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Abstract

Two commonly arising computational tasks in Bayesian learning are Optimization
(Maximum A Posteriori estimation) and Sampling (from the posterior distribu-
tion). In the convex case these two problems are efficiently reducible to each
other. Recent work [Ma et al., 2019] shows that in the non-convex case, sampling
can sometimes be provably faster. We present a simpler and stronger separation.
We then compare sampling and optimization in more detail and show that they
are provably incomparable: there are families of continuous functions for which
optimization is easy but sampling is NP-hard, and vice versa. Further, we show
function families that exhibit a sharp phase transition in the computational com-
plexity of sampling, as one varies the natural temperature parameter. Our results
draw on a connection to analogous separations in the discrete setting which are
well-studied.

1 Introduction

Given a a compact set X ⊆ Rd and function f : X → R, one can define two natural problems:

Optimize(f,X , ε) : Find x ∈ X such that f(x) ≤ f(x′) + ε for all x′ ∈ X .

Sample(f,X , η) : Sample from a distribution on X that is η-close to µ?(x) ∝ exp(−f(x)).

These problems arise naturally in machine learning settings. When f is the negative log likelihood
function of a posterior distribution, the optimization problem corresponds to the Maximum A
Posteriori (MAP) estimate, whereas the Sampling problem gives us a sample from the posterior. In
this work we are interested in the computational complexities of these tasks for specific families of
functions.

When f and X are both convex, these two problems have a deep connection (see e.g. Lovasz and
Vempala [2006]) and are efficiently reducible to each other in a very general setting. There has been
considerable interest in both these problems in the non-convex setting. Given that in practice, we
are often able to practically optimize certain non-convex loss functions, it would be appealing to
extend this equivalence beyond the convex case. If sampling could be reduced to optimization for our
function of interest (e.g. differentiable Lipschitz functions), that might allow us to design sampling
algorithms for the function that are usually efficient in practice. Ma et al. [2019] recently showed
that in the case when f is not necessarily convex (and X = Rd), these problems are not equivalent.
They exhibit a family of continuous, differentiable functions for which approximate sampling can be
done efficiently, but where approximate optimization requires exponential time (in an oracle model à
la Nemirovsky and Yudin [1983]). In this work, we study the relationship of these two problems in
more detail.
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To aid the discussion, it will be convenient to consider a more general sampling problem where we
want to sample with probability proportional to exp(−λf(x)) for a parameter λ > 0. Such a scaling
has no effect on the optimization problem, up to scaling of ε. However changing λ can signifcantly
change the distribution for the sampling problem. In statistical physics literature, this parameter is
the inverse temperature. For families F that are invariant to multiplication by a positive scalar (such
as the family of convex functions), this λ parameter has no impact on the complexity of sampling
from the family. We will however be looking at families of functions that are controlled in some
way (e.g. bounded, Lipschitz, or Smooth) and do not enjoy such an invariance to scale. E.g. in some
Bayesian settings, each sample may give us a 1-smooth negative log likelihood function, so we may
want to consider the family Fsmooth of 1-smooth functions. Given n i.i.d. samples, the posterior
log likelihood would be −nf , where f = 1

n

∑
i fi is in Fsmooth. The parameter λ then corresponds

naturally to the number of samples n.

This phenomenon of sampling being easier than optimization is primarily a “high temperature” or
“low signal” phenomenon. As λ approaches infinity, the distribution exp(−λf) approaches a point
mass at the minimizer of f . This connection goes back to at least Kirkpatrick et al. [1983] and one
can easily derive a quantitative finite-λ version of this statement for many function families. Ma et al.
[2019] reconcile this with their separation by pointing out that their sampling algorithm becomes
inefficient as λ increases.

We first show a more elementary and stronger separation. We give a simple family of continuous
Lipschitz functions which are efficiently samplable but hard even to approximately optimize. This
improves on the separation in Ma et al. [2019] since our sampler is exact (modulo representation
issues), and much simpler. The hardness of optimization here is in the oracle model, where the
complexity is measured in terms of number of point evaluations of the function or its gradients.

While these oracle model separations rule out black-box optimization, they leave open the possibility
of efficient algorithms that access the function in a different way. We next show that this hardness can
be strengthened to an NP-hardness for an efficiently computable f . This allows for the implementation
of any oracle for f or its derivatives. Thus assuming the Exponential Time Hypothesis [Impagliazzo
and Paturi, 2001], our result implies the oracle model lower bounds. Additionally, it rules out efficient
non-blackbox algorithms that could examine the implementation of f beyond point evaluations.
We leave open the question of whether other oracle lower bounds [Nemirovsky and Yudin, 1983,
Nesterov, 2014, Bubeck, 2015, Hazan, 2016] in optimization can be strengthened to NP-hardness
results.

We next look at the large λ case. As discussed above, for large enough λ sampling must be hard if
optimization is. Is hardness of optimization the only obstruction to efficient sampling? We answer
this question in the negative. We exhibit a family of functions for which optimization is easy, but
where sampling is NP-hard for large enough λ. We draw on extensive work on the discrete analogs
of these questions, where f is simple (e.g. linear) but X is a discrete set.

Our upper bound on optimization for this family can be strengthened to work under weaker models of
access to the function, where we only have blackbox access to the function. In other words, there are
functions that can be optimized via gradient descent for which sampling is NP-hard. Conceptually,
this separation is a result of the fact that finding one minimizer suffices for optimization whereas
sampling intuitively requires finding all minima.

Both the separation result of Ma et al. [2019], and our small-λ result have the property that the
sampling algorithm’s complexity increases exponentially in poly(λ). Thus as we increase λ, the
problem gradually becomes harder. Is there always a smooth transition in the complexity of sampling?

Our final result gives a surprising negative answer. We exhibit a family of easy-to-optimize functions
for which there is a sharp threshold: there is a λc such that for λ < λc, sampling can be done
efficiently, whereas for λ > λc, sampling becomes NP-hard. In the process, this demonstrates that
for some families of functions, efficient sampling algorithms can be very structure-dependent, and do
not fall into the usual Langevin-dynamics, or rejection-sampling categories.

Our results show that once we go beyond the convex setting, the problems of sampling and optimiza-
tion exhibit a rich set of computational behaviors. The connection to the discrete case should help
further understand the complexities of these problems.
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The rest of the paper is organized as follows. We start with some preliminaries in Section 2. We give a
simple separation between optimization and sampling in Section 3 and derive a computational version
of this separation. Section 4 relates the discrete sampling/optimization problems on the hypercube to
their continuous counterparts, and uses this connection to derive NP-hardness results for sampling for
function families where optimization is easy. In Section 5, we prove the sharp threshold for λ. We
describe additional related work in Section 6. Some missing proofs and strengthenings of our results
are deferred to the supplementary material.

2 Preliminaries

We consider real-valued functions f : Rd → R. We will be restricting ourselves to functions that are
continuous and bounded. We say a function f is L-Lipschitz if f(x)− f(x′) ≤ L · ‖x− x′‖ for all
x,x′ ∈ Rd. In this work, ‖ · ‖ will denote the Euclidean norm.

We will look at specific families of functions which have compact representations, and ask questions
about efficiency of optimization and sampling. We will think of d as a parameter, and look at function
families such that at any function in the family can be computed in poly(d) time and space.

We will look at constrained optimization in this work and our constraint set X will be a Euclidean
ball. Our hardness results however do not stem from the constraint set, and nearly all of our results
can be extended easily to the unconstrained case.

Given λ > 0 and a function f , we let Dλ,Xf denote the distribution on X with Pr[x] ∝ exp(−λf(x)).
When X is obvious from context, we will usually omit it and writeDλf . We will Zλ,Xf for the partition
function

∫
X exp(−λf(x))dx.

We will also look at real-valued functions h : Hd → R, where Hd = {−1, 1}d is the d-dimensional
hypercube. We will often think of a y ∈ Hd as being contained in Rd. Analagous to the Euclidean
space case, we define Dλ,Hdh as the distribution over the hypercube with Pr[y] ∝ exp(−λh(y)), and
define Zλ,Hdh to be

∑
y∈Hd exp(−λh(y)).

We say that an algorithm η-samples from Dλf if it samples from a distribution that is η-close to Dλf in
statistical distance. We will also use the Wasserstein distance between distributions on Rd, defined as
W(P,Q)

eq
= infπ E(x,x′)∼π[‖x−x′‖2], where the inf is taken over all couplings π between P and Q.

We remark that our results are not sensitive to the choice of distance between distributions and extend
in a straightforward way to other distances. As is common in literature on sampling from continuous
distributions, we will for the most part assume that we can sample from a real-valued distribution such
as a Gaussian and ignore bit-precision issues. Statements such as our NP-hardness results usually
require finite precision arithmetic. This issue is discussed at length by Tosh and Dasgupta [2019] and
following them, we will discuss using Wasserstein distance in those settings. An ε-optimizer of f is a
point x ∈ X such that f(x) ≤ f(x′) + ε for any x′ ∈ X .

In the supplementary material, we quantify the folklore results showing that sampling for high λ
implies approximate optimization. Quantitatively, they say that for L-Lipschitz functions over a
ball of radius R, sampling implies ε-approximate optimization if λ ≥ Ω(d ln LR

ε /ε). Similarly, for
β-smooth functions over a ball of radius R, λ ≥ Ω(d ln βR

ε /ε) suffices to get ε-close to an optimum.

3 A Simple separation

We consider the case when X = Bd(0, 1) is the unit norm Euclidean ball in d dimensions. We
let FLip be the family of all 1-lipschitz functions from X to R. We show that for any f ∈ FLip,
exact sampling can be done in time exp(O(λ)). On the other hand, for any algorithm, there is an
f ∈ FLip that forces the algorithm to use Ω(λ/ε)d queries to f to get an ε-approximate optimal
solution. Thus, e.g., for constant λ, sampling can be done in poly(d) time, whereas optimization
requires time exponential in the dimension. Moreover, for any λ ≤ d, there is an exponential gap
between the complexities of these two problems. Our lower bound proof is similar to the analagous
claim in Ma et al. [2019], but has better parameters due to the simpler setting. Our upper bound proof
is signifantly simpler and gives an exact sampler.
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Theorem 1 (Fast Sampling). There is an algorithm that for any f ∈ FLip, outputs a sample from
Dλf and makes an expected O(exp(2λ)) oracle calls to computing f .

Proof. The algorithm is based on rejection sampling. We first compute f(0) and let M = f(0)− 1.
By the Lipschitzness assumption, f(x) ∈ [M,M + 2] for all x in the unit ball. The algorithm now
repeatedly samples a random point x from the unit ball. With probability exp(λ(M − f(x))), this
point is accepted and we output it. Otherwise we continue.

Since exp(λ(M − f(x))) ∈ [exp(−2λ), 1], this is a rejection sampling algorithm, and it outputs an
exact sample from Dλf . Each step accepts with probability at least exp(−λ). Thus the algorithm
terminates in an expected O(exp(2λ)) many steps, each of which requires one evaluation of f .

Remark 1. The above algorithm assumes access to an oracle to sample from Bd(0, 1) to arbitrary
precision. This can be replaced by sampling from a grid of finite precision points in the ball. This
creates two sources of error. Firstly, the function is not constant in the grid cell. This error is easily
bounded since f is Lipschitz. Secondly, some grid cells may cross the boundary of Bd(0, 1). This is
a probability d2−b event when sampling a grid point with b bits of precision. Taking these errors into
account gives us a sample within Wasserstein distance at most O((d+ λ)2−b).
Remark 2. The above is a Las Vegas algorithm. One can similarly derive a Monte Carlo algorithm by
aborting and outputting a random x after exp(2λ) log 1

η steps.

Remark 3. Under the assumptions in Ma et al. [2019] (β-smooth f ,∇(0) = 0, κβ-strong convexity
outside a ball of radius R), a direct reduction to our setting will be lossy and a rejection-sampling-
based approach will not be efficient. The Langevin dynamics based sampler in that work is more
efficient under their assumptions.

Theorem 2 (No Fast Optimization). For any algorithm A that queries f or any of its derivatives at
less than (1/4ε)d points, there is an f ∈ FLip for which A fails to output an ε-optimizer of f except
with negligible probability.

Proof. Consider the function fx that is zero everywhere, except for a small ball of radius 2ε around
x, where it is f(y) = ‖y − x‖ − 2ε. i.e. the function1 is fx(y) = min(0, ‖y − x‖ − 2ε). This
function has optimum −2ε. Let g be the zero function.

Let A be an algorithm (possibly randomized) that queries f or its derivatives at T ≤ (1/4ε)d points.
Consider running A on a function f chosen randomly as:

f =

{
g with probability 1

2
fx for a x chosen u.a.r. from B(0, 1) otherwise.

Until A has queried a point in B(x, 2ε), the behavior of the algorithm on fx and g is identical,
since the functions and all their derivatives agree outside this ball. Since an ε-approximation must
distinguish these two cases, forA to succeed, it must query this ball. The probability thatA queries in
this ball in any given step is at most vol(B(x,2ε))

vol(B(0,1)) = (2ε)d. As A makes only (1/4ε)d queries in total,
the expected number of queries A makes to the ball B(x, 2ε) is at most 2−d. Thus with probability
at least 1− 1

2d
, the algorithm fails to distinguish g from fx, and hence cannot succeed.

3.1 Making the Separation Computational

The oracle-hardness of Theorem 2 stems from possibly “hiding” a minimizer x of f . The computa-
tional version of this hardness result will instead possibly hide an appropriate encoding of a satisfying
assignment to a 3SAT formula.

Theorem 3 (No Fast Optimization: Computational). There is a constant ε > 0 such that it is NP-hard
to ε-optimize an efficiently computable Lipschitz function over the unit ball.

Proof. Let φ : {0, 1}d → Bd(0, 1) be a map such that φ is efficiently computable, ‖φ(y)−φ(y′)‖ ≥
4ε and such that given x ∈ Bd(φ(y), 2ε), we can efficiently recover y. For a small enough absolute

1As defined, this function is Lipschitz but not smooth. It can be easily modified to a 2-Lipschitz, 2/ε-smooth
function by replacing its linear behavior in the ball by an appropriately Huberized version.
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Figure 1: (Left) An example of a function h for d = 2, with the 2-d hypercube shown in gray and
the values of h denoted by blue points. (Right) The corresponding function f that results from the
transformation, for M = 4, R = 2.

constant ε, such maps can be easily constructed using error correcting codes and we defer details to
supplementary material.

We start with an an instance I of 3SAT on d variables, and define f as follows. Given a point x, we
first find a y ∈ {0, 1}d, if any, such that x ∈ Bd(φ(y), 2ε). If no such y exists, f(x) is set to 0. If
such a y exists, we interpret it as an assignment to the variables in the 3SAT instance I and set f(x)
to be min(0, ‖φ(y)− x‖ − 2ε) if y is a satisfying assignment to instance I , and to 0 otherwise.

It is clear from definition that f as defined is efficiently computable. Moreover, the minimum attained
value for f is −2ε if I is satsifiable, and 0 otherwise. Since distinguishing between these two cases is
NP-hard, so is ε-optimization of f .

We note that assuming the exponential time hypothesis, this implies the exp(Ω(d)) oracle complexity
lower bound of Theorem 2.

4 Relating Discrete and Continuous Settings

For any function h on the hypercube, we can construct a function on f on Rd such that optimization
of f and h are reducible to each other, and similarly sampling from f and h are reducible to each
other. This would allow us to use separation results for the hypercube case to establish analagous
separation results for the continuous case.

Theorem 4. Let h : Hd → R have range [0, d]. Fix M ≥ 2d,R ≥ 2
√
d. Then there is a funtion

f : Bd(0, R)→ R satisfying the following properties:

Efficiency: Given x ∈ Bd(0, R) and oracle access to h, f can computed in polynomial time.

Lipschitzness: f is continuous and L-Lipschitz for L = 2M .

Sampler Equivalence: Fix λ ≥ 4d ln 24R
M . Given access to an η-sampler for Dλ,Hdh , there is an

efficient η′-sampler for Dλf , for η′ = η + exp(−Ω(d)). Conversely, given access to an
η-sampler for Dλf , there is an efficient η′-sampler for Dλ,Hdh for η′ = η + exp(−Ω(d)).

Proof. The function f is fairly natural: it takes a large value M ≥ 2d at most points, except in small
balls around the hypercube vertices. At each hypercube vertex, f is equal to the h value at the vertex,
and we interpolate linearly in a small ball. See Figure 2 for an illustration.

Formally, let round : R→ {−1, 1} be the function that takes the value 1 for x ≥ 0 and−1 otherwise,
and let round : Rd → Hd be its natural vectorized form that applies the function coordinate-wise.
Let g(x) = ‖x− round(x)‖ denote the Euclidean distance from x to round(x). Let s = 2M . The
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function f is defined as follows:

f(x) =

{
h(round(x)) + s · g(x) if g(x) ≤ M−h(round(x))

s

M if g(x) ≥ M−h(round(x))
s

It is easy to verify that f is continuous. Moreover, since M ≥ 2d, and h has range [0, d], the value
M−h(round(x))

s is in the range [ 14 ,
1
2 ]. It follows that f takes the value M outside balls of radius 1

2

around the hypercube vertices, and is strictly smaller than M in balls for radius 1
4 .

Since round(x) is easy to compute, this implies that f can be computed in polynomial time, using a
single oracle call to h. Moreover it is immediate from the definition that the function f has Lipschitz
constant s.

Note that f(y) = h(y) for y ∈ Hd and f(x) ≥ h(round(x)) for all x ∈ Bd(0, R). This implies
that the minimum value of f is the same as the minimum value of h, and indeed any (ε-)minimizer y
of h also (ε-)minimizes f . Conversely, let x be an ε-minimizer of f . Since h(round(x)) ≤ f(x), it
follows that round(x) is an ε-minimizer of h.

Finally we prove the equivalence of approximate sampling. Towards that goal, we define an intermedi-
ate distribution on Bd(0, R). Let D̂λf be the distribution Dλf conditioned on being in ∪y∈HdBd(y, 14 ).

We first argue that η-samplability of D̂λf is equivalent to η-samplability of Dλ,Hdh . Suppose that X is

a sample from D̂λf . Then for any y? ∈ Hd,

Pr[X ∈ Bd(y?,
1

4
)] =

∫
Bd(y?,

1
4 )

exp(−λf(x)) dx∑
y∈Hd

∫
Bd(y,

1
4 )

exp(−λf(x)) dx

=
exp(−λh(y?)) ·

∫
Bd(y?,

1
4 )

exp(−sλg(x)) dx∑
y∈Hd exp(−λh(y)) ·

∫
Bd(y,

1
4 )

exp(−sλg(x)) dx

=
exp(−λh(y?))∑
y∈Hd exp(−λh(y))

Thus round(X) is a sample from Dλ,Hdh . Conversely, the same calculation implies that given a
sample Y from Dλ,Hdh , and a vector Z ∈ Bd(0, 14 ) sampled proportional to exp(−sλ‖z‖), Y + Z is

a sample from D̂λf . Noting that Z is a sample from a efficiently sample-able log-concave distribution
completes the equivalence.

We next argue that Dλf and D̂λf are exp(−Ω(d))-close as distributions. Since D̂λf is a conditioning of
Dλf , this is equivalent to showing that nearly all of the mass of Dλf lies in ∪y∈HdBd(y, 14 ). We write

Zfλ =

∫
Bd(0,R)

exp(−λf(x)) dx

≥
∑
y∈Hd

∫
Bd(y,

1
4 )

exp(−λf(x)) dx

=
∑
y∈Hd

exp(−λh(y)) ·
∫
Bd(y,

1
4 )

exp(−sλg(x)) dx

(1)

Let Ẑfλ denote this last expression. We will argue that Zfλ ≤ (1 + exp(−Ω(d)))Ẑfλ . We write Zfλ as∫
Bd(0,R)

exp(−λf(x)) dx ≤
∑
y∈Hd

∫
Bd(y,

1
2 )

exp(−λf(x)) dx +

∫
Bd(0,R)

exp(−λM) dx

≤
∑
y∈Hd

exp(−λh(y)) ·
∫
Bd(y,

1
2 )

exp(−sλg(x)) dx︸ ︷︷ ︸
(A)

+

∫
Bd(0,R)

exp(−λM) dx︸ ︷︷ ︸
(B)
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A simple calculation, formalized as Lemma 16 in supplementary material shows that the integral∫
Bd(y,

1
2 )

exp(−sλg(x)) dx is within (1 + 2 exp(−d)) of
∫
Bd(y,

1
4 )

exp(−sλg(x)) dx for sλ > 16d.

This implies that the term (A) above is at most (1 + 2 exp(−d))Ẑfλ . To bound the second term (B)
above, we argue that a ball of radius 1

8 around any single vertex y of the hypercube contributes
significantly more than than the term (B). Indeed∫
Bd(y,

1
8 )

exp(−λf(x)) dx ≥
∫
Bd(y,

1
8 )

exp(−λ(h(y) +
s

8
)) dx

≥ exp(−λ(d+
M

4
)) · (1

8
)d
∫
Bd(0,1)

dx ≥ exp(−λ(
3M

4
)) · (1

8
)d
∫
Bd(0,1)

dx

Whereas, ∫
Bd(0,R)

exp(−λM) dx = exp(−λM) ·Rd ·
∫
Bd(0,1)

dx.

Thus (B)/Ẑfλ is at most exp(−λM/4+d ln 8R). Under the assumptions on λ, it follows that (B) is at

most exp(−Ω(d)) times Ẑhλ . In other words, we have shown that Zfλ is at most (1+exp(−Ω(d)))Ẑhλ .

Remark 4. The equivalence of sampling extends immediately to Wasserstein distance. Indeed given
a sampler for Dλ,Hdh , one gets a Wasserstein sampler for D̂λf by sampling from a simple isotropic log-
concave distribution. A Wasserstein sampler for a ball suffices for this. SinceW(P,Q) is bounded
by the diameter times the statistical distance, this gives a η + exp(−Ω(d)) Wasserstein sampler for
Dλf . Similarly, a η Wasserstein sampler for Dλf conditioned on the support of D̂λf immediately yields
an O(η)-sampler for Dλ,Hdh . Moreover, it is easy to check that this conditioning is on a constant
probability event as long as η < 1

16 .

4.1 Optimization can be Easier than Sampling

Given the reduction from the previous section, there are many options for a starting discrete problem
to apply the reduction. We will start from one of the most celebrated NP-hard problems. The
NP-hardness of Hamiltonian Cycle dates back to Karp [1972].
Theorem 5 (Hardness of HAMCYCLE). Given a constant-degree graph G = (V,E), it is NP-hard
to distinguish the following two cases.

YES Case: G has a Hamiltonian Cycle.

NO Case: G has no Hamiltonian Cycle.

We can then amplify the gap between the number of long cycles in the two cases.
Theorem 6 (#CYCLE hardness). Given a constant-degree graph G = (V,E) and for L = |V |/2, it
is NP-hard to distinguish the following two cases.

YES Case: G has at least 1 + 2L simple cycles of length L.

NO Case: G has exactly one simple cycle C(planted) of length L, and no longer simple cycle.

Moreover, C(planted) can be efficiently found in polynomial time.

The proof of the above uses a simple extension of a relatively standard reduction (see e.g. Vadhan
[2002]) from Hamiltonian Cycle. Starting with an instance G1 of Hamiltonian Cycle, we replace
each edge by a two-connected path of length t, for some integer t. For L = nt, this gives us 2L

cycles of length L for every Hamiltonian cycle in G1. Moreover, any simple cycle of length L must
correspond to a Hamiltonian Cycle in G1. We add to G a simple cycle of length L on a separate set
of L vertices. This “planted” cycle is easy to find, since it forms its own connected component of size
L. A full proof is deferred to supplementary material.

Armed with these, we form a function on the hypercube in d = |E′| dimensions such that optimizing
it is easy, but sampling is hard.
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Theorem 7. There exists a function h : Hd → [0, d] satisfying the following properties.

Efficiency: h can be computed efficiently on Hd.

Easy Optimization: One can efficiently find a particular minimizer y(planted) of h on Hd.

Sampling is hard: Let λ ≥ 2d. It is NP-hard to distinguish the following two cases, for L = Ω(d):

YES Case: Pr
y∼Dλ,Hdh

[y = y(planted)] ≤ 1
2L

NO Case: Pr
y∼Dλ,Hdh

[y = y(planted)] ≥ 1− 1
2L

In particular this implies that 1− 1
2L−2 -sampling from Dλ,Hdh is NP-hard.

Proof. Let G = (V,E) a graph produced by Theorem 6 and let d = |E|. A vertex y of the hypercube
Hd is easily identified with a set Ey ⊂ E consisting of the edges {e ∈ E : ye′ = 1}. The function
h1(y) is equal to zero if Ey does not define a simple cycle and is equal to the length of the cycle
otherwise. To convert this into a minimization problem, we define h(y) = d−h1(y). It is immediate
that a minimizer of h corresponds to a longest simple cycle in G.

Given a vertex y, testing whether Ey is a simple cycle can done efficiently, and the length of the
cycle is simply |Ey|. This implies that h can be efficiently computed on Hd. Further, since we can
find the planted cycle in G efficiently, we can efficiently construct a minimizer y(planted) of h.

Suppose that G has at least (2L + 1) cycles of length L. In this case, the distribution Dλ,Hdh restricted
to the minimizers is uniform, and thus the probability mass on a specific minimizer y(planted) is at
most 1

2L+1
. This also therefore upper bounds the probability mass on y(planted) in the Dλ,Hdh .

On the other hand, suppose that planted cycle is the unique longest simple cycle in G. Thus the
probability mass on y(planted) is at least exp(λ(d− L))/Zλ,Hdh . Since every other cycle is of length

at most L− 1, and there are at most 2d cycles, it follows that Z
λ,Hd
h

exp(λ(d−L)) ≤ 1 + 2d

exp(λ) . For λ ≥ 2d,
this ratio is (1 + exp(−d)) ≤ (1− 1

2d
)−1. The claim follows.

We can now apply Theorem 4 to derive the following result.

Theorem 8. There is a family F of functions f : Bd(0, R)→ R such that the following hold.

Efficiency: Every f ∈ F is computable in time poly(d).

Easy Optimization: An optimizer of f can be found in time poly(d)

Sampling is NP-hard: For λ ≥ 2d and η < 1− exp(−Ω(d)), there is no efficient η-sampler for
Dλf unless NP = RP .

Remark 5. In the statement above, efficiently computable means that given a t-bit representation of
x, one can compute f(x) to t bits of accuracy in time poly(d, t).
Remark 6. The easy optimization result above can be considerably strengthened. We can ensure that 0
is the optimizer of f and that except with negligible probability, gradient descent starting at a random
point will converge to this minimizer. Further, one can ensure that all local minima are global and
that f is strict-saddle. Thus not only is the function easy to optimize given the representation, black
box oracle access to f and its gradients suffices to optimize f . We defer details to the supplementary
material.
Remark 7. The hardness of sampling holds also for Wasserstein distance 1

16 , given Remark 4.

5 A Sharp Threshold for λ

We start with the following threshold result for sampling from the Gibb’s distribution on independent
sets due to Weitz [2006], Sly and Sun [2012].

Theorem 9. For any ∆ ≥ 6, there is a threshold λc(∆) > 0 such that the following are true.

8



FPRAS for small λ: For any λ < λc(∆), the problem of sampling independent sets with Pr[I] ∝
exp(λ|I|) on ∆-regular graphs has a fully polynomial time approximation scheme.

NP-hard for large λ: For any λ > λc(∆), unless NP = RP , there is no fully polynomial time
randomized approximation scheme for the problem of sampling independent sets with
Pr[I] ∝ exp(λ|I|) on ∆-regular graphs.

In the supplementarly material, we show that this implies the following result.

Theorem 10. There is a family F of efficiently computable functions f : Bd(0, R)→ R such that
the sampling problem has a sharp computational threshold. There is a constant λc > 0 such that for
any 1

d < λ < λc, there is a poly(d/η)-time η-sampler for the distribution Dλf . On the other hand,
for any λ > λc, there is a constant η′ > 0 such that no polynomial time algorithm η′-samples from
Dλf unless NP = RP .

6 Related Work

The problems of counting solutions and sampling solutions are intimately related, and well-studied
in the discrete case. The class #P was defined in Valiant [1979], where he showed that the problem
of computing the permanenet of matrix was complete for this class. This class has been well-
studied, and Toda [1991] showed efficient exact algorithms for any #P-complete problem would
imply a collapse of the polynomial hierarchy. Many common problems in #P however admit efficient
approximation schemes, that for any ε > 0, allow for a randomized (1 + ε)-approximation in time
polynomial in n/ε. Such Fully Polynomial Randomized Approximation Schemes (FPRASes) are
known for many problems in #P, perhaps the most celebrated of them being that for the permananet
of a non-negative matrix [Jerrum et al., 2004].

These FPRASes are nearly always based on Markov Chain methods, and their Metropolis-
Hastings [Metropolis et al., 1953, Hastings, 1970] variants. These techniques have been used
both in the discrete case (e.g. Jerrum et al. [2004]) and the continuous case (e.g. Lovasz and Vempala
[2006]). The closely related technique of Langevin dynamics [Rossky et al., 1978, O. Roberts and
Stramer, 2002, Durmus and Moulines, 2017] and its Metropolis-adjusted variant are often faster in
practice and have only recently been analyzed.
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