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Abstract

Diffusion distance is a spectral method for measuring distance among nodes on
graph considering global data structure. In this work, we propose a spec-diff-net
for computing diffusion distance on graph based on approximate spectral decom-
position. The network is a differentiable deep architecture consisting of feature
extraction and diffusion distance modules for computing diffusion distance on
image by end-to-end training. We design low resolution kernel matching loss
and high resolution segment matching loss to enforce the network’s output to
be consistent with human-labeled image segments. To compute high-resolution
diffusion distance or segmentation mask, we design an up-sampling strategy by
feature-attentional interpolation which can be learned when training spec-diff-net.
With the learned diffusion distance, we propose a hierarchical image segmentation
method outperforming previous segmentation methods. Moreover, a weakly su-
pervised semantic segmentation network is designed using diffusion distance and
achieved promising results on PASCAL VOC 2012 segmentation dataset.

1 Introduction

Spectral analysis is a popular technique for diverse applications in computer vision and machine
learning, such as semi-supervised learning on graph [39], image segmentation [17, 31], image
matting [21], 3D shape analysis [36], etc. Spectral clustering and diffusion distance are two typical
spectral techniques that rely on affinity matrix over a graph. By decomposing the affinity matrix
using spectral decomposition, the corresponding eigenvectors encode the global structure of data, and
can be utilized for spectral clustering, diffusion distance computation, image segmentation, etc.

Computing affinity matrix on graph for identifying the relations of each node w.r.t. other nodes
is a fundamental task with potential applications in image segmentation [31], interactive image
labeling [11] , object semantic segmentation [18, 22], video recognition [35], etc. Traditionally, the
affinity matrix is either based on hand-crafted features [11, 31] or directly computed based on pairwise
feature similarity of graph nodes without considering global structure of underlying graph [35, 37].

In this work, we propose neural diffusion distance (NDD) on image inspired by diffusion distance [7,
8], which is a spectral method for computing pairwise distance considering global data structure by
spectral analysis. We propose to compute neural diffusion distance on image using a novel deep
architecture, dubbed as spec-diff-net. This network consists of a feature extraction module, and a
diffusion distance module including the computations of probabilistic transition matrix, spectral
decomposition and diffusion distance, in an end-to-end trainable system.

To enable computation of spectral decomposition in an efficient and differentiable way, we use
simultaneous iteration [12, 32] for approximating the eigen-decomposition of transition matrix. Since
the neural diffusion distance is computed on the feature grid with lower resolution than full image,
we propose a learnable up-sampling strategy in spec-diff-net using feature-attentional interpolation
for interpolating diffusion distance or segmentation map. The spec-diff-net is trained to constrain that
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its output neural diffusion distance should be consistent with human-labeled segmentation masks
using Berkeley segmentation dataset (BSD) [28].

We apply neural diffusion distance to two segmentation tasks, i.e., hierarchical image segmentation
and weakly supervised semantic segmentation. For the first task, we design a hierarchical clustering
algorithm based on NDD, achieving significantly higher segmentation accuracy. For the second
task, with the NDD as guidance, we propose an attention module using regional feature pooling for
weakly supervised semantic segmentation. It achieves state-of-the-art semantic segmentation results
on PASCAL VOC 2012 segmentation dataset [23] in weakly supervised setting.

Our contributions can be summarized as follows. First, a novel neural diffusion distance and its deep
architecture were proposed. Second, with neural diffusion distance, we designed a novel hierarchical
clustering method and a weakly supervised semantic segmentation method, achieving state-of-the-art
performance for image segmentation. Moreover, though we learn NDD on image, it can also be
potentially applied to general data graph beyond image, deserving investigation in the future.

2 Related works

Traditional spectral clustering [26] or diffusion distance [25] rely on hand-crafted features for
constructing affinity matrix. In [11], diffusion distance was computed based on color and textures.
It was taken as the spatial range for applying image editing. In [1], a learning-based method was
proposed for spectral clustering by defining a novel cost function differentiable to the affinity matrix.

Recently, spectral analysis was combined with deep learning. Spectral network [3] is a pioneering
network extending conventional CNN on grid to graph by defining convolution using spectral
decomposition of graph Laplacian. The affinity matrix and its spectral decomposition are pre-
computed. Diffusion net [24] is defined as an auto-encoder for manifold learning. The encoding
procedure maps high-dimensional dataset into a low dimensional embedding space approximating
diffusion maps, and the decoder maps from embedding space back to data space. Similarly, [2, 30]
learn a mapping from data to its eigen-space of graph Laplacian matrix, then cluster the data by
spectral clustering. The affinity matrix is separately learned by a siamese network in [30]. These
networks were applied to toy datasets for data clustering. The most similar work to ours is [17], in
which an end-to-end learned spectral clustering algorithm was proposed based on subspace alignment
cost which is differentiable to feature extractor using gradients of SVD / eigen-decomposition. This
deep spectral network was successfully applied to natural image segmentation.

Another category of related research is deep embedding methods that directly measure the distance /
similarity of pixels in the deep embedded feature space [4, 5, 6, 14, 19]. For example, [5, 6] learned
the embedding feature space and relied on metric learning to learn similarity of paired pixels for
video segmentation. Compared with them, our neural diffusion distance also works in embedded
feature space, but measures pixel distance by diffusion on graph in a concept of diffusion distance,
and distances are computed in the eigen-space of transition matrix (i.e., diffusion maps). This results
in more smooth and continuous diffusion distance maps for image, as will be shown in experiments.

Our proposed neural diffusion distance bridges diffusion distance and deep learning in an effective
way. Compared with traditional diffusion distance [7, 8, 25], NDD is based on an end-to-end
trainable deep architecture with learned features and hyper-parameters. Compared with (deep)
spectral clustering [17, 26], our segmentation method is built based on NDD considering global
image structure when measuring affinity of image pixels. As shown in experiments, NDD enables
state-of-the-art results for image segmentation and weakly supervised semantic segmentation.

3 Diffusion map and diffusion distance

We first briefly introduce the basic theory of diffusion distance [7, 8, 11] on a graph. Given a graph
G = (V,E) withN nodes V = {v1, v2, · · · , vN} and edge set E. Assume that fi is the feature vector
of node i (i = 1, 2, · · · , N ) . We first define similarity matrix W with each element wij as

wij = exp(−µ||fi − fj ||22), for j ∈ SN (i), (1)
where SN (i) is neighborhood set of i. Then the probabilistic transition matrix P can be derived by
normalizing each row of W :

P = D−1W, where D = diag(W~1). (2)
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Figure 1: The spec-diff-net consists of a feature extraction module, followed by diffusion distance
module, successively computing transition matrix, approximate spectral decomposition and diffusion
distance. It is trained using HR segment matching loss and LR kernel matching loss.

Each element Pij of P is the probability of a random walker walking from node i to node j, and the
(i, j)-th element of P t reflects the probability to move from a node i to j in t time steps. Diffusion
distanceDt(i, j) is defined as sum of squared difference between the probabilities that random walker
starting from two nodes i, j and end up at a same node in the graph at time t:

Dt(i, j) =
∑
k

(p(k, t|i)− p(k, t|j))2w̃(k), (3)

where p(k, t|i) is the probability that a random walk starting from node i and end-up at node k in t
time steps, and w̃(k) is the reciprocal of the local density at node k. The diffusion distance will be
small if there is a large number of short paths connecting these two points. Moreover, as t increases,
the diffusion distance between two nodes will decrease. The diffusion distance considers the global
data structure and is more robust to noises compared with geodesic distance [7].

Suppose that P has a set of N eigenvalues {λm}N−1
m=0 with decreasing order, and the corresponding

eigenvectors are Φ0, · · · ,ΦN−1. When the graph has non-zero connections between each pair of
nodes, the eigenvalues satisfy that 1 = λ0 ≥ λ1 ≥ · · · ≥ λN−1. Then the diffusion distance is

Dt(i, j) =

N−1∑
m=0

λ2t
m(Φm(i)− Φm(j))2, (4)

which is Euclidean distance in embedded space spanned by diffusion maps: λt0Φ0, · · · , λtN−1ΦN−1.

4 Learning neural diffusion distance on image

We next design a deep architecture, dubbed as spec-diff-net, to compute diffusion distance by
concatenating feature extraction and diffusion distance computation in a single pipeline.

4.1 Network architecture

As shown in Fig. 1, given an input image I , spec-diff-net successively processes the image by feature
extraction module and diffusion distance module consisting of computations of transition matrix,
eigen-decomposition and diffusion distance. Its output is called neural diffusion distance, which is
sent to training loss for end-to-end training.

Feature extraction module. For extracting features from image I , it consists of repetitions of
convolution, ReLU and max-pooling layers. We denote this module as f(I; Θ) with network
parameters Θ, then its output is features F ∈ Rw×h×d and can be reshaped to RN×d (N = w × h).

Diffusion distance module. Based on features F , this module first computes transition matrix
P = D−1W, W = exp(−µ||fi− fj ||2), and fi is feature of i. Then it computes eigen-decomposition
of P as discussed in sect. 4.2. Suppose Λ = {λ1, · · · , λN} and Φ are eigenvalues and matrix of
eigenvectors, then the diffusion distance between i and j on feature grid can be computed by Eq. (4).

4.2 Approximation of spectral decomposition

An essential component in spec-diff-net is spectral decomposition of transition matrix P ∈ RN×N .
The complexity of its spectral decomposition is commonly O(N3). For better adapting to larger N ,
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(a) Neural diffusion similarity maps w/o (middle) vs. with (right) FAI (b) More examples of neural diffusion similarity maps

Figure 2: Neural diffusion similarity maps of image pixels indicated by red dots. In (a), the middle
and right images are neural diffusion similarity w/o and with feature-attentional interpolation (FAI).

we design a differentiable approximation of spectral decomposition based on simultaneous iteration
algorithm [12, 32], which is an extension of power iteration to approximately compute a set of
Ne dominant eigenvalues and eigenvectors of a matrix. The algorithm initializes Ne dominant
eigenvectors by a matrix U0 in size of N ×Ne, then iteratively runs

Zn+1 = PUn, {Un+1, Rn+1} = QR(Zn+1), n = 0, · · · , T, (5)

where QR stands for QR-decomposition. It can be proved that, as n→∞, Un and diagonal values
of Rn respectively approximate the dominant Ne eigenvectors and corresponding eigenvalues.

As shown in Eq. (4), we aim to compute eigenvectors together with powered version of eigenvalues
λ2t of P . We therefore utilize simultaneous iteration algorithm to compute spectral decomposition
of P 2t, i.e., taking P 2t to substitute P in Eq. (5). The following proposition shows that this simple
revision (we call it accelerated simultaneous iteration) can improve the convergence rate.

Proposition 1. Assume eigenvalues of P satisfy λ0 > λ1 > · · · > λNe−1 > λNe , and all leading
principal sub-matrices of ΓTU0 (Γ is a matrix with columns Φ1, · · · ,ΦNe

) are non-singular, then
columns of Un converge to top Ne eigenvectors in linear rate of (maxk∈[1,Ne]{|λk|/|λk−1|})2t, and
diagonal values of Rn converge to corresponding top Ne eigenvalues λ2t

0 , · · · , λ2t
Ne−1 in same rate.

Please see supplementary material for its proof. By approximating spectral decomposition of
P 2t instead of P , convergence rate is improved from linear rate of maxk∈[1,Ne]{|λk|/|λk−1|} to
maxk∈[1,Ne]{(|λk|/|λk−1|)2t} if t > 0.5. Since computational complexity of QR decomposition
is O(NeN

2), then that of simultaneous iteration is O(TNeN
2). As discussed later, we only retain

top Ne � N (Ne = 50) eigenvalues, and truncate iterations T (T = 2), therefore, the complexity
O(TNeN

2) is smaller than original eigen-decomposition in O(N3) when N is large.

4.3 Up-sampling by feature-attentional interpolation

The diffusion distance is computed on the feature grid of F which is in lower-resolution compared
with input image, we therefore design an interpolation method to up-sample the diffusion distance
map (or segmentation map). The feature extractor in spec-diff-net can output multi-scale features
F 0, · · · , FL by its intermediate layers with feature grids of Ω0, · · · ,ΩL from high resolution to low
resolution. We interpolate a map yL from coarsest to finest level step by step. Suppose we already
have the map yl at level l, we interpolate it to the finer level l − 1 by feature-attentional interpolation:

yl−1
i =

∑
j∈Ω̃l∩Sat(i)

1

Zl−1
i

exp(−γ||f l−1
i − f l−1

j )||2)ylj , i ∈ Ωl−1, (6)

where Zl−1
i =

∑
j∈Ω̃l∩Sat(i)

exp(−γ||f l−1
i − f l−1

j )||2) is the normalization factor, Sat(i) is a region
neighboring pixel i, Ω̃l is the grid by up-scaling grid coordinates of Ωl to the finner scale coordinate
system of Ωl−1, j ∈ Ω̃l ∩ Sat(i) is a point in Ω̃l neighboring i at (l − 1)-th level, and f l−1

j is its
corresponding feature which is bi-linearly interpolated if it is not at integer coordinates. In this way,
each pixel of up-sampled map yl−1 is the weighted combination of values of its neighboring pixels
up-sampled from lower-resolution grid, and the weights are computed based on feature similarity. All
the computations are differentiable, and will be incorporated into spec-diff-net as discussed in sect. 5.
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5 Network training for learning neural diffusion distance

We train spec-diff-net on image by enforcing its output, i.e., neural diffusion distance, to be consistent
with human labeled segmentations in training set. Please see Fig. 2 for examples of learned neural
diffusion distance (similarity). We define two training losses to learn neural diffusion distance.

Low-resolution (LR) kernel matching loss. Given output neural diffusion distance matrix Dt

with element measuring diffusion distance of paired pixels, we first transform it to neural diffusion
similarity matrix KD = exp(−τDt). Then this loss enforces that KD measuring similarities of
paired pixels at low resolution feature grid should be consistent with Kgt defined by human-labeled
segmentation, i.e., (i, j)-element of Kgt is 1 if i, j are in a same segment, and zero otherwise. Then
we define the LR kernel matching loss as

Llr(KD,Kgt) = −〈KD/||KD||F ,Kgt/||Kgt||F 〉 . (7)

High-resolution (HR) segment matching loss. We define neural diffusion similarity map of pixel i
as i-th row of KD (denoted as Ki

D) measuring similarities of i with remaining pixels. We enforce
that neural diffusion similarity map of each pixel i is consistent with labeled segmentation mask at
image resolution. To reduce training overhead, we randomly select pixel set S including one sample
for each segment in human labeled segmentation, then high-resolution segment matching loss is

Lhr(KD, K̂gt) =
∑
i∈S
−
〈
K̂i

D/||K̂i
D||, K̂i

gt/||K̂i
gt||)

〉
, (8)

where K̂gt is the ground-truth human-labeled similarity matrix at image resolution, K̂i
D =

UpSample(Ki
D) and “UpSample” denotes the feature-attentional interpolation discussed in sect.

4.3. We use three-scales features with 1/2, 1/4, 1/8 factors of input image width and height for inter-
polation, and these features are outputs of conv1, conv2, conv5 of ResNet-101 [15]. KD,Kgt, K̂gt

are all with elements in [0, 1] and ones on their diagonals, therefore it is easy to verify that Llr and
Lhr are minimized when their two variables, i.e., similarity matrices, are exactly same.

Training details. The spec-diff-net is a deep architecture with differentiable building blocks.
We train it on BSD500 dataset [28] by auto-differentiation, and each image has multiple human
labeled boundaries. From these boundaries, each image can be segmented into regions. Compared
with semantic segmentation labels, the segmentation labels of BSD500 do not indicate semantic
categorization for pixels, and only indicate that pixels in a segment are grouped based on human’s
observation. To speed up the training process, we first pre-train our spec-diff-net using LR kernel
matching loss, then add the HR segment matching loss which is more computational expensive due
to the up-sampling by feature-attentional interpolation. We use ResNet-101 (excluding classification
layer) pre-trained on MS-COCO [33] as in [20] for feature extraction and train spec-diff-net in
160000 steps. Since components of spec-diff-net are differentiable, we learn parameters Θ of features
extractor, µ, t, γ in Eqs. (1,4,6), and τ in KD. We empirically found that eigenvalues of transition
matrix P decrease fast from maximal value of one, we therefore set Ne = 50 in approximation of
spectral decomposition for covering dominant spectrum. U0 in simultaneous iteration is initialized
by Ne columns of one-hot vectors with ones uniformly located on feature grid. The neighborhood
width when computing W in Eq. (1) is set to 17 on feature grid. It takes 0.2 seconds to output neural
diffusion distance for an image in size of 321× 481 on a GeForce GTX TITAN X GPU.

Illustration of diffusion distance. Figure 2 illustrates examples of learned diffusion similarity
maps with respect to the pixels on image indicated by red points. Figure 2(a) shows that feature-
attentional interpolation can up-sample neural diffusion similarity maps without aliasing artifacts.
We also tried a siamese network using Resnet-101 backbone as ours to learn pairwise similarity
in embedded feature space (denoted as “Embedding”), and it can be seen that our neural diffusion
distance is smooth and continuous, compared with "Embedding" method.

Effects of parameters in approximate spectral decomposition. Table 1 presents training (300
images in “train + val” of BSD500 dataset) and test (200 images in “test” of BSD500 dataset)
accuracies measured by cosine similarity of estimated neural diffusion similarity matrix KD with
target similarity matrix Kgt using different hyper-parameter T and initialized t in approximate
spectral decomposition. Note that simultaneous iteration serves as a differentiable computational
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Table 1: Effects of different parameters in approximate spectral decomposition.

(T, t) (1,5) (1,10) (2,5) (2,10) (3,5) (3,10)

Train+val 0.778 0.785 0.785 0.794 0.777 0.785
Test 0.701 0.709 0.738 0.741 0.735 0.748

Input Embedding Ours Input Embedding Ours

Figure 3: Visual comparison of similarity maps between deep embedding method and our neural
diffusion distance. Each map shows the similarities w.r.t. the central pixel in the image.

block in spec-diff-net which is end-to-end trained for minimizing final training loss. We observe that,
increasing initialization of t from 5 to 10 and iterations T from 1 to 2 all increase the training and test
accuracies, but saturate after further increasing T and initialized t. In the followings, we set T = 2
and initialize t = 10.

6 Application to hierarchical image segmentation

We first apply neural diffusion distance to image segmentation. We train spec-diff-net on BSD500
“train” and “val” sets, and test it on “test” set. Given a test image I , KD is its neural diffusion
similarity matrix measuring neural diffusion similarity between pairs of grid points. With KD, we
design a hierarchical clustering algorithm for hierarchical image segmentation. The basic idea is to
first identify a set of cluster centers, and then run the kernel k-means algorithm [9] with KD as the
kernel to produce a finest segmentation of image. Then we gradually aggregate these segments to
derive a hierarchy of image segmentations. To initialize the cluster centers, we iteratively add a new
cluster center with its diffusion similarity map best covering the residual coverage map 1−Ucov with
Ucov ∈ RN×1 initialized as zeros. Specifically, we iteratively add cluster center by:

i∗ = argmaxi{Ki
D(1− Ucov)}, C = C ∪ {i∗}, Ucov = min{Ucov +Ki∗

D , 1}, (9)

where Ki
D is the i-th row of KD, which is just the diffusion similarity map of i, and C is the set

of cluster centers. The iteration stops until the residual coverage map is smaller than a threshold

(b) Input (c) NCut-DF (d) DeepNCut (e) Ours-LR (f) Ours-HR (g) Human

(a) One example of our hierarchical image segmentation results

Figure 4: Comparison of image segmentation results. (a) illustrates hierarchical image segmentation
with decreasing number of segments. (b) compares segmentation results by different methods.
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Table 2: Comparison of different segmentation methods.

Methods NCut [31] NCut-DF DeepNCut [17] Ours-LR Ours-HR

MAX 0.53 0.56 0.70 0.78 0.80
AVR 0.44 0.48 0.60 0.68 0.69

(0.02) in average on pixels. After segmenting image I to a set of segments with these initial centers
by kernel k-means, we iteratively aggregate these segments by merging one pair of segments with
largest average feature similarity in each step until achieving a single cluster for the whole image. In
this way, we generate a hierarchy of segmentations with decreasing number of segments.

In Fig. 4, we illustrate an example of hierarchical image segmentation (Fig. 4(a)), and comparisons
with other segmentation methods, including normalized cut [31] using deep feature (NCut-DF),
deep normalized clustering (DeepNCut) [17], our methods w/o (Ours-LR) and with (Ours-HR)
feature-attentional interpolation of segmentation masks. The quantitative comparisons are shown
in Tab. 2. Accuracy is measured by average (AVG) and best (MAX) covering metric under optimal
image scale criterion [28] as in [17]. Our algorithm achieves significantly better accuracies on “test”
set of BSD500. For example, DeepNCut is a state-of-the-art deep spectral segmentation method
based on differentiable eigen-decomposition, and our method achieves nearly 0.1 higher in accuracy.

7 Application to weakly supervised semantic segmentation

We also apply neural diffusion distance to weakly supervised semantic segmentation, i.e., learning to
segment given an image set with only image-level classification labels. The basic idea is as follows.
Since neural diffusion distance determines the similarities of each pixel w.r.t. other pixels on feature
grid, which can be taken as spatial guidance for localizing where is the object of interest in a weakly
supervised setting. Overall, we combine segmentation and classification in a single network, and
train the network only using class labels. This is achieved by designing an attention module guided
by diffusion distance to generate “pseudo” segmentation maps, which are utilized for computing
global image features by weighted average pooling using weights based on “pseudo” segmentation.
The global image features are taken as input of training loss to predict image class labels.

…
…

Spec-diff-net

ResNet-101

Attention by regional feature pooling

PC-WAP

Airplane?

Bike?

TV?

RFP
…

PRED

CLAS

Multi-instance Loss

Binary Classification Loss

…
…

…

Image features maps Global image featureScores for different categories

Figure 5: The architecture of our weakly supervised segmentation network.

As shown in Fig. 5, given image I , we compute neural diffusion distance and similarity matrix
KD ∈ RN×N by spec-diff-net. We also use Resnet-101 to extract features F ∈ RN×d from I . Then
we design an attention module using regional feature pooling (RFP) to generate pseudo segmentation
probability maps P ∈ RN×c (c is number of classes). With pseudo segmentation maps, we compute
per-category global features F gl by per-category weighted average pooling (PC-WAP) of F . Then
features of F gl are sent to training loss to predict image labels. We next introduce these components.

Regional feature pooling (RFP). It performs average feature pooling over region determined by
diffusion distance for each pixel. We first generate binary spatial regional mask for each pixel on
feature grid, simply implemented in parallel for all pixels by thresholding diffusion similarity matrix
KD by M = δ[KD > µ] ∈ RN×N (µ is initialized as 0.5, δ[·] is binary with value of 1 if its variable
is true). Then we average-pool features in regional mask of each pixel, which can be implemented by
FM = diag((M~1)−1)MF , FM ∈ RN×d. Therefore, for each pixel, this operation pools the features
for each pixel over the region of pixels around it with neural diffusion similarities larger than µ.
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Pseudo segmentation prediction (PRED). With the pooled features by RFP, we predict the per-pixel
segmentation probabilities by classifier {H ∈ Rd×c, b ∈ Rc×1}, i.e.,

P sg = Softmaxcl(FMH +~1bT ), (10)

where P sg ∈ RN×c, Softmaxcl(·) is softmax across different categories. Therefore, the i-th column
of P sg indicates the probability map of pixels belonging to i-th category.

Per-category weighted average pooling (PC-WAP). Based on the “pseudo” segmentation proba-
bility maps in P sg , we compute global image feature for i-th category by weighted average pooling:

F gl
i = FT [Softmaxsp(P sg

i ; θi)], for i = 1, · · · , c, (11)

where P sg
i ∈ RN×1 is the i-th column of P sg, Softmaxsp(P sg

i , θi) ∈ RN×1 is softmax operator
conducted spatially over feature grid with temperature θi. Different from global average pooling
(GAP) in [38], we compute global image feature by weighted average pooling with weights based on
“pseudo” segmentation probability maps in P sg , indicating which pixels are relevant to each class.

Training loss. In weakly supervised setting, we only have image-level class labels, we therefore
design training loss only with the guidance of class labels. Given the globally pooled features using
PC-WAP, we predict the probabilities of image belonging to different categories (i.e., “CLAS” block
in Fig. 5) by P cl = {HT

i F
gl
i + bi}ci=1, where Hi and bi (i = 1, · · · , c) are respectively one column

and element of H, b in “PRED” block. Then training loss is defined by binary cross-entropy (BCE):

Lws = BCE(P cl, ycl) + BCE(P sg
max, y

cl), (12)

where P sg
max ∈ Rc is a vector with elements as maximal values of columns of P sg over feature grid

for different categories, therefore the second term is multiple instance loss. Minimizing Lws forces
the classifier of H, b to predict correct image-level labels and pixel-level segmentation implicitly.

Table 3: Comparison of different weakly supervised semantic segmentation methods.

Methods MIL [29] Saliency [27] RegGrow [16] RandWalk [34] AISI [10] Ours

Val 42.0 55.7 59.0 59.5 63.6 65.8
Test - 56.7 - - 64.5 66.3

Table 4: Comparison with baseline semantic segmentation methods.

Methods GAP [38] Embedding Ours (w/o RFP) Ours (w/o sharing) Ours

Val 45.2 54.7 44.6 64.7 65.8

We train weakly supervised segmentation network (spec-diff-net is fixed and pre-trained on 500
images of BSD500) on VOC 2012 segmentation training set with augmented data [13] using only
image labels. After training the network, we derive pseudo segmentation maps for training images,
which are taken as segmentation labels for training another ResNet-101 for learning to segment. We
train the nets on 321× 321 patches with fixed batch normalization as pre-trained ResNet-101 due to
limited batch size. We apply trained segmentation net on “val” and “test” of VOC 2012 segmentation
dataset. The network is applied to a test image in multiple scales (scaling factors of 0.7, 0.85, 1) with
cropped overlapping 321 × 321 patches, and these segmentation probabilities are averaged as the
final prediction.

Table 3 compares segmentation accuracies in mIoU with other weakly supervised segmentation
methods: multiple instance learning (MIL) [29], saliency-based method (Saliency) [27], region
growing method (RegGrow) [16], random walking method (RandWalk) [34], and salient instances-
based method (AISI) [10]. Note that RandWalk method [34] is based on random walking for label
prorogation given human labeled scribbles. AISI [10] depends on the instance-level salient object
detector trained on MS COCO dataset. We achieve 65.8% and 66.3% on “val” and “test” sets, which
are higher than state-of-the-art AISI method also using ResNet-101 and same training set. Figure 6
shows examples of segmentation results (more results are in supplementary material).

Ablation study: As shown in Tab. 4, without regional feature pooling, i.e., ours (w/o RFP), the
accuracy on “val” set decreases from 65.8 to 44.6. This shows that RFP is essential because it
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(b) Inputs (c) GAP (d) Ours (w/o RFP) (e) Ours (f) GT 

(a) Examples of “pseudo” segmentation probability maps by our methods w/o (middle) and with (right) regional feature pooling 

Figure 6: Examples of semantic segmentation results by different methods.

enforces that pixels with high neural diffusion similarities will have similar features, then they should
be grouped and have similar segmentation probabilities. Furthermore, without sharing the classifiers
for classification in training loss and segmentation in “PRED” module marginally decreases the result.
When sharing classifiers, by optimizing the training loss, it jointly enforces that the classifier can
predict global image class label and locations of objects of interest using the same classifier. In
Tab. 4, we also report result using same weakly supervised segmentation architecture as ours but with
similarity learned by embedding method, and the accuracy is significantly lower that our method
based on diffusion distance.

8 Conclusion and future work

In this work, we proposed a novel deep architecture for computing neural diffusion distance on
image based on approximate spectral decomposition and feature-attentional interpolation. It achieved
promising results for hierarchical image segmentation and weakly supervised semantic segmentation.
We are interested to further improve the neural diffusion distance, e.g., better handling transparent
object boundaries, and apply it to more applications, e.g., image colorization, editing, labeling, etc.
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