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Abstract

Stagewise training strategy is widely used for learning neural networks, which runs
a stochastic algorithm (e.g., SGD) starting with a relatively large step size (aka
learning rate) and geometrically decreasing the step size after a number of iterations.
It has been observed that the stagewise SGD has much faster convergence than
the vanilla SGD with a polynomially decaying step size in terms of both training
error and testing error. But how to explain this phenomenon has been largely
ignored by existing studies. This paper provides some theoretical evidence for
explaining this faster convergence. In particular, we consider a stagewise training
strategy for minimizing empirical risk that satisfies the Polyak-Łojasiewicz (PL)
condition, which has been observed/proved for neural networks and also holds for
a broad family of convex functions. For convex loss functions and two classes
of “nice-behaved" non-convex objectives that are close to a convex function, we
establish faster convergence of stagewise training than the vanilla SGD under the
PL condition on both training error and testing error. Experiments on stagewise
learning of deep neural networks exhibits that it satisfies one type of non-convexity
assumption and therefore can be explained by our theory.

1 Introduction
In this paper, we consider learning a predictive model by using a stochastic algorithm to minimize
the expected risk via solving the following empirical risk problem:

min
w∈Ω

FS(w) :=
1

n

n∑
i=1

f(w, zi), (1)

where f(w, z) is a smooth loss function of the model w on the data z, Ω is a closed convex set,
and S = {z1, . . . , zn} denotes a set of n observed data points that are sampled from an underlying
distribution Pz with support on Z .

There are tremendous studies devoted to solving this empirical risk minimization (ERM) problem
in machine learning and related fields. Among all existing algorithms, stochastic gradient descent
(SGD) is probably the simplest and attracts most attention, which takes the following update:

wt+1 = ΠΩ[wt − ηt∇f(wt, zit)], (2)
where it ∈ {1, . . . , n} is randomly sampled, ΠΩ is the projection operator, and ηt is the step size
that is usually decreasing to 0. Convergence theories have been extensively studied for SGD with a
polynomially decaying step size (e.g., 1/t, 1/

√
t) for an objective that satisfies various assumptions,

e.g., convexity [25], non-convexity [12], strong convexity [15], local strong convexity [27], Polyak-
Łojasiewicz inequality [18], Kurdyka-Łojasiewicz inequality [30], etc. The list of papers about SGD
is so long that can not be exhausted here.
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The success of deep learning is mostly driven by stochastic algorithms as simple as SGD running on
big data sets [20, 17]. However, an interesting phenomenon that can be observed in practice for deep
learning is that no one is actually using the vanilla SGD with a polynomially decaying step size that is
well studied in theory for non-convex optimization [18, 12, 9]. Instead, a common trick used to speed
up the convergence of SGD is by using a stagewise step size strategy, i.e., starting from a relatively
large step size and decreasing it geometrically after a number of iterations [20, 17]. Not only the
convergence of training error is accelerated but also is the convergence of testing error. However,
there is still a lack of theory for explaining this phenomenon. Although a stagewise step size strategy
has been considered in some studies [16, 30, 18, 19, 7], none of them explains the benefit of stagewise
training used in practice compared with standard SGD with a decreasing step size, especially on the
convergence of testing error for non-convex problems.

Our Contributions. This paper aims to provide some theoretical evidence to show that an appropriate
stagewise training algorithm can have faster convergence than SGD with a polynomially deccaying
step size under some condition. In particular, we analyze a stagewise training algorithm under the
Polyak-Łojasiewicz condition [26]:

2µ(FS(w)− min
w∈Ω

FS(w)) ≤ ‖∇FS(w)‖2,
where µ is a constant. This property has been recently observed/proved for learning deep and shallow
neural networks [13, 29, 24, 31, 5], and it also holds for a broad family of convex functions [30].
We will focus on the scenario that µ is a small positive value and n is large, which corresponds to
ill-conditioned big data problems and is indeed the case for many problems [13, 5]. We compare
with two popular vanilla SGD variants with Θ(1/t) or Θ(1/

√
t) step size scheme for both the convex

loss and two classes of non-convex objectives that are close to a convex function. We show that the
considered stagewise training algorithm has a better dependence on µ than the vanilla SGD with
Θ(1/t) step size scheme for both the training error (under the same number of iterations) and the
testing error (under the same number of data and a less number of iterations), while keeping the same
dependence on the number of data for the testing error bound. Additionally, it has faster convergence
and a smaller testing error bound than the vanilla SGD with Θ(1/

√
t) step size scheme for big data.

To be fair for comparison between two algorithms, we adopt a unified approach that considers
both the optimization error and the generalization error, which together with algorithm-independent
optimal empirical risk constitute the testing error. In addition, we use the same tool for analysis of
the generalization error - a key component in the testing error. The techniques for us to prove the
convergence of optimization error and testing error are simple and standard. It is of great interest to
us that simple analysis of the widely used learning strategy can possibly explain its greater success in
practice than using the standard SGD method with a polynomially decaying step size.

Besides theoretical contributions, the considered algorithm also has additional features that come with
theoretical guarantee for the considered non-convex problems and help improve the generalization
performance, including allowing for explicit algorithmic regularization at each stage, using an
averaged solution for restarting, and returning the last stagewise solution as the final solution. It is
also notable that the widely used stagewise SGD is covered by the proposed framework. We refer to
the considered algorithm as stagewise regularized training algorithm or START.

Other closely related works. It is notable that many papers have proposed and analyzed determinis-
tic/stochastic optimization algorithms under the PL condition, e.g., [18, 23, 28, 2]. This list could be
long if we consider its equivalent condition in the convex case. However, none of them exhibits the
benefit of stagewise learning strategy used in practice. One may also notice that linear convergence
for the optimization error was proved for a stochastic variance reduction gradient method [28]. Never-
theless, its uniform stability bound remains unclear for making a fair comparison with the considered
algorithms in this paper, and variance reduction method is not widely used for deep learning.

We also notice that some recent studies [21, 32, 5] have used other techniques (e.g., data-dependent
bound, average stability, point-wise stability) to analyze the generalization error of a stochastic
algorithm. Nevertheless, we believe similar techniques can be also used for analyzing stagewise
learning algorithm, which is beyond the scope of this paper. The generalization error results in [32, 5]
under PL condition are not directly comparable to ours because they have stronger assumptions (e.g.,
the global minimizer is unique for deriving uniform stability [5], the condition number is small [32]).
Finally, it was brought to our attention when a preliminary version of this paper is done that an
independent work [11] observes a similar advantage of stagewise SGD over SGD with a polynomially

2



decaying step size lying at the better dependence on the condition number. However, they only
analyze the strongly convex quadratic case and the training error of ERM.

2 Preliminaries and Notations
Let A denote a randomized algorithm, which returns a randomized solution wS = A(S) based on
the given data set S . Denote by EA the expectation over the randomness in the algorithm and by ES
expectation over the randomness in the data set. When it is clear from the context, we will omit the
subscript S and A in the expectation notations. Let w∗S ∈ arg minw∈Ω FS(w) denote an empirical
risk minimizer, and F (w) = Ez[f(w, z)] denote the true risk of w (also called testing error in this
paper). We use ‖ · ‖ to denote the Euclidean norm, and use [n] = {1, . . . , n}.
In order to analyze the testing error convergence of a random solution, we use the following decom-
position of testing error.

EA,S [F (wS)] = ES [FS(w∗S)] + ES EA[FS(wS)− FS(w∗S)]︸ ︷︷ ︸
εopt

+ EA,S [F (wS)− FS(wS)]︸ ︷︷ ︸
εgen

,

where εopt measures the optimization error, i.e., the difference between empirical risk (or called
training error) of the returned solution wS and the optimal value of the empirical risk, and εgen
measures the generalization error, i.e., the difference between the true risk of the returned solution
and the empirical risk of the returned solution. The difference EA,S [F (wS)]− ES [FS(w∗S)] is an
upper bound of the so-called excess risk bound in the literature, which is defined as EA,S [F (wS)]−
minw∈Ω F (w). It is notable that the first term ES [FS(w∗S)] in the above bound is independent
of the choice of randomized algorithms. Hence, in order to compare the performance of different
randomized algorithms, we can focus on analyzing εopt and εgen. For analyzing the generalization
error, we will leverage the uniform stability tool [4]. A randomized algorithm A is called ε-uniformly
stable if for all data sets S,S ′ ∈ Zn that differs at most one example the following holds:

εstab := sup
z

EA[f(A(S), z)− f(A(S ′), z)] ≤ ε.
A well-known result is that ifA is ε-uniformly stable, then its generalization error is bounded by ε [4],
i.e., ifA is ε-uniformly stable, we have εgen ≤ ε. In light of the above discussion, in order to compare
the convergence of testing error of different randomized algorithms, it suffices to analyze their
convergence in terms of optimization error and their uniform stability. We would like to emphasize
that the PL condition is not used in our generalization error analysis by uniform stability, which
makes our comparison to the results in [14] fair.

A function f(w) is L-smooth if it is differentiable and its gradient is L-Lipchitz continuous, i.e.,
‖∇f(w) − ∇f(u)‖ ≤ L‖w − u‖,∀w,u ∈ Ω. A function f(w) is G-Lipchitz continuous if
‖∇f(w)‖ ≤ G,∀w ∈ Ω. We summarize the used assumptions below with some positive L, σ, G, µ
and ε0.
Assumption 1. Assume that

(i) f(w, z) is L-smooth in terms of w ∈ Ω for every z ∈ Z .

(ii) f(w, z) is finite-valued and G-Lipchitz continuous in terms of w ∈ Ω for every z ∈ Z .

(iii) there exists σ such that Ei[‖∇f(w, z)−∇FS(w)‖2] ≤ σ2 for w ∈ Ω.

(iv) FS(w) satisfies the PL condition for any S of size n, i.e., there exists µ

2µ(FS(w)− FS(w∗S)) ≤ ‖∇FS(w)‖2,∀w ∈ Ω.

(v) For an initial solution w0 ∈ Ω, there exists ε0 such that FS(w0)− FS(w∗S) ≤ ε0.
Remark 1: The second assumption is imposed for the analysis of uniform stability of a randomized
algorithm. W.o.l.g we assume |f(w, z)| ≤ 1,∀w ∈ Ω. The third assumption is for the purpose of
analyzing optimization error. It is notable that σ2 ≤ 4G2. For simplicity, we assume the PL condition
of FS(w) holds uniformly over S. It is known that the PL condition is much weaker than strong
convexity. If FS is strongly convex, µ corresponds to the strong convexity parameter. In this paper,
we are particularly interested in the case when µ is small, i.e. the condition number L/µ is large.

Remark 2: It is worth mentioning that we do not assume the PL condition holds in the whole space
Rd. Hence, our analysis presented below can capture some cases that the PL condition only holds in
a local space Ω that contains a global minimum. For example, the recent papers by [10, 29, 1] shows
that the global minimum of learning a two-layer and deep overparameterized neural networks resides
in a ball centered around a random initial solution and the PL condition holds in the ball.
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3 Review: SGD under PL Condition
In this section, we review the training error convergence and generalization error of SGD with a
decreasing step size for functions satisfying the PL condition in order to derive its testing error bound.
We will focus on SGD using the step size Θ(1/t) and briefly mention the results corresponding to
Θ(1/

√
t) at the end of this section. We would like to emphasize the results presented in this section

are mainly from existing works [18, 14]. The optimization error and the uniform stability of SGD
have been studied in these two papers separately. Since we are not aware of any studies that piece
them together, it is of our interest to summarize these results here for comparing with our new results
established later in this paper. Let us first consider the optimization error convergence, which has
been analyzed in [18] and is summarized below.
Theorem 1. [18] Suppose Ω = Rd. Under Assumption 1 (i), (iv) and Ei[‖∇f(w, zi)‖2] ≤ G2, by
setting ηt = 2t+1

2µ(t+1)2 in the update of SGD (2), we have

E[FS(wT )− FS(w∗S)] ≤ LG2

2Tµ2
, (3)

and by setting ηt = η, we have E[FS(wT )−FS(w∗S)] ≤ (1− 2ηµ)T (FS(w0)−FS(w∗S)) + ηLG2

4µ .

Remark 3: In order to have an ε optimization error, one can set T = LG2

2µ2ε in the decreasing step

size setting. In the constant step size setting, one can set η = 2µε
LG2 and T = LG2

4µ2ε log(2ε0/ε), where
ε0 ≥ FS(w0) − FS(w∗S) is the initial optimization error bound. [18] also mentioned a stagewise
step size strategy based on the second result above. By starting with η1 = ε0µ

LG2 and running for

t1 = LG2 log 4
2µ2ε0

iterations, and restarting the second stage with η2 = η1/2 and t2 = 2t1, then after
K = log(ε0/ε) stages, we have optimization error less than ε, and the total iteration complexity is
O(LG

2 log 4
µ2ε ). We can see that the analysis of [18] cannot explain why stagewise optimization strategy

brings any improvement compared with SGD with a decreasing step size of O(1/t). No matter which
step size strategy is used among the ones discussed above, the total iteration complexity is O( L

µ2ε ).
It is also interesting to know that the above convergence result does not require the convexity of
f(w, z). On the other hand, it is unclear how to directly analyze SGD with a polynomially decaying
step size for a convex loss to obtain a better convergence rate than (3).

The generalization error bound by uniform stability for both convex and non-convex losses have been
analyzed in [14]. We just need to plug the step size of SGD in Theorem 1 into their results (Theorem
3.7 and Theorem 3.8) to prove the uniform stability. For the sake of space, we summarize the uniform
stability results in Theorem 11 in the supplement. Combining the optimization error and uniform
stability, we obtain the convergence of testing error of SGD for smooth loss functions under the PL
condition. By optimizing the value of T in the bounds, we obtain the following testing error bound
dependent on n only.
Theorem 2. Suppose Assumption 1 holds. If f(·, z) is convex for any z ∈ Z , with step size
ηt = 2t+1

2µ(t+1)2 and T = nLG2

4(L+2G2)µ iterations SGD returns a solution wT satisfying

EA,S [F (wT )] ≤ ES [FS(w∗S)] +
2(L+ 2G2)

nµ
+

(L+ 2G2) log(T + 1)

nµ
.

If f(·, z) is non-convex for any z ∈ Z , with step size ηt = 2t+1
2µ(t+1)2 and T =

max{
√

(n−1)LG√
8µ3/4

,

√
(n−1)LG

2µeĜ
} iterations SGD returns a solution wT satisfying

EA,S [F (wT )] ≤ ES [FS(w∗S)] + 2 min

{ √
2L1/2G3/2√
(n− 1)µ5/4

,

√
Le2ĜG√
n− 1µ

}
.

Remark 4: If the loss is convex, the excess risk bound is in the order of O(L log(nL/µ)
nµ ) by running

SGD with T = O(nL/µ) iterations. It notable that an O(1/n) excess risk bound is called the fast
rate in the literature. If the loss is non-convex and 2G/

√
µ > e2Ĝ (an interesting case 1), the excess

risk bound is in the order of O(
√
L√
nµ

) by running SGD with T = O(
√
nL/µ) iterations. When µ is

1We can scale up L such that e2Ĝ is a small constant, which only scales up the bound by a constant factor.
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Algorithm 1 START Algorithm: START(FS ,w0, γ,K)
1: Input: w0, γ and K
2: for k = 1, . . . ,K do
3: Let F γwk−1

(w) = FS(w) + 1
2γ ‖w −wk−1‖2

4: wk = SGD(F γwk−1
,wk−1, ηk, Tk)

5: end for
6: Return: wK

Algorithm 2 SGD(F γw1
,w1, η, T )

1: for t = 1, . . . , T do
2: Sample a random data zit ∈ S
3: wt+1 = minw∈Ω∇f(wt, zit)

>w +
1
2η‖w −wt‖2 + 1

2γ ‖w −w1‖2
4: end for
5: Output: ŵT = O(w1, . . . ,wT+1)

very small, the convergence of testing error is very slow. In addition, the number of iterations is also
scaled by 1/µ for achieving a minimal excess risk bound.

Remark 5: Another possible choice of decreasing step size is O(1/
√
t), which yields an O(1/

√
T )

convergence rate for FS(ŵT ) − FS(w∗S) in the convex case [25] or for ‖∇FS(wt)‖2 in the non-
convex case with a randomly sampled t [12]. In the latter case, it also implies a worse convergence
rate of O(1/(µ

√
T )) for the optimization error FS(wt) −minw FS(w) under the PL condition 2.

Regarding the uniform stability, the step size of O(1/
√
t) will also yield a worse growth rate in terms

of T [14]. For example, if the loss function is convex, the generalization error by uniform stability
scales as O(

√
T/n) and hence the testing error bound is in the order of O(1/

√
nµ), which is worse

than the above testing error bound Õ(1/(nµ)) for the big data setting µ ≥ Ω(1/n). Hence, below
we will focus on the comparison with the theoretical results in Theorem 2.

4 START for a Convex Function
First, let us present the algorithm that we intend to analyze in Algorithm 1. At the k-th stage, a
regularized funciton F γwk−1

(w) is constructed that consists of the original objective FS(w) and a
quadratic regularizer 1

2γ ‖w −wk−1‖2. The reference point wk−1 is a returned solution from the
previous stage, which is also used for an initial solution for the current stage. Adding the strongly
convex regularizer at each stage is not essential but could be helpful for reducing the generalization
error and is also important for one class of non-convex loss considered in next section. For each
regularized problem, SGD with a constant step size is employed for a number of iterations with an
appropriate returned solution. We will reveal the value of step size, the number of iterations and the
returned solution for each class of problems separately. Note that the widely used stagewise SGD
falls into the framework of START when γ =∞ and O = (w1, . . . ,wT+1) = wT+1.

In this section, we will analyze START algorithm for a convex function under the PL condition. We
would like to point out that similar algorithms have been proposed and analyzed in [16, 30] for convex
problems. They focus on analyzing the convergence of optimization error for convex problems under
a quadratic growth condition or more general local error bound condition. In the following, we will
show that the PL condition implies a quadratic growth condition. Hence, their algorithms can be used
for optimizing FS as well enjoying a similar convergence rate in terms of optimization error. However,
there is still slight difference between the analyzed algorithm from their considered algorithms. In
particular, the regularization term 1

2γ ‖w −wk−1‖2 is absent in [16], which corresponds to γ =∞
in our case. However, adding a small regularization (with not too large γ) can possibly help reduce
the generalization error. In addition, their initial step size is scaled by 1/µ. The initial step size of
our algorithm depends on the quality of initial solution that seems more natural and practical. A
similar regularization at each stage is also used in [30]. But their algorithm will suffer from a large
generalization error, which is due to the key difference between START and their algorithm (ASSG-r).
In particular, they use a geometrically decreasing the parameter γk starting from a relatively large
value in the order of O(1/(µε)) with a total iteration number T = O(1/(µε)). According to our
analysis of generalization error (see Theorem 4), their algorithm has a generalization error in the
order of O(T/n) in contrast to log T/n of our algorithm.

Below, we summarize the convergence of optimization error in Theorem 3 and generalization error in
Theorem 4. We need the following lemma for the optimization error analysis.

2Note that here µ is not required for running the algorithm.
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Lemma 1. If FS(w) satisfies the PL condition, then for any w ∈ Ω we have

‖w −w∗S‖2 ≤
1

2µ
(FS(w)− FS(w∗S)), (4)

where w∗S is the closest optimal solution to w.
Remark 6: The above result does not require the convexity of FS . For a proof, please refer to [3, 18].
Indeed, this error bound condition instead of the PL condition is enough to derive the results in
Section 4 and Section 5.

Below, we let wk
t denote the solution computed during the k-th stage at the t-th iteration.

Theorem 3. (Optimization Error) Suppose Assumption 1 holds, and f(w, z) is a convex function of
w. Then by setting γ ≥ 1.5/µ and Tk = 9σ2

2µεkα
, ηk = εkα

3σ2 , O(wk
1 , . . . ,w

k
Tk+1) =

∑Tk
t=1 w

k
t+1/Tk ,

where εk = ε0/2
k, α ≤ min(1, 3σ2

ε0L
), after K = log(ε0/ε) stages with a total iteration complexity of

O(L/(µε)) we have E[FS(wK)− FS(w∗S)] ≤ ε.
Remark 7: Compared to the result in Theorem 1, the convergence rate of START is faster by a factor
of O(1/µ). It is also notable that γ can be as large as∞ in the convex case.

By showing supz EA[f(wK , z)− f(w′K , z)] ≤ ε, we can show the generalization error is bounded
by ε, where wK is learned on a data set S and w′K is learned a different data set S ′ that only differs
from S at most one example. Our analysis is closely following the route in [14]. The difference is
that we have to consider the difference on the reference points wk−1 of two copies of our algorithm
on two data sets S,S ′.
Theorem 4. (Uniform Stability) After K stages, START satisfies uniform stability with

εstab ≤

{
2γG2 ∑K

k=1(1−( γ
ηk+γ )Tk )

n ≤ 2G2 ∑K
k=1 ηkTk
n if γ <∞

2G2 ∑K
k=1 ηkTk
n else

.

Put them Together. Finally, we have the following testing error bound of wK returned by START.

Theorem 5. (Testing Error) After K = log(ε0/ε) stages with a total number of iterations T = 18σ2

αµε .
The testing error of wK is bounded by

EA,S [F (wK)] ≤ E[FS(w∗S)] + ε+
3G2 log(ε0/ε)

nµ
.

Remark 8: Let ε = 1
nµ , the excess risk bound becomes O(log(nµ)/(nµ)) and the total iteration

complexity is T = O(nL). This improves the convergence of testing error of SGD stated in
Theorem 2 for the convex case when µ� 1, which needs T = O(nL/µ) iterations and has a testing
error bound of O(L log(nL/µ)/(nµ)).

5 START for Non-Convex Functions
Next, we will establish faster convergence of START than SGD for “nice-behaved" non-convex
functions. In particular, we will consider two classes of non-convex functions that are are close to
a convex function, namely one-point weakly quasi-convex and weakly convex functions. We first
introduce the definitions of these functions followed by some discussions.

Definition 1 (One-point Weakly Quasi-Convex). A non-convex function F is called one-point θ-
weakly quasi-convex for θ > 0 if there exists a global minimum w∗ such that

∇F (w)>(w −w∗) ≥ θ(F (w)− F (w∗)),∀w ∈ Ω. (5)

Definition 2 (Weakly Convex). A non-convex function F is ρ-weakly convex for ρ > 0 if F (w) +
ρ
2‖w‖

2 is convex.
It is interesting to connect one-point weakly quasi-convexity to one-point strong convexity that has
been considered for non-convex optimization, especially optimizing neural networks [24, 19].

Definition 3 (One-point Strongly Convex). A non-convex function F is one-point strongly convex
with respect to a global minimum w∗ if there exists µ1 > 0 such that

∇F (w)>(w −w∗) ≥ µ1‖w −w∗‖2.
The following lemma shows that one-point strong convexity implies both the PL condition and the
one-point weakly quasi-convexity.
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Lemma 2. Suppose F is L-smooth and one-point strongly convex w.r.t w∗ with µ1 > 0 and
∇F (w∗) = 0, then

min{‖∇F (w)‖2,∇F (w)>(w −w∗)} ≥ 2µ1

L
(F (w)− F (w∗))

For “nice-behaved" one-point weakly quasi-convex function FS(w) that satisfies the PL condition,
we are interested in the case that θ is a constant close to or larger than 1. Note that a convex
function has θ = 1 and a strongly convex function has θ > 1. For the case of µ � 1 in the PL
condition, this indicates that∇F (w)>(w−w∗) is larger than ‖∇F (w)‖2, which further implies that
‖w−w∗‖ ≥ ‖∇F (w)‖. Intuitively, this inequality (illustrated in Figure 2 in appendix) also connects
itself to the flat minimum that has been observed in deep learning experiments [6]. For “nice-behaved"
weakly convex function, we are interested in the case that ρ ≤ µ/4 is close to zero. Weakly convex
functions with a small ρ have been considered in the literature of non-convex optimization [22]. In
both cases, we will establish faster convergence of optimization error and testing error of START.

Convergence of Optimization Error. The approach of optimization error analysis for the considered
non-convex functions is similar to that of convex functions. We also first analyze the convergence
of SGD for each stage and then extend it to K stages for START. Due to limit of space, we only
summarize the final convergence results here for the two classes of non-convex functions separately.

Theorem 6. Suppose FS(w) is one-point θ-weakly quasi-convex w.r.t w∗S and (4) holds for the
same w∗S . Then by setting γ ≥ 1.5/(θµ), ηk = 2εkθ

3G2 , Tk = 9G2

4µεkθ2
and O(wk

1 , . . . ,w
k
Tk+1) = wk

τ

where τ ∈ {1, . . . , Tk} is randomly sampled, after K = log(εk/ε) stages we have E[FS(wK) −
FS(w∗S)] ≤ ε. The total iteration complexity is O( 1

θ2µε ).

Theorem 7. Suppose Assumption 1 holds, and FS(w) is ρ-weakly convex with ρ ≤ µ/4. Then by
setting γ = 4/µ ≤ 1/ρ, ηk = εkα

4σ2 ≤ 1/L, Tk = 4σ2

µεkα
and O(wk

1 , . . . ,w
k
Tk+1) =

∑Tk
t=1 w

k
t+1/Tk,

where α ≤ min(1, 2σ2

ε0L
), and after K = log(ε0/ε) stages we have E[FS(wK)− FS(w∗S)] ≤ ε. The

total iteration complexity is O( 1
αµε ).

Remark 9: Several differences are noticeable between the two classes of non-convex functions:
(i) γ in the weakly quasi-convex case can be as large as∞, in contrast it is required to be smaller
than 1/ρ in the weakly convex case; (ii) the returned solution by SGD at the end of each stage is a
randomly selected solution in the weakly quasi-convex case and is an averaged solution in the weakly
convex case. Finally, we note that the total iteration complexity for both cases is O(1/µε) under
θ ≈ 1 and ρ ≤ O(µ), which is better than O(1/µ2ε) of SGD as in Theorem 1.

Generalization Error. The analysis of generalization error follows similarly to the non-convex case
in [14]. Please note that the quasi- and weak-convexity are not directly leveraged in the generalization
error analysis. The only thing that matters here is the value of step size. Hence, we present a unified
result for the two cases below.

Theorem 8. Let SK−1 =
∑K−1
k=1 Tk = O( 1

µεᾱ ) and ηK ≤ c/(µTK), where ᾱ = θ2, c = 1.5/θ in
the one-point weakly quasi-convex case and ᾱ = α, c = 1 in the weakly convex case. Then we have

εstab ≤
SK−1

n
+

1 + µ/(Lc)

n− 1
(2G2c/µ)1/(1+Lc/µ)T

Lc/µ
Lc/µ+1

k

By putting the optimization error and generalization error together, we have the following testing
error bound.

Theorem 9. Under the same assumptions as in Theorem 6 or 7 and µ � 1. After K = log(ε0/ε)
stages with a total number of iterations T = O( 1

ᾱµε ), the testing error bound of wK is

EA,S [F (wK)] ≤ E[FS(w∗S)] + ε+O(
1

nᾱµε
).

Remark 10: We are mostly interested in the case when θ is constant close to or larger than 1. By
setting ε = Θ(1/

√
nᾱµ), we have the excess risk bounded by O( 1√

nᾱµ
) under the total iteration

complexity T = O(
√
n/(ᾱµ)). This improves the testing error bound of SGD stated in Theorem 2

for the non-convex case when µ ≤ ᾱ, which needs T = O(
√
n/µ) iterations and suffers a testing

error bound of O(1/(
√
nµ)).
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Figure 1: From left to right: training, generalization and testing error, and verifying assumptions for
stagewise learning of ResNets.

Finally, it is worth noting that our analysis is applicable to an approximate optimal solution w∗S as
long as the inequality (4) and (5) hold for that particular w∗S . This fact is helpful for us to verify the
assumptions in numerical experiments.

6 Numerical Experiments
We focus experiments on non-convex deep learning, and include in the supplement some experimental
results of START for convex functions that satisfy the PL condition. The numerical experiments
mainly serve two purposes: (i) verifying that using different algorithmic choices in practice (e.g,
regularization, averaged solution) is consistent with the provided theory; (ii) verifying the assumptions
made for non-convex objectives in our analysis in order to support our theory.

We compare stagewise learning with different algorithmic choices against SGD using two polynomi-
ally decaying step sizes (i.e., O(1/t) and O(1/

√
t)). For stagewise learning, we consider the widely

used version that corresponds to START with γ =∞ and the returned solution at each stage being
the last solution, which is denoted as stagewise SGD (V1). We also implement other two variants of
START that solves a regularized function at each stage (corresponding to γ <∞) and uses the last
solution or the averaged solution for the returned solution at each stage. We refer to these variants as
stagewise SGD (V2) and (V3), respectively.

We conduct experiments on two datasets CIFAR-10, -100 using different neural network structures,
including residual nets and convolutional neural nets without skip connection. Two residual nets
namely ResNet20 and ResNet56 [17] are used for CIFAR-10 and CIFAR-100. For each network
structure, we use two types of activation functions, namely RELU and ELU (α = 1) [8]. ELU is
smooth that is consistent with our assumption. Although RELU is non-smooth, we would like to show
that the provided theory can also explain the good performance of stagewise SGD. For stagewise
SGD on CIFAR datasets, we use a similar stagewise step size strategy as in [17], i.e., the step size
is decreased by 10 times at 40k, 60k iterations. For all algorithms, we select the best initial step
size from 10−3 ∼ 103 and the best regularization parameter 1/γ of stagewise SGD (V2, V3) from
0.0001 ∼ 0.1 by cross-validation based on performance on a validation data. Due to limit of space,
we only report the results for using ResNet56 and ELU and no weight decay, and results for other
settings are included in the supplement.

The training error, generalization error and testing error are shown in Figure 1. We can see that SGD
with a decreasing step size converges slowly, especially SGD with a step size proportional to 1/t. It is
because that the initial step size of SGD (c/t) is selected as a small value less than 1. We observe that
using a large step size cannot lead to convergence. In terms of different algorithmic choices of START,
we can see that using an explicit regularization as in V2, V3 can help reduce the generalization error
that is consistent with theory, but also slows down the training a little. Using an averaged solution as
the returned solution in V3 can further reduce the generalization error but also further slow downs the
training. Overall, stagwise SGD (V2) achieves the best tradeoff in training error convergence and
generalization error, which leads to the best testing error.

Finally, we verify the assumptions about the non-convexity made in Section 5. To this end, on a
selected wt we compute the value of θ, i.e., the ratio of∇FS(wt)

>(wt−w∗S) to FS(wt)−FS(w∗S)
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as in (5), and the value of µ, i.e., the ratio of FS(wt)− FS(w∗S) to 2‖wt −w∗S‖2 as in (4). For w∗S ,
we use the solution found by stagewise SGD (V1) after a large number of iterations (200k), which
gives a small objective value close to zero. We select 200 points during the process of training by
stagewise SGD (V1) across all stages, and plot the curves for the values of θ and µ averaged over 5
trials in the most right panel of Figure 1. We can clearly see that our assumptions about µ� 1 and
one-point weakly quasi-convexity with θ > 1 are satisfied. Hence, the provided theory for stagewise
learning is applicable. We also compute the minimum eigen-value of the Hessian on several selected
solutions by the Lanczos method to verify the assumption about weak convexity. The Hessian-vector
product is approximated by the finite-difference using gradients. The negative value of minimum
eigen-value (i.e., ρ) is marked as � in the same figure of θ, µ. We can see that the assumption about
ρ ≤ O(µ) seems not to hold for learning deep neural networks.

7 Conclusion

In this paper, we have analyzed the convergence of training error and testing error of a stagewise
regularized training algorithm for solving empirical risk minimization under the Polyak-Łojasiewicz
condition. We give the first theory to justify why the widely used stagewise step size scheme gives
faster convergence than a polynomially decreasing step size. Our numerical experiments on deep
learning verify that one class of non-convexity assumption holds and hence the provided theory of
faster convergence applies. In particular, our generalization error bound analysis is based on the
nice-behaved properties of non-convex functions by using uniform stability, which is designed for
general non-convex problems. In the future, we consider to improve the generalization error bound
for the specific conditions.
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