypothesis
h* : X — Y from hypothesis class { which minimizes,

Figure 1: Loss function for M-
SVM with fx(x) = w} x. For the
inf Ep. [1,2nx (1) soft-margin M-SVM (3) any sam-
he# rLyhco] ple (x,y = k) lying inside the mar-
gin is linearly penalized using the

where, Dy = the training distribution, 1(-) = indicator func- (. 1 variable .

tion, and Ep., (-) = expectation under training distribution.

The M-SVM, by minimizing a margin-based loss function [15]], estimates f = [fi,..., fL] to
construct the decision rule h(x) = argmax f;(x). The M-SVM hypothesis class is given as,
=1,..,L

.....

L
Hm-svm :{x — argmax(w} x) : Z w2 < A% wix —argmax wix > 1; ify = k} 2)
ley =1 I£k

where, A > 0 is a user-defined parameter which controls the complexity of the hypothesis class. The
form in (2)) is also known as the hard-margin version of M-SVM. For practical purposes we solve the



soft-margin version given below,

L n
. 1 2 .
min — w + C i i=1...n,l=1...L 3
P SRS ot o
st (wy —w) x> en— i eq =1 -6y y—14 b il
Yi l i = €4l iy €4l il il 0’ yz#l

In this formulation, the training samples falling inside the margin border (‘+1°) are linearly penalized

n
using the slack variables &; > 0, i = 1...n (see Fig|l), which contributes to the margin error . &;.
i=1
Eq. (3) balances between minimizing the margin error and regularization term using the user-defined
parameter C' > 0.

3 Multiclass Universum SVM (MU-SVM)

3.1 Multiclass U-SVM formulation

Learning from contraditions or Universum learning was introduced in [2] for binary classification
problems to incorporate a priori knowledge about admissible data samples. For multiclass problems
in addition to the labeled training data we are also given with unla-

beled universum samples which are known not to belong to any of A A
the classes in the training data. For example, if the goal of learning B
is to discriminate between handwritten digits (0, 1, 2,...,9), one can
introduce additional ‘knowledge’ in the form of handwritten letters
(A, B, C, ... ,Z). These examples from the universum contain certain 4!
information (e.g., handwriting styles) but they cannot be assigned  wix - may wix' =0 1

to any of the classes (0 to 9). Further, the universum samples do o

not have the same distribution as labeled training samples. Learning Figure 2: Loss function for
under this setting can be formalized as below. universum samples x* for

th o
Definition 2. (Multiclass Learning under Universum Setting) k T class decision_boundary

* To*
Given i.i.d training samples 7 = (x;,9;)j=; ~ D%, with x € WpX & max wp xo = 0.
X CRlandy € Y = {1,...,L} and additional m unlabeled For soft-margin MU-SVM for-
universum samples U = (x3)7_, ~ Dy with x* € Ay C ®¢, mulation () a sample lying
estimate h* : X — ) from hypothesis class  which, in addition to Outside the A-ln.sensm\{e zone
eq. (T), obtains maximum contradiction on universum samples i.e. 1S linearly penalized using the

maximizes the following probability for x* € X}, slack variable Cj.
sup Pp,, [x* ¢ any class] = sup Ep, [I; A  nxe)£k] 4)
heH heH ke{l,...,L}

where, Dy is the universum distribution, Pp,, (+) is probability under universum distribution,
Ep, (+) is the expectation under universum distribution, X7} is the domain of universum data.

Learning under the universum setting has the dual goal of minimizing eq. (I) while maximizing the
contradiction (in eq. @)) on universum samples. The following proposition [T| provides guidance on
how to address this for the M-SVM formulation in eq. (3).

Proposition 1. For the M-SVM formulation in (), maximum contradiction on universum samples
x* € U can be achieved when,

|(wix* — linlaxLWlTx*)\ =0; Vke{1,...,L} %)

That is, learning under Definition [2] using M-SVM requires the universum samples to lie on the
decision boundaries of all the classes {1 ... L}. Here however, we relax this constraint (3)) by requiring
the universum samples to lie within a A-insensitive zone around the decision boundaries (see Fig
E]) as was done for binary scenario [[16]. However, different from [16]], here the A-insensitive loss
is introduced for the decision boundaries of all the classes i.e., |w x* — lmlawalTx*\ <AVE=

1... L. This reasoning motivates the new multiclass Universum-SVM (MU-SVM) formulation where
the Training samples 7 := (x;,¥:)"1; ¥; € {1,..., L} are penalized by standard hinge loss (similar



to M-SVM (B) and shown in Fig. [I); and the Universum samples ¢ := (x};)"_, are penalized by a
A-insensitive loss (see Fig. [2) for the decision functions of all the classes f = [f1, ..., fL].

The resulting hard-margin MU-SVM hypothesis class is given as,

L

Hwmu-svm = {x — argmax(w] x) : Z w2 < A% ;wix —argmax wix > 1; ify = k
I=1,...,L = I£k
|wi x* — llnlawalTx*| < A;Vk e y} (6)

We then relax the hard constraints on the universum samples by linearly penalizing the constraint
violations through a slack variable ¢ shown in Fig. [2|leading to the following soft-margin MU-SVM
formulation F_l

L n m L
. 1 . ;
mm£C 55 ||Wl||§—|—CE fi—i—C’*E E G Vi=1...n, i'=1...m
Wi1..Wr,§, =1

i=1 i'=1k=1
st (wy, —wy) % >eq—&; ea=1-6y, I=1...L v
[(wixp = max wixi)| S At G k=1...L G0, 8= { 0; zL #1

Here, for the k*" class decision boundary the universum samples (x})7_, that lie outside the
A-insensitive zone are linearly penalized using the slack variables (;,, > 0, i = 1...m. The
user-defined parameters C, C* > 0 control the trade-off between the margin size, the margin-error on
training samples, and the contradictions (samples lying outside +A zone) on the universum samples.
Note that for C* = 0 eq. (7)) reduces to the M-SVM classifier.

Proposition 2. For binary classification L = 2, reduces to the standard U-SVM formulation
in [16]] withw = wy, — waoandb = 0.

3.2 Sample Complexity for PAC Learnability

Next we derive the sample complexity for PAC-learnability of Hy;—svar and Har—svar and
provide a comparative analysis. First we provide the necessary definitions,

Definition 3. (Sample Complexity for PAC learnability [26}27]) of an algorithm A : X x ) — H
is defined as the smallest integer 1.4 (¢, 0) such that for any given €, > 0 and every n > n (e, J)
and distribution D on X’ x ) we have V h = A((x;,y:)™ ),

P (IPD (h(x) # y) > inf Pplh(x) # 4] + e) <6 ®)

(%4,y:) 71— ~D

The sample complexity of a hypothesis class H : ny (e, ) = igf na(e,0)

The sample complexity for PAC learnability depends on the size (a.k.a capacity measure) of a
hypothesis class. Traditional capacity measures used in binary classification do not directly apply for
multiclass problems. This has led to the research on several newer capacity measures for multiclass
problems [[192830]]. One of the most widely researched capacity measure for multiclass SVMs is
the Natarajan dimension [31] defined next,

Definition 4. Shattering (Multiclass version) For any hypothesis class 4 C ¥ and any S C X,
where Y = {1,..., L} and X := training data domain, we say # shatters S if 3f1, fo : S — Y with
Vx € S, f1(x) # fa(x) and for every T' C S there is a g € H which satisfies,

Vx €T, g(x) = fi(x), andVx € S — T, g(x) = fa(x). )
Natarajan Dimension d, (%) is the maximal cardinality of a set that is shattered by .

An advantage of Natarajan Dimension is that it provides a natural extension to the fundamental
learning theorem for multi-class problems (see [26,/32]) discussed next.

!"Throughout this paper, we use index 4, j for training samples, i’ for universum samples and k, I for the class
labels.



Theorem 1. (Fundamental Learning Theorem) There exist absolute constants C1,Cy > 0 such
that any hypothesis class H of functions from X — ) is PAC-learnable with sample complexity

o, v () + log(1/9) dy (H)log(|Y]) + log(1/6)
1 2 2

(10)

< nH(€7 6) < 02

Theorem (1| shows ny (e, ) = O(dN(H)log(g‘)Hog(l/‘s) ). Hence, for low sample complexity it is

desirable for hypothesis classes to have smaller dar (). With these definitions in place, we prove a
new Theorem to characterize das(H) for Har—svar and Hyrp—sv ar as shown below,

Theorem 2. The Natarajan dimension for Hyr—svar and Hyru—sv i has the form dy (H) =
O(Vlog()). Assuming ||x||2 < R?; Vx € X C R? gives,

Hri—svar: ¥ = min (dL + 1,2R*A?) (11)
Hyru—svi e ¥ = min (dL+1,I€) (12)
where,
d = data dimension, L = total no. of classes
. G(v)
< F(y)R? 13
" 20t de0) [ R+ 2 ()
mL(L —1

Fo) = 224" HEZV A G = PR~y F () racel ()] (4
H(y) =T +4VVH)~{(vZ'ZVT) (15)

also, the transformations 7., V are obtained as,

(T1) Given: For a maximally shattered set S = {x1,...,Xq, } using the functions fi(x), fa(x)
(see definition (@)
Define: a mapping ¢ : ¢ — R as,
(0d><17'~-; X ,... —X ,...,del)del;VXGTgS
7 = d)(x) _ fl(x):l f2(x):k
(0d><17---7 —-X ... X ,...,del)del;VXES—T
fi(x)=l f2(x)=k
(z1)"
Obtain: Z= :
(Zan )"

Basically, the transformation ¢ maps a sample x € R? from the shattered set S to a dL
- dimension vector z; where for any x € T with f1(x) = l and f2(x) = k; we copy the
x vector onto 1(d — 1) + 1...ld-th position and —x vector onto k(d — 1) + 1... kd-th
position of z. The remaining elements are set to 0. We reverse the sign of the mapping for

xeS-T.
(xi)"
(T2) Given: universum set U = :
(X;’L)T mxd
LiL-1)x1 —Ir-1xr-1
1z 2)x1 —Ip oxr—2
Define: G = 0 0 1n-3x1 —lr-sxr—3

L(L—1)
—5——*XxL

Obtain: V = (G Q@ U) where ® is the Kronecker product.

Due to space constraints, the proof of Theorem [2| is provided in the supplementary material.
Theorem [2] provides a framework to analyze the sample complexity for PAC-learnability of
Har—sva and Hary—sv . A direct observation from Theorem is that MU-SVM is likely to have



a smaller das and hence a lower sample complexity compared to M-SVM. This is seen from (I;IEI),
where setting v = 0 = F(y) = A? = G(vy) = [2A2R?]%. Hence we always have, k < 2R*A?
from (T3). This gives V3,0 _svar < Par_svar- 10 fact Y94, o0, can be significantly smaller
than ¥, o, ,, for a well chosen v € {y > 0 ; G(v) > 0}, resulting to a much smaller ds for
MU-SVM compared to M-SVM. The trade-off between m, A and the universum data types further
ensures low sample-complexity for MU-SVM.

3.3 MU-SVM Implementation

Another desirable property of MU-SVM is that it is solvable through state-of-art M-SVM
solvers [33],34]]. For every universum sample X}, we create L artificial samples belonging to all the

classes, i.e. (x%,y5, =1),...,(x},y5;, = L) and add them to the training set as shown below,
YR D) — (Xiayi76ilac7£i) i=1...n

(i i, €it, Ci, &) = { (x5, y5, —Aein, C*, ) i=n+1...n+mL;i=1...m;l=1...L
(16)

Proposition 3. MU-SVM () after the transformation (I6) can be solved in the dual form as,

1
max W(a) = 3 Z zz: it K (%, %) — zz: Q€41 (17)
(2¥] 7,

s.t. ZauzO; i <Ciifl =y 0 <0ifl#y;; 4,5j=1...n+mL, l=1...L
1

Note that (T7) has similar form as the M-SVM’s dual form (see [[15}[24]]), except that (T7) has
additional m L constraints for the universum samples. Hence, solving MU-SVM using is same
as solving an M-SVM problem (3) with n + m L samples.

3.4 Model Selection

The MU-SVM (T7) has four tunable parameters: C, C*, kernel parameter, and A. Successful appli-
cation of MU-SVM significantly depends on optimal model selection. In this paper we simplify the
model selection using a two-step approach,

(Step a) First, perform optimal tuning of the C' and kernel parameters for M-SVM (2)). This equiva-
lently tunes the parameters specific only to the training samples in the MU-SVM formulation.

(Step b) Tune A while keeping C' and kernel parameters fixed (from Step a). Also C* = ;LT% is kept
fixed to ensure equal contribution of training and universum samples in MU-SVM (7).

The model parameters in Steps (a) & (b) are typically selected through resampling techniques like,
leave one out (l.0.0) or stratified cross-validation approaches [35]]. Of these approaches, 1.0.0 provides
an almost unbiased estimate of the test error [36]]. However, on the downside it can be computationally
prohibitive. In this paper we provide a new span definition for MU-SVM in (19), and modify the
technique in [17] to derive a new analytic 1.0.0 bound for MU-SVM. Other span based 1.0.0 bounds
have been derived for alternative versions of the M-SVM formulation [37]]. However they do not
apply to the C&S’s M-SVM and the MU-SVM formulation proposed in this paper. Next, we show
that our proposed bound can be sucessfully used for model selection in Steps (a) & (b) thereby
avoiding computationally-prohibitive 1.0.0 and expensive cross-validation. The necessary definitions
are provided next.

Definition 5. The (Leave-One-Out procedure) with the ¢! training sample dropped in-

volves solving (17) with an additional constraint ay; = 0; VI. The obtained l.0.0 so-
lution o = [af;,...,ak;,...,al; =0,...,a;, =0,...] with ¢! sample prediction §; =
al at=0

mn
arg max y_ o, K (x;,x;) gives the leave-one-out error as: R, = % > 1y # )

l i =1
Definition 6. Support vectors obtained through solving are categorized as: Type 1 SV; =
{i ‘0 < Qiy; < CZ} and Type2 SV, = { ) |aiyi = Cz}

The set of all support vectors are represented as, SV = SV; U SV,. Similarly, the set of support
vectors for ..o solution is given as SV, Under Deﬁnition@ we prove the following,



Theorem 3. The leave-one-out error is upper bounded as:

1 1
Rioo< —[I{tesvinTis, maz(VaD, =) 2 1}+|{teSV2ﬂT}|] (18)
where, | - | := Cardinality of a set, and Sy := Span of a Type 1 support vector X; given as,

SZ = mﬁltn sz:(zl: BuBi) K (x:,%;) (new span definition specific to MU-SVM) (19)
st ay — Pa < Cy; V{(Z 7é t,l)| O<ay<Cyl= yz}
i — Bu <05 V{(i#tD]ay <0; 1 #y}

Bu=0; Vi¢g SVi—{t}¥l=1...L; Bu=aw; ¥I=1..L Y fz=0
1
and D is the Diameter of the smallest hypersphere containing all training samples.

Please refer to the supplementary material for proof of Theorem [3] The practical utility of (I8)
is limited due to the significant computational complexity for solving which results to ~
O(n +mL)* (worst case) to compute (T8). To alleviate this, we derive a computationally attractive
alternative under the following assumptions,

Assumption 1. : For the MU-SVM solution,
(A1) The sets SV and SV5 remain the same during the 1.0.0 procedure.

(A2) The SV; support vectors have only two active elements i.e. Va; € SViTk # y; s.t. a =
_aiyi .

Theorem 4. Under Assumption|l|the leave-one-out error is upper bounded as:

1
Rigo < f|{t eSVNT|S!zal Y ZailK(xi,xt)}| (20)
n €SV 1
T —1 —1 T
o _ [ oy [(H e ou tesSVinT o _ |Ksy, @I A
where, 5S¢ = { of [K(xi,x) ® 1, — KTH'KiJa, teSVnT + 0 A 0

T .
A =Ty, ®1) ;1 =[11... 1]; Kgsv, := Kernel matrix of the SVy support vectors

L elements

(H V)¢t := sub-matrixof H7!forindices i = [(t — 1)L + 1...tL] ; K; = [k ®
1) OLX|SV1‘]T ; ki = nsv,|x1 dim vector where ith element is K (x;,%;),¥x; € SVy ; and @ is
the Kronecker product.

Theorem ] provides a good approximation of the 1.0.0 error (also confirmed from results in Table 3]
even when the Assumption [I]is violated just as in [I7]. Further, it provides two major advantages
over Theorem [3] First, Eq. ({20) is valid for both SV} & SV5 training support vectors and results in a
stricter bound. Second, span computation in theoremrequires only one matrix inversion H=!. This
results in a significant speed-up to ~ O(n + mL)? for computing the leave-one-out bound using (20)
as compared to ~ O(n + mL)* in (I8).

4 Empirical Results

We use three real life datasets discussed next:

German Traffic Sign Recognition Benchmark (GTSRB) [38]]: The goal is to identify the traffic signs
for the speed-zones ‘30°,°70” and ‘80°. Here, the .

images are represented by their 1568 histogram Table 1: Real-life datasets.

of gradient (HOG 1) features. For this data we DATASET TRAIN / TEST SIZE

use three kinds of Universum: (U1) Random GTSRB 300/ 1500 (100 / 500 PER CLASS)
Averaging (RA) : synthetically created by first ABCDETC 600 /400 (150 / 100 PER CLASS)
selecting a random traffic sign from each class ISOLET 500/500 (100 / 100 PER CLASS)
(307,70’ and ‘80’) in the training set and aver-

aging them. (U2) Others: all other non-speed traffic signs. (U3)‘Priority road’ Sign: an exhaustive




search over several non-speed zone traffic signs showed this universum to provide the best perfor-
mance (see appendix [B.4).

Handwritten characters (ABCDETC) [16]]: The goal is to identify handwritten digits ‘0’-°3” using
their 10000 (100 x 100) pixel values. We use the characters other than digits as universum i.e., (Ul)
‘A - Z’ uppercase letters, (U2) ‘a - z’ lowercase letters, (U3) all other symbols like:-! 7 , .
=-+// ()% % " @and(U4) Random Averaging (RA) generated as above.

Speech-based Isolated Letter recognition ISOLET) [39]]: This is a speech recognition dataset where
150 subjects pronounced each letter ‘a - z’ twice. The goal is to identify the spoken letters ‘a’ - ‘e’
using the 617 dimensional spectral coefficients, contour, sonorant, presonorant, and post-sonorant
features. We use two different types of universum: (U1) ‘Others’ which contains all the other
speeched letters i.e. ‘f” -z’ and (U2) Random Averaging (RA) discussed above.

Due to space constraints and to simplify our analyses in later sections, we used only a subset of
the training classes. We see similar results using all the classes (results provided in supplementary
material [B.T). For the model parameters our initial experiments showed linear parameterization to be
optimal for GTSRB; hence only linear kernel has been used for it. For ABCDETC and ISOLET an
RBF kernel K (x;,x;) = exp(—7||x; — x;||?) with v = 277 provided optimal results for M-SVM.

For all the experiments model selection is done over the range of parameters C' = [1074,...,10%] ,
C*/C = 2% and A = [0,0.01,0.05,0.1].

Effectiveness of the MU-SVM formulation (7): Table 2] provides the average test error for MU-
SVM and several other baseline methods over 10 random training/test partitioning of the data in
the proportions shown in Table [T} Model selection within each partition is done using stratified 5
Fold CV [35]. Here, SVMgya & SVMgyo denotes the popular ECOC based multiclass extensions
one-vs-all (OVA) and one-vs-one (OVO) using binary SVM [2] as the base classifier. Similarly,
U-SVMgya & U-SVMoyo uses binary U-SVM [16] as the base classifier. Owing to space constraints,
we only show the results for the best performing universum for all the datasets. Also we fix the
number of universum samples to m = 500. Additional increase in the universum samples do not
provide any significant gains (see appendix [B.3]for results). The complete set of results using all the
universum types are provided in Appendix [B.2] For reproducibility of the results we also provide the
typical optimal parameters selected through model selection in Appendix

Table [2| shows that MU-SVM provides lower test errors compared to all the other baseline methods.
Specifically, compared to M-SVM, the performance gains using MU-SVM improve significantly
up to ~ 20 — 25%. For sufficiently large universum set size, such significant improvements using
MU-SVM depend mostly on the statistical characteristics of the universum data. To better understand
these statistical characteristics we adopt the technique of ‘histogram of projections’ (HOP) originally
introduced for binary classification in [40]]. Here, different from [40], for a given M-SVM / MU-SVM
model we project the training samples onto the decision space of their respective classes i.e. V(x;, y; =
k) we obtain the projection values as w;—xi - rll;alz( wlTxi. In addition we also project the universum

samples onto the decision spaces of all the classes i.e. V(x}); project Vk; w) x}, — rlnflz( w5

Finally we generate the class specific histograms of these projection values. In addition to the
histograms, we also generate a frequency plot of the predicted labels for the universum samples using
the models. Using this HOP visualization we analyze the effectiveness of the universum U3 for
GTSRB dataset (see Fig[3). As seen from Fig. [3] the optimal M-SVM model has high separability for
the training samples i.e. most of the training samples lie outside the margin borders (+1). In addition,
the universum samples U3 are widely spread about the margin-borders and biased towards the positive
side of the decision boundary of the sign ‘30" (Fig. [3[(@)); and hence predominantly gets classified
as sign ‘30’(Fig[3(d)). As seen from Figs[3 (e)-(g), applying the MU-SVM model preserves the
separability of the training samples and additionally reduces the spread of the universum samples.
Following proposition |1} such a model exhibits higher uncertainty on the universum samples’ class
membership, and uniformly assigns them over all the classes i.e. signs ‘30°,“70” and ‘80’ (see Fig.
h)). This shows that, the resulting MU-SVM model has higher contradiction (uncertainty) on the
universum samples and hence provides better generalization compared to M-SVM. This behavior
is consistently seen for the other datasets and universum choices (provided in the supplementary
material - Appendix [B.6).

Model Selection using Theorem [ Table [3] provides the average =+ std. dev of time taken (in
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Figure 3: GTSRB: Histograms of projections for training (in blue) and universum U3 (in red).
M-SVM (C' = 1): (a) sign ‘30°. (b) sign “70’. (c) sign ‘80’. (d) frequency plot of universum labels.
MU-SVM (A = 0) :(e) sign ‘30°. (f) sign “70’. (g) sign ‘80°. (h) frequency plot of universum labels.

Table 2: Mean (= standard deviation) of the test errors (in %) over 10 runs of the experimental setting
in Table[} No. of universum samples (m = 500).

DATASET SVMova SVMovo M-SVM U-SVMova U-SVMovo MU-SVM

GTSRB (UsING U3) 7.17+1.08 7.16£1.92 7.24+1.16 6.05+0.61 5.97+0.63 5.53 £0.62
ABCDETC (USING U4) 28.1+4.74 29.1 £4.16 27.5+3.34 26.1 £4.93 26.9+£4.51 22.1+3.24
ISOLET (usinGg U2) 3.72+0.6 3.88+0.44 3.6+0.31 3.56+0.55 3.88+0.63 2.83 £ 0.32

: . Table 3: Comparisons for model selection using 5 Fold CV
ds) f del select
rslf;:: or;ef*x)l lﬁrvrsno ga_f(s)(ledec(::;(,)nf(l)lrs 1r11(g) vs. Theorem[d] No. of universum samples (m = 500). Model

runs over the entire range of parame- P3rameters used C*/C = 77, A =10,0.01,0.05,0.1]

ters as well as the respective average

- 5-FoLb CV THEOREM [4|
test errors. In each experimental run
the data is partitioned as in Table [T} MUsvy LEST ERROR  TIME  TEST ERROR  TIME
We use a desktop with 12 core Intel (IN%)  (x10%sec) (IN%) (x10%sec)

U1 6.9+09 31+£05 69£09 08%0.2
74+£09 324+£09 71+£08 09+£03
U3 55+06 29+03 52+04 09+£0.1
Ul 2614+40 28+£0.1 26.1+37 1.1£0.1
U2 242+£31 28+01 244+32 13+£0.1
23.3+32 26=£02 241+3.8 09=£0.09
U4 221+£32 26+01 220+28 09+£0.1
U1 33£03 48=£09 33£03 21=£05
U2 28+03 31+£06 26+03 1.9+0.7

Xeon @3.5 Ghz and 32 GB RAM.
The bound-based model selection is
~ 2 — 4x faster than 5-fold CV and
provides similar test errors. The ad-
vantage offered by Theorem[]is even
more pronounced against l.o.0. For
instance, comparison with l.o.o for
GTSRB dataset showed ~ 100x im-
provement in speed using Theorem [
with similar test accuracies (see Appendix[B.5). Additional 1.0.0 results could not be reported owing
to its prohibitively slow speed.

GTSRB
=
[\%}

ISO| ABCD
LET| ETC
o
@*

5 Conclusions

This paper proposes a new formulation for multiclass SVM (MU-SVM). MU-SVM is shown to incur
lower sample-complexity for PAC learnability compared to M-SVM by deriving Natarajan dimension.
Further, the proposed MU-SVM embodies several useful mathematical properties amenable for: a)
its efficient implementation using existing M-SVM solvers, and b) deriving practical analytic bounds
that can perform model selection. We empirically show the effectiveness of the formulation as well
as the bound. Insights into the workings of MU-SVM using HOP visualization is also provided.

Acknowledgments

We thank the anonymous reviewers for their comments which helped improve the quality of the paper.

References
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.orgl

[2] V. Vapnik, Estimation of Dependences Based on Empirical Data (Information Science and Statistics).
Springer, Mar. 2006.

[3] F. Sinz, O. Chapelle, A. Agarwal, and B. Scholkopf, “An analysis of inference with the universum,” in
Advances in neural information processing systems 20. NY, USA: Curran, Sep. 2008, pp. 1369-1376.


http://www.deeplearningbook.org
http://www.deeplearningbook.org

(4]

[5

—

(6]

[7

—

[8

—

[9

—

(10]

(11]

[12]
(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

S. Dhar and V. Cherkassky, “Development and evaluation of cost-sensitive universum-svm,” Cybernetics,
IEEE Transactions on, vol. 45, no. 4, pp. 806-818, 2015.

S. Lu and L. Tong, “Weighted twin support vector machine with universum,” Advances in Computer
Science: an International Journal, vol. 3, no. 2, pp. 17-23, 2014.

Z. Qi, Y. Tian, and Y. Shi, “A nonparallel support vector machine for a classification problem with
universum learning,” Journal of Computational and Applied Mathematics, vol. 263, pp. 288-298, 2014.

C. Shen, P. Wang, F. Shen, and H. Wang, “Uboost: Boosting with the universum,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 4, pp. 825-832, 2012.

Z. Wang, Y. Zhu, W. Liu, Z. Chen, and D. Gao, “Multi-view learning with universum,” Knowledge-Based
Systems, vol. 70, pp. 376-391, 2014.

D. Zhang, J. Wang, F. Wang, and C. Zhang, “Semi-supervised classification with universum.” in SDM.
SIAM, 2008, pp. 323-333.

Y. Xu, M. Chen, Z. Yang, and G. Li, “v-twin support vector machine with universum data for classification,”
Applied Intelligence, vol. 44, no. 4, pp. 956-968, 2016.

C. Zhu, “Improved multi-kernel classification machine with nystrom approximation technique and univer-
sum data,” Neurocomputing, vol. 175, pp. 610-634, 2016.

F. Sinz, “A priori knowledge from non-examples,” Ph.D. dissertation, Mar 2007.

S. Chen and C. Zhang, “Selecting informative universum sample for semi-supervised learning.” in IJCAI,
2009, pp. 1016-1021.

X. Zhang and Y. LeCun, “Universum prescription: Regularization using unlabeled data.” in AAAI, 2017,
pp- 2907-2913.

K. Crammer and Y. Singer, “On the learnability and design of output codes for multiclass problems,”
Machine learning, vol. 47, no. 2-3, pp. 201-233, 2002.

J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik, “Inference with the universum,” in Proceedings
of the 23rd international conference on Machine learning. ACM, 2006, pp. 1009-1016.

V. Vapnik and O. Chapelle, “Bounds on error expectation for support vector machines,” Neural computation,
vol. 12, no. 9, pp. 2013-2036, 2000.

J. Weston, C. Watkins et al., “Support vector machines for multi-class pattern recognition.” in Esann,
vol. 99, 1999, pp. 219-224.

Y. Lei, U. Dogan, A. Binder, and M. Kloft, “Multi-class svms: From tighter data-dependent generalization
bounds to novel algorithms,” in Advances in Neural Information Processing Systems 28, 2015.

S. Szedmak, J. Shawe-Taylor et al., “Learning via linear operators: Maximum margin regression,” in In
Proceedings of 2001 IEEE International Conference on Data Mining, 2005.

Y. Lee, Y. Lin, and G. Wahba, “Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 67-81, 2004.

E. J. Bredensteiner and K. P. Bennett, “Multicategory classification by support vector machines,” in
Computational Optimization. Springer, 1999, pp. 53-79.

Y. Guermeur and E. Monfrini, “A quadratic loss multi-class svm for which a radius—margin bound applies,”
Informatica, vol. 22, no. 1, pp. 73-96, 2011.

C. Hsu and C. Lin, “A comparison of methods for multiclass support vector machines,” Neural Networks,
IEEE Transactions on, vol. 13, no. 2, pp. 415-425, 2002.

A. Daniely et al., “Multiclass learning approaches: A theoretical comparison with implications,” in NIPS,
2012.

S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.

K. Musayeva, F. Lauer, and Y. Guermeur, “Rademacher complexity and generalization performance of
multi-category margin classifiers,” Neurocomputing, vol. 342, pp. 6-15, 2019.

A. Daniely and S. Shalev-Shwartz, “Optimal learners for multiclass problems,” in Proceedings of The 27th
Conference on Learning Theory, ser. Proceedings of Machine Learning Research, vol. 35, 2014.

Y. Lei, U. Dogan, D. Zhou, and M. Kloft, “Generalization error bounds for extreme multi-class classifica-
tion,” CoRR, abs/1706.09814, 2017.

B. K. Natarajan, “On learning sets and functions,” Machine Learning, vol. 4, no. 1, pp. 67-97, 1989.

10



(32]

(33]

(34]
[35]

(36]

(37]

(38]

[39]

[40]

A. Daniely, S. Sabato, S. Ben-David, and S. Shalev-Shwartz, “Multiclass learnability and the erm principle,”
The Journal of Machine Learning Research, vol. 16, no. 1, pp. 2377-2404, 2015.

F. Lauer and Y. Guermeur, “MSVMpack: a multi-class support vector machine package,” Journal of
Machine Learning Research, vol. 12, pp. 2269-2272, 2011, http://www.loria.fr/~lauer/MSVMpackl

“libsvmtools,” https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/, accessed: 2019-05-17.

N. Japkowicz and M. Shah, Evaluating learning algorithms: a classification perspective. Cambridge
University Press, 2011.

A. Luntz, “On estimation of characters obtained in statistical procedure of recognition,” Technicheskaya
Kibernetica, 1969.

R. Bonidal, “Sélection de modele par chemin de régularisation pour les machines a vecteurs support a cofit
quadratique.” Ph.D. dissertation, June 2013.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition,” Neural Networks, pp. —, 2012.

M. Fanty and R. Cole, “Spoken letter recognition,” in Advances in Neural Information Processing Systems,
1991, pp. 220-226.

V. Cherkassky, S. Dhar, and W. Dai, “Practical conditions for effectiveness of the universum learning,”
Neural Networks, IEEE Transactions on, vol. 22, no. 8, pp. 1241-1255, 2011.

11


http://www.loria.fr/~lauer/MSVMpack
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

