
We thank the reviewers for the valuable feedback and address specific comments below.1

Clarification of the Gibbs sampling procedure: It is not the corruption distribution itself that2

ultimately generates new, realistic objects; rather, it is the repeated application of the corruption and3

reconstruction distributions in succession. Running the corrupter repeatedly (with no reconstruction)4

leads to samples that severely diverge from the data distribution (see Appendix G). Intuitively, the5

corrupter executes a few random modifications to the current object, “nudging” it off the true data6

manifold (but still respecting the validity constraints). In turn, the learned reconstructor is trained7

to undo the corruptions, pushing it back to the data manifold. Ergodic theory states that when a8

Markov chain is constructed by alternatingly sampling from the conditionals corresponding to a joint9

distribution, e.g., p(x | x̃) and p(x̃ | x) for the joint p(x, x̃), asymptotic samples from the chain will10

be from the marginal distributions. In our approach, we leverage this theory (after Bengio et al., 2013)11

to construct a generative model from the combination of the fixed corrupter and learned reconstructor.12

We plan to expand Section 2.1 with additional explanation to make the paper more self-contained.13

Model hyperparameters (sampler initialization, corruption distribution): Due to space con-14

straints, some of the details of the model hyperparameters, including chain initialization, were15

included in Appendix D. For both molecules and Laman graphs, each chain is initialized with a16

random sample from the training set. For each of the experiments, 10 chains are run for 2K transitions17

each, resulting in 20K samples. Although the samples are not i.i.d., no burn-in or thinning is used. We18

find that the initial state has minimal effect on the resulting chain-specific KS distances. Similarly, we19

find (see Appendix A) that for a range of corruption distributions, the performance is not substantially20

affected (although extreme parameters do affect performance).21

Domain-specific legal moves: The legal inductive moves approximately correspond to a domain-22

specific graph-rewrite grammar. Defining such moves does require some domain expertise. While a23

dataset is not strictly required to define the inductive moves, it can help. For the molecular domain,24

the moves are based on a primitive vocabulary of bonds and rings obtained via tree decomposition of25

the training set (similar to Jin et al., 2018). For Laman graphs, we leverage the Henneberg operations26

from rigidity theory without reference to data. The proposed method is applicable to domains where27

inductive moves can be specified that preserve some notion of validity. For example, for generating28

source code, grammar parse trees can be perturbed with insertions and deletions of production rules,29

altering samples while respecting syntactic validity. The more prior knowledge (e.g., hard constraints)30

that is encoded in the inductive moves, the less the model has to learn. We plan to apply the method31

to additional domains including constructive solid geometry and program source code in future work.32

Additional experimental results (Guacamol benchmarks, SMILES LSTM): We ran the new33

Guacamol distribution-learning benchmarks after training our model on the ChEMBL dataset. Using34

the same hyperparameters as for the ZINC model, we obtain validity: 1.0, uniqueness: 0.933, novelty:35

0.942, KL divergence: 0.771, FCD: 0.058. Note that these are preliminary results and the FCD score36

is not directly applicable to our samples. This is due to inherent autocorrelation in the generated chains37

which is not taken into account by the FCD computation. The autocorrelation may be addressed by38

standard techniques, e.g., thinning, but there was not time to evaluate this for the author response.39

We plan to include updated Guacamol results in the paper. We also trained a SMILES LSTM (using40

the referenced implementation) on the ZINC dataset. Bootstrapped mean (and std) KS distances are41

as follows: QED: 0.022 (0.003), SA: 0.051 (0.004), logP: 0.052 (0.004). The LSTM is effective42

at matching the ZINC statistics, producing a much better-matched SA distribution than the other43

methods. However, the LSTM has limited ability to incorporate structural constraints, e.g., enforcing44

the presence of a particular substructure.45

Application to structured object optimization: The proposed method naturally lends itself to46

substructure-conditional generation (“autocomplete”), which is relevant to a host of design and47

engineering disciplines. For example, many classes of drugs, e.g., benzodiazepines, are defined48

by the presence of a core chemical substructure with some desired properties. By masking the49

inductive moves executed during transitions, the Markov chain can respect this hard constraint.50

Virtual screening then allows these samples to be efficiently searched, with optimal ones serving as51

candidates for additional testing.52

Clarification of Figure 1: The message passing referred to in Figure 1 is described further in53

Appendix B and C. The attention mentioned in Figure 1 refers to the location-specific embeddings54

computed for the possible insertion and deletion moves. We inadvertently did not specify this and55

plan to update the main text accordingly.56
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