
Supplementary material for the paper
"A Graph Similarity for Deep Learning"

A Datasets

Here, we describe all the datasets used in our paper with sources. The basic statistics is in Table 1.

TU datasets The TU datasets are at https://ls11-www.cs.tu-dortmund.de/staff/
morris/graphkerneldatasets. It is a collection of many graph classification datasets collected
by Technische Universität Dortmund. Datasets may have graphs with categorical or continuous node
attributes as well as edge attributes. As we focus on the graphs with continuous node attributes, we
selected BZR, COX2, DHFR, ENZYMES, PROTEINS_full and Synthie, which have at most 2,000
graphs for fast test. The dataset AIDS is excluded since all models achieved close to or above 99%
test accuracy on it.

For train-validation-test split we used the tool from the benchmarking framework1 (Dwivedi et al.
, 2020). The function get_all_split_idx in data/TUs.py builds and saves a random 10-split. The
saved splits are included in our code.

Node classification datasets The benchmarking framework (Dwivedi et al. , 2020) provided
two community detection datasets, SBM_PATTERN and SBM_CLUSTER for node classifica-
tion. To download, either see https://github.com/graphdeeplearning/benchmarking-gnns/blob/
master/docs/02_download_datasets.md or get the pickle files directly from

• SBM_CLUSTER : https://www.dropbox.com/s/edpjywwexztxann/SBM_CLUSTER.pkl

• SBM_PATTERN : https://www.dropbox.com/s/zf17n6x6s441s14/SBM_PATTERN.pkl

The following description is re-phrasing of the explanation in Dwivedi et al. (2020).

A graph in either dataset have six communities in total, where a community is randomly generated
from three parameters, number of nodes n, internal edge density p, and external edge density
q. The density p decides the probability of two nodes from the same community being adjacent,
independently from other edges. The density q is the edge probability between two nodes from
different communities.

For SBM_PATTERN the task is to distinguish one special community P from the others. The special
community has n = 20, p = 0.5 and q = 0.5. Other communities have n uniformly selected from
[5, 35], and set p = 0.5 and q = 0.2. The node attributes are randomly assigned from {0, 1, 2}. The
nodes in P have label 1 and other nodes have 0.

For SBM_CLUSTER the task is to identify which community each vertex belongs to. All communities
have n from [5, 35], p = 0.55 and q = 0.25. Precisely one node from each community has informative
node attribute from {1, 2, 3, 4, 5, 6}which indicates its community. Other nodes have non-informative
attribute 0.

Graph regression dataset The benchmarking framework of Dwivedi et al. (2020) provided one
dataset derived from ZINC (Sterling & Irwin, 2015) for graph regression. The graphs in ZINC are
molecular graphs, whose nodes are atoms and edges are chemical bonds. All nodes and edges have
categorical attributes. The node attributes correspond to the atomic numbers and re-labelled to [0, 20].
Edge attributes are from {1, 2, 3} which correspond to single, double, and triple bond respectively.

The label for a graph in ZINC is constrained solubility used in Jin et al. (2018), which is given by
y(m) = logP (m)− SA(m)− cycle(m), where SA is the synthetic accessibility score and cycle is
the number of rings with more than six atoms.

1https://github.com/graphdeeplearning/benchmarking-gnns. We tested on Benchmark v1 be-
fore the 2020 June update, which changed SBM datasets, added a couple new models, and substantially changed
the hyperparameter ranges.

1

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/02_download_datasets.md
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/02_download_datasets.md
https://www.dropbox.com/s/edpjywwexztxann/SBM_CLUSTER.pkl
https://www.dropbox.com/s/zf17n6x6s441s14/SBM_PATTERN.pkl
https://github.com/graphdeeplearning/benchmarking-gnns

Table 1: Statistics of graph datasets. Superscript ∗ indicates the attributes are categorical variables
converted to one-hot vectors. ZINC and QM9 are not used for classification and hence no graph
classes.

Dataset #Graphs #Classes Avg.Nodes Avg.Edges Node dim Edge dim

BZR 405 2 35.75 38.36 3 -
COX2 467 2 41.22 43.45 3 -
DHFR 467 2 42.43 44.54 3 -
ENZYMES 600 6 32.63 62.14 18 -
PROTEINS_full 1113 2 39.06 72.82 29 -
Synthie 400 4 95.00 172.93 15 -
SBM_CLUSTER 12000 6 117.20 4301.72 7∗ -
SBM_PATTERN 14000 2 117.47 4749.15 3∗ -
ZINC 12000 - 23.16 49.83 28∗ 4∗

QM9 133171 - 8.80 9.40 5∗ 5∗

Graph generation dataset We used a re-implementation2 of MolGAN (De Cao & Kipf, 2018)
in PyTorch (Paszke et al. , 2017) for graph generation experiment. The data to learn is from QM9
(Ramakrishnan et al. , 2014) dataset and prepared by the script data/download_dataset.sh.

B Feature maps

B.1 Feature map for polynomial kernels and Gaussian kernels

We shall derive an explicit feature map for the polynomial kernel KP : R2 × R2 → R, KP (x, y) =
(1 + 〈x, y〉)2 and the Gaussian kernel KG : Rd × Rd → R, KG(x, y) = exp(−‖x − y‖2/2).
Generalizations to other dimensions of domain and other constants are easily obtained in a similar
manner.

Feature map for KP . We shall find a mapping φP : R2 → RD such that KP (x, y) =
〈φP (x), φP (y)〉 for all x, y ∈ R2. We expand KP (x, y) using their coordinates x = (x1, x2)
and y = (y1, y2).

KP (x, y) = (1 + 〈x, y〉)2

= 1 + 2〈x, y〉+ 〈x, y〉2

= 1 + 2x1y1 + 2x2y2 + x21y
2
1 + 2x1x2y1y2 + y21y

2
2

=
〈(

1,
√
2x1,
√
2x2, x

2
1,
√
2x1x2, x

2
2

)
,
(
1,
√
2y1,
√
2y2, y

2
1 ,
√
2y1y2, y

2
2

)〉
Therefore, φP (x) =

(
1,
√
2x1,
√
2x2, x

2
1,
√
2x1x2, x

2
2

)
is a feature map for the polynomial kernel

KP .

Feature map for KG. Similarly to the case of KP , we shall manipulate the formula for KG to find
a feature map. However, it results in a mapping into R∞ and hence we shall use an approximation.

Note that KG(x, y) = exp(‖x − y‖2/2) = exp(−‖x‖2/2) exp(〈x, y〉) exp(−‖y‖2/2). We apply
the second-order Taylor approximation exp z ≈ 1 + z + z2/2 so that

KG(x, y) ≈ exp(−‖x‖2/2)(1 + 〈x, y〉+ 〈x, y〉2/2) exp(−‖y‖2/2).

The middle term can be represented as an inner product of two vectors in a similar manner to KP .
Therefore we obtain

φ̃G(x) = exp(−‖x‖
2

2
) ·
(
1, x1, x2, . . . , xd,

x1x1√
2
,
x1x2√

2
, ...,

x1xd√
2
,
x2x1√

2
, . . . ,

xdxd√
2

)
.

2https://github.com/yongqyu/MolGAN-pytorch

2

https://github.com/yongqyu/MolGAN-pytorch

B.2 How polynomial kernel locates the leaf nodes

Let T be a graph on four nodes drawn on the Euclidean plane, with one node at (0, 0) connected to
three other nodes on the unit circle. Let the 2D coordinates be assigned as node attributes. If we
take either the sum or average of the outer vertices’ attributes then the result is uninformative of the
outer nodes’ locations. Let us consider a weighted sum. The weight for the outer node (cos θ, sin θ)
can reasonably be assumed to be a function of (0, 0) and (cos θ, sin θ). Without further assumptions
on the data, it is plausible to assume that the function is rotationally invariant, for example the
Euclidean distance. In that case, the resulting aggregation again outputs the same value regardless
of the locations of the outer vertices, as long as they are all on the unit circle. That is, most GNN
aggregation methods using aggregate-transform cannot distinguish such graphs.

Now we show that if we apply a proper transformation first to the outer node attributes, then transform-
sum have full information of the outer nodes. Let φ : R2 → Rd be the feature map for polynomial
kernel (1+ 〈x, y〉)3 built as described above. Let (xi, yi) for i = 1, 2, 3 be the coordinates (attributes)
of the outer nodes, located not just on the unit circle, but arbitrarily. Among other entries, φ((x, y))
has x, x2, x3 and y, y2, y3. Therefore, from the set representation

∑
i φ((xi, yi)) we can infer

∑
i xi,∑

i x
2
i , and

∑
i x

3
i . It is easy to see that three real numbers a, b, c are uniquely determined by a+b+c,

a2 + b2 + c2, and a3 + b3 + c3. Therefore the result of transform-sum has all the information to
retrieve x1, x2 and x3.

B.3 Transform-sum has orientation-invariance and monotonicity

First, we begin by defining orientation-invariance and monotonicity. Let V0 = {vi ∈ Rd : i =
1, 2, . . . , k} be a multiset of vectors, and let F be a representation function mapping a non-empty
multiset of vectors in Rd to a vector in RD. For a function T : Rd → Rd, we write T (V0) =
{T (vi) : vi ∈ V0}. We assume that F has an associated distance DF between two sets V, V ′
as DF (V, V

′) = dF (F (V), F (V ′)) for dF : RD × RD → R. Function (or representation) F is
orientation-invariant if it has the following two properties:

1. For a rotation R in the orthogonal group O(d), DF (V0, R(V0)) = DF (V0, R
t(V0)).

2. For a translation Tδ(v) = v + δ for δ ∈ Rd, DF (V0, Tδ1(V0)) = DF (V0, Tδ2(V0)) if
||δ1|| = ||δ2||.

The following definition is complex for rigor. Stating informally, we want that a small rigid transfor-
mation should strictly increase the dissimilarity as the transformation degree increases.

Representation F is monotone if it has the following two properties:

1. Let R from the orthogonal group O(d) be a 2D-rotation with degree θ0. We write Rθ be
the 2D-rotation in O(d) with the same fixed axis and orientation as R0 but with degree θ
so that Rθ0 = R. There exists θ > 0 such that function f(x) = DF (V0, Rx(V0)) is strictly
increasing for x ∈ [0, θ].

2. Let Tδ,ε(v) = v + εδ be a translation with ε ∈ R and δ ∈ Rd. For each δ, there exists ε > 0
such that the function f(x) = DF (V0, Tδ,x(V0)) is strictly increasing for x ∈ [0, ε].

Let us fix dF as the euclidean distance. For the Gaussian kernel with infinite-dimensional feature
map, we consider the l2 space with dF being the canonical distance. For a kernel K on Rd, let FK
be the representation obtained by applying a feature map of K then sum up the results.

We show the following.

1. Let K be a kernel which can be expressed as K(v, w) =
∑∞
i=0 ci〈v, w〉i for some ci ∈ R.

Then FK has orientation-invariance (1).

2. Let K be a kernel which can be expressed as K(v, w) =
∑∞
i=0 ci‖v−w‖i for some ci ∈ R.

Then FK has orientation-invariance (2).

3. Let K be a kernel which can be expressed as K(v, w) =
∑∞
i=0 ci〈v, w〉i where ci ≥ 0 for

all i and there exists ci > 0 for some i ≥ N . Then for V with |V | ≤ N , FK is monotone.

4. If K is the Gaussian kernel, then FK is monotone.

3

Note that most fast graph kernels start with discretizing the continuous attributes. Therefore, they
are not orientation-invariant nor monotone. Also, aggregation methods from popular GNN models,
such as mean-pool, sum-pool, or attention-based aggregations, are not monotone. They satisfy
orientation-invariance (1) only trivially, by having DF = 0 regardless of rotations.

Now we begin the proof.

First, we prove Statement 1. Note that

D2
FK

(V0, R(V0)) = ‖FK(V0)−FK(R(V0))‖2 =
∑
i,j

K(vi, vj)+
∑
i,j

K(Rvi, Rvj)−2
∑
i,j

K(vi, Rvj).

Since ∑
i,j

K(Rvi, Rvj) =
∑
i,j

∑
k

ck〈Rvi, Rvj〉k =
∑
i,j

∑
k

ck〈vi, vj〉k =
∑
i,j

K(vi, vj),

we need to show
∑
i,j K(vi, Rvj) =

∑
i,j K(vi, R

tvj).

It is enough to show that
∑
i,j〈vi, Rvj〉k =

∑
i,j〈vi, Rtvj〉k for all k. Let A be the matrix whose

columns are vi. Let fk be the function which maps a matrix M to the sum of k-th power of the entries
of M . Since fk(M) = fk(M

t), we have∑
i,j

〈vi, Rvj〉k = fk(A
tRA) = fk((A

tRA)t) = fk(A
tRtA) =

∑
i,j

〈vi, Rtvj〉k.

Proving Statement 2 is trivial again by the definition of D2
FK

. For Statement 3, note that the function
f(x) in both properties of monotone representation are analytic up to x. Since DF is non-negative
and f(0) = 0, we only need to show that f(x) is not constantly zero. Following the argument in B.2,
the map FK is injective and hence f(x) is not constantly zero.

Now we prove Statement 4. We apply Statement 2 to the Taylor expansion of the Gaussian kernel to
obtain the orientation-invariance (2). For orientation-invariance (1), we compare

D2
FK

(V0, R(V0)) =
∑
i,j

K(vi, vj) +
∑
i,j

K(Rvi, Rvj)− 2
∑
i,j

K(vi, Rvj)

against D2
FK

(V0, R
t(V0)). Since ‖vi − vj‖ = ‖Rvi −Rvj‖, the first two summands cancel out in

comparison betweenD2
FK

(V0, R(V0)) andD2
FK

(V0, R
t(V0)). We need

∑
i,j exp(−ρ‖vi−Rvj‖2) =∑

i,j exp(−ρ‖vi−Rtvj‖2). We expand exp using the Taylor expansion and substitute ‖vi−Rvj‖2 =

‖vi‖2 + ‖vj‖2 − 2〈vi, Rvj〉. Since the expansion is absolutely convergent, we may rearrange the
summands so that it is enough to show

∑
i,j〈vi, Rvj〉k =

∑
i,j〈vi, Rtvj〉k for all k. The last

statement is shown in Statement 1, finishing the proof.

We remark that the condition |V | ≤ N is necessary. Let K be a polynomial kernel of degree less than
n. For vi = (r cos(2in), r sin(

2i
n)) on R2 where Rθ is the 2D rotation of degree θ about the origin,

then DK(V0, Rθ(V0)) is 0 regardless of θ.

C Dimensionality reduction

C.1 Random projection preserves the norm

Here, we explain the motivation to use random projection as a dimension reduction preserving the
Euclidean norm. We shall first state the Johnson-Lindenstrauss Lemma.

Lemma 1 (Johnson & Lindenstrauss (1984)) Let ε ∈ (0, 1/2). Let Q ⊂ Rd be a set of n points
and k = 20 logn

ε2 . There exists a Lipschitz mapping f : Rd → Rk such that for all u, v in Q:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

The core idea of Johnson-Lindenstrauss Lemma is that if A is a random k × d matrix whose entries
are i.i.d. samples from the normal distribution, then ‖ 1√

k
Ax‖ approximates ‖x‖ for x ∈ Rd within

4

(a) Varying the input data dimen-
sion. The approximation dimen-
sion is set to 200.

(b) Varying the approximation di-
mension. The input dimension is
set to 200.

(c) Varying the scale of input data.

Figure 1: Testing the stability of proposed dimensionality reduction. Column-wise normalization to
norm 1 is more stable than dividing each column by the constant

√
d where d is the target dimension

of approximation. See Section C.2.

small relative error with high probability. Achlioptas (2003) proved similar results when A is a
random matrix with entries from {−1, 1} or {−1, 0, 1}. Note that the target dimension k in this
random projection does not depend on neither d nor n. Therefore, we empirically investigated how
the random projection works in our case. See the next section for experiments.

C.2 Experimental study of stability of random projections

The proof of Johnson-Lindenstrauss lemma in Achlioptas (2003) uses a d×D matrix M to map a
vector v ∈ RD to Mv ∈ Rd while preserving the norm ‖v‖ within small relative error. The proposed
construction of M is to sample each entry independently from the normal distribution, and multiply
the resulting matrix by 1√

d
which ‘normalizes’ the columns. For high d the norms of the columns of

M are highly concentrated at 1. However, in our experiments, setting the column norms precisely to
1 gained a better stability.

In Figure 1, we tested the relative error between the Gram matrix of Gaussian kernel and the Gram
matrix obtained by our approximation, which is to apply the second-order Taylor approximation of
Gaussian kernel then reduce the dimension by multiplying a random matrix. The confidence intervals
are obtained from 30 trials. In each experiment, we choose 30 random vectors and hence two Gram
matrices of size 30× 30 are obtained. The entry-wise maximum relative errors have been recorded.
The Gaussian kernel is K(x, y) = exp

(
‖x−y‖2

2

)
.

In Figure 1 (a), we fixed the target dimension to 200 and varied the input dimension from 10 to
300. In Figure 1 (b), we fixed the input dimension to 200 and varied the approximation (target)
dimension from 10 to 300. Because we use the second-order Taylor approximation of the exponential
function, large values in the input will harm the approximation. Thus in Figure 1 (c), we tested
how the scale of the input data affects the relative error. We first divide the data by the maximum
absolute value then multiplied all entries by a constant, ranging from 0.7 to 3.5. The results show
that column-normalized matrix is more suitable for our task. We set the target dimension to 200 to
balance between computational feasibility and approximation stability.

D Further experiments

D.1 WLS kernel with mean aggregation

We report graph classification result with WLS kernels from different aggregations. The kernel
experiment reported in the main article used the sum of final node attributes as graph representation.
Table 2 shows the result when the mean is used instead of sum. The tendency is similar.

Note that all aggregation methods reported the same test accuracy on PROTEINS dataset and four
methods reported the same number on Synthie. It is because we include the features from iteration
#0, which uses the raw node attributes directly for the graph representation. Accuracies from further

5

Table 2: Graph classification results on TU datasets via WLS kernels with different aggregations. The
graph representation is the average of node attributes after at most five WL iterations. The numbers
are mean test accuracies over 10-fold 8:1:1 splits. Bold-faced numbers are the top scores for the
corresponding datasets. The strange numbers for PROTEINS and Synthie are due to iteration #0
having the best validation score. See D.3.

Model BZR COX2 DHFR ENZYMES PROTEINS Synthie

GAT 81.72±5.13 79.46±3.11 65.49±2.57 60.67±5.78 77.44±4.09 49.06±5.51
GCN 78.02±3.93 78.79±1.64 66.67±3.23 61.33±6.47 77.44±4.09 49.06±5.51

GraphSage 81.25±1.90 78.59±0.96 63.63±3.89 58.17±6.11 77.44±4.09 49.06±5.51
WWL 79.00±3.40 78.16±0.61 64.44±4.01 62.17±3.60 77.44±4.09 49.06±5.51

WLSLin 82.22±5.01 77.95±0.75 63.75±4.57 62.17±3.60 77.44±4.09 53.01±6.94
WLS(ours) 82.22±7.42 75.37±4.32 77.00±4.83 68.00±4.50 77.44±4.09 86.56±6.47

Table 3: Graph classification results on TU datasets via WLS kernels with different random seeds.
The numbers are mean test accuracies over ten splits. Bold-faced numbers are the top scores
for the corresponding datasets. The proposed aggregation (WLS) consistently outperforms other
aggregations.

Model Seed BZR COX2 DHFR ENZYMES PROTEINS Synthie

GAT - 83.21±4.52 79.26±3.54 67.74±4.00 58.83±6.85 74.02±5.72 46.00±3.69
GCN - 80.49±3.22 78.60±1.52 67.74±4.91 60.67±7.98 73.04±4.70 45.72±3.72

GraphSage - 77.53±3.73 79.01±2.42 67.61±3.48 58.83±6.85 74.47±5.59 46.00±3.69
WWL - 79.02±2.04 78.79±1.27 67.49±6.05 58.83±6.85 73.04±4.70 46.00±3.69

WLSLin - 79.99±3.04 77.93±2.42 68.26±2.59 58.83±6.85 74.39±3.14 55.00±7.22

WLS 1 83.45±6.49 77.95±3.48 77.92±4.78 67.83±4.09 75.38±4.26 86.79±5.82
WLS 10 85.16±5.15 77.54±5.07 77.66±4.52 68.00±4.50 75.46±3.47 86.80±5.49
WLS 100 83.44±4.72 77.53±3.46 78.18±4.44 68.67±5.87 75.55±3.80 88.55±5.18
WLS 1000 85.19±5.53 76.65±4.39 79.63±4.04 69.17±5.29 75.19±4.42 88.77±5.38

iterations differ between aggregation methods, but on PROTEIN_dataset, all models obtained best
validation and test accuracy when the raw attributes are used.

D.2 WLS kernel stability

The proposed WLS kernel requires random projection to keep computational feasibility. Due to
the introduced stochasticity, we tested graph classification performance of WLS kernels with four
random seeds, 1, 10, 100, and 1000. The result is shown in Table 3. Although the exact numbers vary,
WLSs consistently outperform other aggregations. The result in main article corresponds to seed 1.

D.3 Graph classification via graph neural networks

In Table 4 we show a summary of the graph classification results using graph neural networks. The
reported scores are mean test accuracy across ten splits. The results from same experiment with
standard deviation is in Table 5. Dwivedi et al. (2020) noted that the anisotropic GNNs (GAT,
GatedGCN, MoNet) in general perform better than isotropic GNNs. One possible explanation is that
anisotropic aggregation generalizes isotropic aggregation and may help learning further by focusing
on important neighbors more than less relevant neighbors.

Our proposed WLS-based GNN model is in fact isotropic. However, WLS outperformed all other
models including anisotropic ones in node classification and graph regression. In graph classification,
WLS outperforms all isotropic models across datasets, and competitive with the best anisotropic

6

Table 4: Graph classification on TU datasets via graph neural networks. ENZ. for ENZYMES, PRO.
for PROTEINS_full, Synth. for Synthie. The numbers in the second sets of columns are mean test
accuracies over ten splits, averaged over four runs each with random seed 1, 10, 100, and 1000. MRR
stands for mean reciprocal rank and Time indicates the accumulated time for single run across all six
datasets. Bold-faced numbers indicate the best score for each column.

Model BZR COX2 DHFR ENZ. PRO. Synth. MRR Time
(h) #Params

Is
ot

ro
pi

c GCN 84.63 77.08 76.06 62.38 75.24 93.03 0.200 4.9 78019
GIN 83.49 79.01 76.62 65.67 65.58 93.05 0.202 4.0 77875

GraphSage 81.61 76.89 74.80 68.58 75.85 97.70 0.291 5.2 81171
WLS(ours) 84.64 79.07 76.95 70.42 63.07 98.87 0.576 3.9 64751

A
ni

so
tr

op
ic GAT 85.31 78.52 76.39 66.63 75.62 95.08 0.358 38.4 78531

GatedGCN 84.39 80.21 76.86 68.92 75.65 96.31 0.458 12.2 87395
MoNet 83.64 79.64 78.22 57.63 76.92 91.46 0.498 10.3 82275

Table 5: Graph classification on TU datasets via graph neural networks, with standard deviation.
Bold-faced numbers indicate the best mean for each column.

Model BZR COX2 DHFR ENZYMES PROTEINS Synthie

Is
ot

ro
pi

c GCN 84.63±5.86 77.08±4.72 76.06±3.44 62.38±7.25 75.24±3.47 93.03±4.14
GIN 83.49±6.01 79.01±5.26 76.62±3.62 65.67±7.71 65.58±9.38 93.05±5.87

GraphSage 81.61±5.21 76.89±5.58 74.80±4.06 68.58±5.20 75.85±3.25 97.70±1.93
WLS(ours) 84.64±4.85 79.07±5.91 76.95±4.26 70.42±5.70 63.07±3.72 98.87±1.74

A
ni

so
tr

op
ic GAT 85.31±6.01 78.52±6.07 76.39±4.51 66.63±5.07 75.62±3.52 95.08±3.12

GatedGCN 84.39±5.41 80.21±4.70 76.86±3.37 68.92±6.12 75.65±3.47 96.31±2.54

MoNet 83.64±6.49 79.64±5.19 78.22±3.33 57.63±18.31 76.92±3.38 91.46±4.61

models except on PROTEINS_full dataset. A notable advantage of WLS over anisotropic models is
the training speed. Without the need to calculate different weights depending on neighbors, WLS
achieves the fastest speed in this task.

D.4 More data from graph regression

In the main article, we reported only the mean absolute error (MAE) for the graph regression task.
Table 6 shows more data, including the validation set loss, two WLS models we tested, together with
training time and the number of parameters. The difference between WLS1 and WLS2 is in the use of
residual connection. WLS1 does not use it, and WLS2 applies the residual connection. We reported
WLS1 in the main article.

D.5 Further information about graph generation experiment

We showed in the main article that WLS-discriminator may help generating molecular graphs stably.
While the chemical validity is a necessity, a good molecule generator must generate a diversity
of molecules meeting the required criteria. In Figure 2, we plot the number of unique molecules
generated by the WLS experiment. The numbers are clipped to 300 at most to emphasize the tail
behavior. We observed that the number of unique molecules tends to decrease over time. The problem
may be attributed to mode collapse, a persistent problem across GAN-based generations (Lala et al. ,
2018).

7

Table 6: Graph regression results on ZINC dataset. The performance metric is mean absolute error
(MAE). Two WLS models, with and without residual connection, outperfrom all the other models.

Model MAE: validation MAE: test Time (m) #Params

GAT 0.433±0.007 0.462±0.010 33.6 102385
GatedGCN 0.310±0.004 0.362±0.002 11.7 105875

GCN 0.443±0.013 0.469±0.014 4.7 103077
GIN 0.400±0.025 0.429±0.036 4.5 103079

GraphSAGE 0.392±0.008 0.422±0.006 7.1 105031
MoNet 0.388±0.012 0.416±0.014 18.1 106002

WLS-E1 0.309±0.008 0.315±0.003 13.9 117950
WLS-E2 0.313±0.008 0.322±0.007 13.7 117950

Figure 2: Number of unique molecules generated by the molecular graph generation experiment with
WLS discriminator. We observed a degree of mode collapse. We clipped the numbers larger than 300
to make the tail behavior more visible.

E Reproducibility

In this section, we describe the information about models and hyperparameters that are necessary to
reproduce the experimental results. The experiments are done on a single machine with two Intel
Xeon E5-2620 v3 CPUs, and four GeForce GTX TITAN X GPUs. Each GNN experiment used only
one GPU.

For easier re-implementation of the models, we illustrate the steps of node representations of (a)
WLS-kernel and (b) WLS-GNN in Figure 3. Since the second-order Taylor approximation of the
Gaussian feature map degrades when the vector has large entries, for WLS-kernel, we scale down the
results of transform-sum-cat by multiplying 1/

√
d where d is the input dimension, 200.

E.1 Graph kernel

The steps of graph kernel experiments are as follows:

1. the initial node attributes are normalized linearly to have mean 0 and standard deviation 1 at
each component across all graphs in the whole dataset.

2. the designated iterations are processed. Output from every iteration is stored, including the
initial attributes.

3. the final node attributes are summed (or averaged in Table 2) to form the graph representation,
for each iteration number from 0 to 5.

8

(a) WLS-kernel (b) WLS-GNN

Figure 3: Illustration of the node representation updates of (a): WLS-kernel, and (b): WLS-GNN
used in the experiments. WLS-kernel applies the second-order Taylor approximation of feature map
for the Gaussian kernel. Then sum the neighbor attributes and concatenate with the central node’s
attribute. The result is multiplied by a random projection matrix to reduce the dimension. WLS-GNN
is simpler. Apply MLP, sum the neighbors, then concatenate.

4. the graph representations are put into the Gaussian kernel exp(−g‖x‖2) with a hyperparam-
eter g.

5. the Gram matrix is then put into C-regularized SVM classifier.

The following hyperparameters are tuned based on the mean validation accuracy across the 10 splits:
the iteration number, the width g of Gaussian kernel, the SVM regularization constantC. The iteration
number is selected from 0 to 5. The numbers g and C are from {10i : i = −6,−5,−4, . . . , 2, 3}.
Further tuned hyperparameters specific to individual aggregations are stated below. We report the
average and the standard deviation of the test accuracies across the 10 splits.

The neighborhood aggregations we used are the following.

GAT GAT (Veličković et al. , 2018) uses attention-based weighting of the neighbors. Without
learnable parameters, we take softmax over inner products with temperature to decide the weights.
That is, f i(v) =

∑
u∈N (v) aT (f

i−1(u), f i−1(v))f i−1(u) where

a(f(u), a(v)) =
exp(〈f(u), f(v)〉/T)∑

u′∈N (v) exp(〈f(u′), f(v)〉/T)
.

With the option residual, f i−1(v) is added to f i(v) before the next WL-iteration. The temperature T
is selected from {1, 10, 100}. Thus in total 6× 10× 10× 2× 3 = 3600 models are considered for
each split.

GraphSAGE We used the simplest form of GraphSAGE-Mean from Hamilton et al. (2017). That
is, f i(v) = 1

|N (v)|
∑
u∈N (v) f

i−1(u). With the option residual we add f i−1(v) to f i(v) before the
next WL-iteration. The number of hyperparameter combinations is 1200.

GCN The degree-normalized averaging of GCN (Kipf & Welling, 2017) is implemented
here as f i(v) =

∑
u∈N (v)

1√
deg(u) deg(v)

f i−1(u). The function deg denotes the node degree

in graph. With the option residual we modify the formula as f i(v) = 1
deg v+1f

i−1(v) +∑
u∈N (v)

1√
(deg u+1)(deg v+1)

f i−1(u). The number of hyperparameter combinations is 1200.

WWL WWL (Togninalli et al. , 2019) used the following customized aggregation. We used it as-is.

f i(v) =
1

2

f i−1(v) + 1

|N (v)|
∑

u∈N (v)

f i−1(u)


Without further hyperparameters, we tune the iteration number, g, and C from 600 choices.

9

WLS As stated in the main article, we proposed the following aggregation for WLS kernel.

f i(v) = COMBINEi

f i−1(v), ∑
u∈N (v)

φi(f
i−1(u))

 .

We used the second-order Taylor approximation of Gaussian kernel exp(−‖x − y‖2/σ2) as the
feature map φi with σ from {10i : i = −1, 0, 1}. The combination function COMBINEi is either the
concatenation f i−1(v) ⊕

∑
u∈N (v) φi(f

i−1(u)) or the sum φi(f
i−1(v)) +

∑
u∈N (v) φi(f

i−1(u))

followed by random projection Mi onto R200. The number of hyperparameter configurations is 3600.

E.2 Graph neural network

Here, we discuss the hyperparameters for WLS-based neural network only. The other GNN models
use hyperparameter settings from Dwivedi et al. (2020)3. All hyperparameters for our method are
manually tuned among several options. The learning rate and optimizer settings are from Dwivedi
et al. (2020), which we list below.

The optimizer is Adam (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, and weight decay set to
0.0. The initial learning rate is set to 1e− 3, and if the validation loss is not decreased for 5 epochs
then the learning rate is halved. The train stops either if the learning rate goes below 1e− 5 or if the
number of epochs reaches 1000.

Node classification. The types and ranges of hyperparameters we considered for the WLS node
classification network is in Table 7. The number of iterations is set to 4 because other GNN models
from Dwivedi et al. (2020) uses 4 altogether. The number of MLP layers is tested between 3 and 4
because we focused on the non-linearity of the transformation. After having done all the experiments
for the main article, we observed that setting the number of layers 2 with larger dimension may
improve the performance in some cases. The hidden dimension scale decides the hidden dimension
of MLP by scale ×max(input dimension, output dimension). The dimensions are first tested with
200 to see whether the training progresses properly, then set to 50 to match the number of parameters
of other GNN models. Fortunately, the number 50 worked nicely and not tuned further.

Table 7: Types and ranges of the hyperparameters for WLS node classification network. Bold-face
indicates that the option is selected for the final report. Superscript ∗ indicates the option is excluded
in the preliminary test on other dataset.

Hyperparameter Range

iterations 4
MLP input dimension [50, 200]
MLP output dimension [50, 200]
MLP # layers [3, 4∗]
MLP hidden dimension scale [2, 3]
dropout rate [0.0, 0.1, 0.2∗, 0.5∗]
residual [True, False]

Graph classification. The hyperparameters of our WLS neural network for graph classification
task is similar to that of node classification; see Table 8. The choices become simpler by excluding
the preliminary numbers. The optimizer setting is different to reflect the settings from Dwivedi et al.
(2020). We wait 25 epochs for improvement in validation loss, and training stops if the learning rate
becomes lower than 1e− 6.

Graph regression. For graph regression, see Table 9. An important difference is that we need the
embedding dimension for edge attributes, which are categorical variables. We tested six arbitrarily
selected combinations from the ranges. The final selection was done considering both the number of
parameters and performance.

3https://github.com/graphdeeplearning/benchmarking-gnns

10

https://github.com/graphdeeplearning/benchmarking-gnns

Table 8: Types and ranges of the hyperparameters for WLS graph classification network. Bold-face
indicates that the option is selected for the final report.

Hyperparameter Range

iterations 4
MLP input dimension 50
MLP output dimension 50
MLP # layers 3
MLP hidden dimension scale 2
dropout rate [0.0, 0.1]
residual [True, False]

Table 9: Types and ranges of the hyperparameters for WLS graph regression network. Bold-face
indicates that the option is selected for the final report.

Hyperparameter Range

iterations 4
edge embedding dimension 50
MLP input dimension [20, 30, 40, 50]
MLP output dimension [40, 50]
MLP # layers [2, 3]
MLP hidden dimension scale [1.5, 2]
dropout rate [0.0, 0.1]
residual [True, False]

E.3 Graph generation

We minimally changed the code from MolGAN-PyTorch4. Besides the discriminator, we suppressed
the warning from RDKit (Landrum, 2019) and changed console outputs.

The generator outputs two tensors of shape A ∈ R9×5 and E ∈ R9×9×5. The former corresponds to
atom types: Aij represents the atom type out of five possibilities, C, N, O, F, and padding for empty
atom. The padding atom is for molecules of less than 9 atoms. The latter tensor corresponds to bond
types: Eijk represents the type of bond connecting i-th and j-th atoms in A. We have five bond types:
single, double, triple, and quadruple bonds, with padding for pairs of atoms without bond. Quadruple
bonds do not appear in the dataset. Both tensors are put into softmax over the types after generated
by MLP.

Our WLS discriminator has a tiny amount of parameters. After embedding the atoms into R50

with learnable matrix we do not introduce further parameters except the last regression layer. The
transformations are not applied, i.e. we use the linear kernel. A WL-iteration consists of the following
steps: (1) for each non-empty edge type, we sum the neighbor attributes using the edge values as
weights (2) we take mean over the non-empty edge types to update the self-attribute. Note that the
step (2) is equivalent to summing up then divide by 4. After four WL-iterations, we take the mean
node attributes as the graph representation. It shall go through a linear layer with 1-dimensional
output. Its sigmoid value is the discriminator score.

Note that the linear kernel WLS discriminator is not much different from R-GCN with its parameters
removed, except the first embedding layer. We have not tested whether the stability is from reduced
number of parameters or specific architecture.

References
Achlioptas, Dimitris. 2003. Database-friendly random projections: Johnson-lindenstrauss with binary coins.

Journal of Computer and System Sciences, 66(4), 671–687.

4https://github.com/yongqyu/MolGAN-pytorch

11

https://github.com/yongqyu/MolGAN-pytorch

De Cao, Nicola, & Kipf, Thomas. 2018. MolGAN: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models.

Dwivedi, Vijay Prakash, Joshi, Chaitanya K, Laurent, Thomas, Bengio, Yoshua, & Bresson, Xavier. 2020.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982v1.

Hamilton, William L., Ying, Rex, & Leskovec, Jure. 2017. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems 30 (NIPS 2017).

Jin, Wengong, Barzilay, Regina, & Jaakkola, Tommi. 2018. Junction tree variational autoencoder for molecular
graph generation. Proceedings of the 35th International Conference on Machine Learning (ICML 2018).

Johnson, William B., & Lindenstrauss, Joram. 1984. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26, 189–206.

Kingma, Diederik P., & Ba, Jimmy Lei. 2015. Adam: A method for stochastic optimization. Third International
Conference on Learning Representations (ICLR 2015).

Kipf, Thomas N., & Welling, Max. 2017. Semi-supervised classification with graph convolutional networks.
Fifth International Conference on Learning Representations (ICLR 2017).

Lala, Sayeri, Shady, Maha, Belyaeva, Anastasiya, & Liu, Molei. 2018. Evaluation of mode collapse in generative
adversarial networks. 2018 IEEE High Performance Extreme Computing Conference (HPEC ’18).

Landrum, Greg. 2019. RDKit: Open-Source Cheminformatics Software, https://www.rdkit.org/.

Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan, Gregory, Yang, Edward, DeVito, Zachary, Lin, Zeming,
Desmaison, Alban, Antiga, Luca, & Lerer, Adam. 2017. Automatic differentiation in pytorch. NIPS 2017
Autodiff workshop.

Ramakrishnan, Raghunathan, Dral, Pavlo O., Rupp, Matthias, & von Lilienfeld, O. Anatole. 2014. Quantum
chemistry structures and properties of 134 kilo molecules. Scienftific Data 1:140022.

Sterling, Teague, & Irwin, John J. 2015. ZINC 15 - ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11), 2324–2337.

Togninalli, Matteo, Ghisu, Elisabetta, Llinares-Lopez, Felipe, Rieck, Bastian, & Borgwardt, Karsten. 2019.
Wasserstein Weisfeiler-Lehman graph kernels. Advances in Neural Information Processing Systems 32 (NIPS
2019).

Veličković, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Liò, Pietro, & Bengio, Yoshua.
2018. Graph attention networks. Sixth International Conference on Learning Representations (ICLR 2018).

12

https://www.rdkit.org/

	Datasets
	Feature maps
	Feature map for polynomial kernels and Gaussian kernels
	How polynomial kernel locates the leaf nodes
	Transform-sum has orientation-invariance and monotonicity

	Dimensionality reduction
	Random projection preserves the norm
	Experimental study of stability of random projections

	Further experiments
	WLS kernel with mean aggregation
	WLS kernel stability
	Graph classification via graph neural networks
	More data from graph regression
	Further information about graph generation experiment

	Reproducibility
	Graph kernel
	Graph neural network
	Graph generation

