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Abstract

We consider the task of solving generic inverse problems, where one wishes
to determine the hidden parameters of a natural system that will give rise to a
particular set of measurements. Recently many new approaches based upon deep
learning have arisen, generating promising results. We conceptualize these models
as different schemes for efficiently, but randomly, exploring the space of possible
inverse solutions. As a result, the accuracy of each approach should be evaluated
as a function of time rather than a single estimated solution, as is often done now.
Using this metric, we compare several state-of-the-art inverse modeling approaches
on four benchmark tasks: two existing tasks, a new 2-dimensional sinusoid task,
and a challenging modern task of meta-material design. Finally, inspired by our
conception of the inverse problem, we explore a simple solution that uses a deep
neural network as a surrogate (i.e., approximation) for the forward model, and
then uses backpropagation with respect to the model input to search for good
inverse solutions. Variations of this approach - which we term the neural adjoint
(NA) - have been explored recently on specific problems, and here we evaluate it
comprehensively on our benchmark. We find that the addition of a simple novel
loss term - which we term the boundary loss - dramatically improves the NA’s
performance, and it consequentially achieves the best (or nearly best) performance
in all of our benchmark scenarios.

1 Introduction

In this work we consider the task of solving generic inverse problems. An inverse problem is
characterized by a forward problem that models, for example, a real-world measurement process or
an auxiliary prediction task. The forward problem can be written as

y = f(x) (1)

where y is the measurable data, f is a (non-)linear forward operator that models the measurement
process, and x is an unobserved signal of interest. Given f , solving the inverse problem is then
a matter of finding an inverse model x = f−1(y). However, if the problem is ill-posed (e.g.,
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non-existence, or non-uniqueness, of solutions), finding f−1 is a non-trivial task. Specific inverse
problems can be solved using apriori knowledge about f , (e.g., sparsity in some basis, such as
compressed sensing), however, we consider the task of solving generic inverse problems, where no
such solutions are known.

Recently many new approaches based upon deep learning have arisen, generating impressive results.
These methods typically require a dataset of sample pairs {xn, yn}Nn=1 from f , from which a deep
neural network model can be trained to approximate the inverse model, f̂−1. Some recent examples
include models based on normalizing flows (e.g., invertible neural networks [1, 2]), variational
auto-encoders [3], tandem architectures [4, 5].

1.1 Modern inverse models as stochastic search

Despite the apparent variety of recent approaches, most of these inverse models can be written in
the form x̂ = f̂−1(y, z), where z is randomly drawn from some probability distribution Z (e.g.,
Gaussian). Although the interpretation of z varies across these models, they all share the property that
the x̂ returned by the model will vary depending upon the value of z. Furthermore, since it is usually
trivial and fast to evaluate the accuracy of a candidate inverse solution using the forward model, f
(e.g., a simulator), one can search for more accurate inverse solutions by sampling multiple values of
z, each yielding a different inverse solution. Each solution can then be validated using f , and the best
solution among all candidates can be retained. Therefore, each modern inverse model can be viewed
as a means of efficiently, but nonetheless stochastically, searching through x-space for good solutions.

From this perspective, the performance of each inverse model depends upon the number of z samples
that are considered, denoted T . For example, one model may perform best when T = 1, while another
model performs best as T grows. Our experiments here show that this is indeed the case, and model
performance (relative to others) is highly dependent upon T . Typically however the performance, r,
of an inverse models is judged by estimating its expected “re-simulation” error [2] over the data and
latent variable distributions, denoted D and Z respectively. Mathematically, we have

r = E(x,y)∼D,z∼Z [L(ŷ(z), y)] (2)

where ŷ(z) = f(f̂−1(y, z)) is the "re-simulated" value of y produced by passing x̂ (an estimate)
through the forward model, and L is the user-chosen loss function (e.g., L2 loss). The metric r
effectively measures error under the assumption we always utilize one sample of z (given a target
y). Here we propose an alternative metric that quantifies the expected minimum error if we draw a
sequence of z values of length T , denoted ZT . Formally, this is given by

rT = E(x,y)∼D,ZT∼Ω

[
min
z∈ZT

[L(ŷ(z), y)]
]

(3)

where ZT is a sequence of length T drawn from a distribution Ω. This measure characterizes the
expected loss of an inverse model as a function of the number of samples of z we can consider for
each target y. In this work we conduct a benchmark study of four tasks with rT , and we find that the
performance of modern inverse models depends strongly on T , revealing the limitation of existing
metrics, and revealing useful insights about the way in which each model stochastically searches
x-space. In particular, we present analysis suggesting that modern inverse models suffer from one or
both of the following limitations in their search process: (i) they don’t fully explore x-space, missing
some solutions; or (ii) they do not precisely localize the optimal solutions, introducing error.

1.2 The neural-adjoint method

Inspired by our conception of the inverse problem, we explore a simple solution where the main
idea is to train a neural network to approximate f and then, starting from different random locations
in x-space, use ∂f̂/∂x to descend towards locally optimal x values. Variations of this approach
have recently been employed on a few specific problems [6, 7], however, here we evaluate its
competitiveness against other modern approaches on several tasks. We also add a novel simple term
to its loss function - which we term the boundary loss - that dramatically improves its performance.
We call the resulting method the Neural Adjoint (NA), due to its resemblance to the classical Adjoint
method for inverse design [8, 9]. Surprisingly, the relatively simple NA approach almost always
yields the lowest error among all models, tasks and T -values considered in our benchmarks. Our
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analysis suggests that, in contrast to other models, NA fully explores the x-space, and also accurately
localizes inverse solutions. NA achieves this advantage at the cost of significantly higher computation
time, which as we discuss, may disqualify it from some time-sensitive applications.

In summary, the three primary contributions of this work are as follows:

1. A comprehensive benchmark comparison using rT . We compare five modern inverse models
on four benchmark tasks. The results reveal the performance of modern models under many
different conditions, and we find that their accuracy depends strongly on T .

2. A new modern benchmark task, and a general method to replicate it. We introduce a
contemporary and challenging inverse problem for meta-material design. Normally, it would
be difficult for others to replicate our studies because requires sophisticated electromagnetic
simulations. However, we introduce a strategy for creating simple, fast, and sharable
approximate simulators for complex problems, permitting easy replication.

3. The neural-adjoint (NA) method. The NA nearly always outperforms all other models we
consider in our benchmark. Furthermore, our analysis provides insights about the limitations
of existing models, and why NA is effective.

We release code for all inverse models, as well as (fast) simulation software for each benchmark
problem, so that other researchers can easily repeat our experiments. 1

2 Related Work

Modern deep inverse models. Given some samples from a forward model, learning the inverse
mapping is difficult even for trivial tasks because of one-to-many mappings, where several input values
(e.g., designs) all give rise to the same (or similar) forward model output [10]. This causes problems
with many optimizers and loss functions because they assume a unimodal output. For example,
using gradient descent with mean-squared error causes the model to produce solutions that are an
average of all individual solutions, which is usually not a valid solution. To address this inconsistent
gradient information, cyclic consistent loss or Tandem models [4, 11, 12, 13] avoid this dilemma by
connecting a forward model to the backward model, thereby effectively backpropagating using only
one solution, even if multiple solutions exist. An alternative approach is to model the conditional
posterior, p(x|y), directly using variational methods [14, 15]. Variational Auto-Encoders (VAEs)
[3] consist of an encoder and decoder, and model the joint distribution of hidden and measurement
states, to normal distributions z, and decode inverse solutions from samples. By minimizing the
evidence lower bound, it trades between reconstruction accuracy and transformed joint distribution
closeness to a normal distribution. Earlier work on Mixture density networks (MDNs) [16] directly
model the conditional distribution using a mixture of gaussian distributions. The parameters of the
gaussians are predicted by a feedforward neural network. With recent advance in the normalizing
flow community [17, 18, 19, 1] first applied a state-of-the-art invertible neural network to the inverse
problem. Utilizing various invertible network-based architectures, Kruse [2] benchmarked them
on two simple inverse problems. It was found that conditional invertible networks (cINN), and
invertible networks (INN) trained by maximum likelihood, had the best performance. Many of these
models were recently benchmarked on two inverse problems in [2]: VAE, INN,cINN, and MDN. We
reproduce their results here, but we add a tandem model and the NA model. We also compare all
models on two additional benchmark tasks introduced here (i.e., four total task).

Inverse model performance metrics. Although the architecture varies across different studies, the
performance metric used in each is largely identical. Nearly all the studies on inverse regression
problems uses either Mean Squared Error or Root Mean Squared Error with only one evaluation,
[1, 2, 4, 10, 13, 14, 15, 7] despite the stochastic nature of some approaches, which can produce
different solutions for the same target. Posterior matching is less of a focus in this paper and the
Maximum Mean Discrepancy (MMD) score is appended in the supplement.

Adjoint-based methods. The adjoint method is a popular approach in control theory and engineering
design that relies upon finding an analytical gradient of the forward model with respect to the control-
lable variables, and then using this gradient to identify locally optimal inverse solutions. The NA
method here also utilizes gradients of the forward model to identify locally optimal inverse solutions,

1https://github.com/BensonRen/BDIMNNA
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however, by using a neural network to approximate the forward model (and its gradients) there is no
need to derive an analytic expression. Variants of this strategy have also recently been employed by
[7] for meta-material design (our inspiration), and [6] in molecule design. We primarily build upon
their work by (i) distilling and describing the essential elements of this approach; (ii) introducing the
boundary loss, and conducting comprehensive experiments that show it substantially improves the
accuracy and reliability of this approach; and (iii) conducting a comprehensive comparison of the
resulting approach (the NA method) against other modern models.

3 The Neural-Adjoint Method

The NA method can be divided into two steps: (i) Training a neural network approximation of f , and
(ii) inference of x̂. Step (i) is conventional and involves training a generic neural network on a dataset
of input/output pairs from the simulator, denoted D, resulting in f̂ , an approximation of the forward
model. This is illustrated in the left inset of Fig 1. In step (ii), our goal is to use ∂f̂/∂x to help us
gradually adjust x so that we achieve a desired output of the forward model, y. This is similar to many
classical inverse modeling approaches, such as the popular Adjoint method [8, 9]. For many practical
inverse problems, however, obtaining ∂f̂/∂x requires significant expertise and/or effort, making
these approaches challenging. Crucially, f̂ from step (i) provides us with a closed-form differentiable
expression for the simulator, from which it is trivial to compute ∂f̂/∂x, and furthermore, we can use
modern deep learning software packages to efficiently estimate gradients, given a loss function L.

More formally, let y be our target output, and let x̂i be our current estimate of the solution, where
i indexes each solution we obtain in an iterative gradient-based estimation procedure. Then we
compute x̂i+1 with

x̂i+1 = x̂i − α ∂L(f̂(x̂i), y)

∂x

∣∣∣∣∣
x=x̂i

(4)

where α is the learning rate, which can be made adaptive using conventional approaches like Adam
[20]. Notice that the parameters of the neural network are fixed, and we are only adjusting the input
to the network, treating them like model parameters. Our initial solution, x̂0 is drawn from some
distribution Γ. Given some desired y, NA iteratively adjusts its estimated solution (beginning with
x̂0) until convergence (e.g., L no longer reduces). This entire process acts as the inverse model for
the process, f̂−1(y, z), where z = x̂0 ∼ Γ. This is illustrated in the right inset of Fig 1. Similar to
other approaches, we can draw a sequence of z values and obtain an estimated solution for each one.

And as we show in our experiments in Section 6.1, the NA method yields highly accurate solutions
compared to other models, however, at the cost of relatively high computation time. One challenge
with this approach is that many initializations either (i) do not finish converging, or (ii) converge to a
poor minima. To mitigate this problem, we always extract a thousand solutions, and use the NA’s
built-in forward model to internally rank-order the solutions and return only the top "T" solutions
to be evaluated by the true simulator. As we discuss in Section 6.1, this process only marginally
increases the inference time of NA (and all inverse methods we consider) because of efficient parallel
processing on GPUs. However, because the NA uses an iterative gradient descent procedure, it is still
computationally expensive compared to other methods.

3.1 Obtaining good results: the boundary loss

Another challenge with NA is that (unless restricted) it frequently converges to solutions that are
outside of the training data sampling domain. As we show in the supplement, this seems to occur
because f̂ becomes highly inaccurate outside of the training data domain, and (erroneously) predicts
that x-values in this space will produce the desired y (or a close approximation). As a consequence,
these inverse solutions are generally inaccurate, resulting in high error when evaluated with the true
simulator. To discourage this behavior we add a simple “boundary loss” term that encourages NA
to identify solutions that are within the training data domain, where f̂ is accurate. This loss term,
denoted Lbnd, is given by

Lbnd = ReLU(|x̂− µx| −
1

2
Rx) (5)
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where µx is the mean of the training data, Rx is its range (for unbounded distributions of x, we
define the range to be the interval of 95% probability), and ReLU is the conventional neural network
activation function. This loss is only added during the inference of inverse solutions. As we show
in the supplement, without Lbnd added, the performance of NA decreases substantially. In the
supplement we also visualize the NA method, and without, Lbnd on a simple 1-dimensional task,
illustrating its effects.

Some limitations. Although effective, the form of the boundary loss in eq. 5 assumes that the
training data domain is well approximated by a hyper-cube of the form |x̂− µx| − 0.5Rx. If this is
not true (e.g., the domain is non-convex) then Lbnd may become less effective. Furthermore, the form
of Lbnd implicitly assumes f̂ is uniformly accurate within the training domain, and drops equally in
all directions outside of it. However, the accuracy of f̂ will not generally meet these assumptions,
and it is unclear how the loss in Lbnd would vary as a function of the uncertainty of f̂ .

Relationship to other methods. Trust region optimization (TRO) [21]. The boundary loss and
TRO both identify regions where f̂ is accurately approximating f , called a "trust region", and use
this information to guide the search for solutions. However, the NA uses a static trust region that
encompasses the whole training data domain, while TRO estimates local trust regions during the
solution search process. Bayesian Optimization (BO) [22, 23]. In BO, Lbnd can be interpreted as a
prior on the credible interval of the surrogate function (f̂ in our case) that is uniformly valued within
the training data domain, and then grows outside of it. In BO this prior might cause the acquisition
function to sample f at these locations and update f̂ , however in contrast we use it to discourage the
acquisition function (gradient descent in our case) from seeking solutions in these regions. Adaptive
sampling [24]. In adaptive sampling f̂ is progressively updated using samples at locations where it
is estimated to be inaccurate. In contrast, Lbnd essentially assumes the model is equally accurate
throughout the training data domain and, similar to BO, f̂ is not updated with samples from f .

Figure 1: Architecture of Neural Adjoint method

4 Benchmark deep inverse models

In this section we briefly describe the inverse models that we employ in our benchmark experiments.
We focus on the motivation and relevant properties of each model, however, more detail for each
model can be found in the supplement and in referenced supplied for each method.

Mixture Density Networks (MDN) [16]. MDNs model the conditional distribution p(x|y) as a
mixture of Gaussians, parameterized by µi,Σi and pi (mixing proportion). A neural network is
trained to predict the parameters of the mixture, given a y value, using the following loss:

Loss = − log(
∑
i

pi ∗ |Σ−1
i |

1
2 ∗ exp(−1

2
(µi − x)T Σ−1

i (µi − x))) (6)

The number of Gaussians is a hyper-parameter. Once the parameters are predicted for a given y, then
x̂ are inferred by randomly sampling the mixture distribution, and therefore each sample represents a
different z value in the stochastic search process.

Conditional Variational Auto-Encoder (cVAE). [14, 15] Created by Kingma [3] it encodes x,
conditioned on y, into a Gaussian distributed random variable z. It is a bayesian approach with a
proxy loss of Evidence Lower Bound.

Loss = (x− x̂)2 − α

2
· (1 + logσz + µ2

z − σz) (7)

Z (re-parameterized into σz, µz) represents the transformed distribution of hidden state x given y.
The transformation is learned with trade-off between the reconstruction (decoding back to exactly
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the same x) and distribution (z being normal). cVAE explores the solution space by drawing new
examples from σz, µz . We used the implementation introduced by [14] for this approach.

Invertible Neural Networks (INN) [1]. Invertible Neural Network are based upon the RealNVP
[25], and circumvent the one-to-many mapping problem by padding the (assumed) lower-dimensional
y-space with some random vector z, and then learning a bijective transformation between the x and
y
⊗
z (i.e., cross-product) spaces. There are two ways of training reported in [2]: (i) a supervised L2

reconstruction loss and a Maximum Mean Discrepancy (MMD) [26]; and (ii) a maximum likelihood
estimate (MLE) loss to enforce z to be normally distributed [25]. Since the MLE gives a better
solution in the literature [1], we adopt it here, given by

Loss =
1

2
· ( 1

σ2
· (ŷ − ygt)2 + z2)− log|detJx 7→[y,z]| (8)

where J means the Jacobian of mapping from x to y
⊗
z space and z represents the transformed

values of x. Exploration of the inverse solution space is accomplished by sampling z values from a
zero-mean Gaussian distribution. These z values are concatenated to the target y value and passed
through the network to obtain an inverse estimate, x. INN requires equal dimensionality of x and
y
⊗
z; in cases where this is violated, we follow [1] and pad wth zeros.

Conditional Invertible Neural Networks (cINN). Conditional INNs use a similar network structure
as INNs, with a modification that instead of learning the bijective mapping from x to y

⊗
z space, it

learns the bijective relationship between x and z space under condition y. The network is trained
under MLE loss as well, with the caveat that y does not appear in the loss function due to conditioning.

Loss =
1

2
z2 − log|detJx 7→z| (9)

Here z represents the full transformed distribution of x conditioned on y. Exploring inverse solution
space also requires sampling different z values. We adopted the original author’s implementation in
both invertible networks, [2] in order to avoid inadvertent alteration of the comparison condition.

Tandem model [4, 5]. In this approach a neural network is first trained to approximate f(x) using
a standard regression loss (e.g., squared error). The parameters of f̂ are then fixed, and an inverse
model f̂−1(y) is pre-prended to f̂ , and it is trained in an end-to-end manner using backpropagation
with the following loss:

Loss = (f̂(f̂−1(y))− ygt)2 + Lbnd (10)

This loss measures the re-simulation error of each inferred inverse solution, and therefore f̂−1 only
needs to learn to identify one of the (potentially many) valid inverse solutions to minimize the loss.
As a consequence and, unlike all other inverse models, the Tandem only returns one solution for any
given y (i.e., it does not benefit as T grows). In the appendix we also show that adding the boundary
loss, Lbnd, during training is highly beneficial for the Tandem model.

5 Benchmark Tasks

We consider four benchmark tasks, which are summarized in Table 1. Inspired by the recent
benchmark study [2], we include two popular existing tasks: ballistics targeting (D1), and robotic
arm control (D3). For these two tasks we use the same experimental designs as [2], including their
simulator (i.e., forward model) parameters, simulator sampling procedures, and their training/testing
splits. All details can be found in [2] and our supplement. The remaining two benchmarks are new,
and we describe them next.

5.1 A new meta-material benchmark (D4), and a technique for replicating it

The goal of this task, recently posed in [27], is to design the radii and heights of four cylinders
(i.e., x ∈ R8) of a meta-material so that it produces a desired electromagnetic (EM) reflection
spectrum (y ∈ R300), illustrated in Fig. 2. The input and output are (relatively) high-dimensional and
non-linear, and f(x) can only be evaluated using slow iterative EM simulators, requiring significant
time and expertise. These challenges are typical of modern (meta-)material design problems, forming
a major obstacle to progress. Substantial recent research has been conducted on similar problems
(e.g., [14, 7, 4, 28, 29]), making this both a challenging and high-impact benchmark problem.

6



Problems like this are not suitable as benchmarks due to the computation time, needed domain
expertise, and required use of a simulator. It is also insufficient simply to share data from the
simulator, due to the need to draw new samples from f(x) when evaluating inverse models. We
overcome this problem by generating a large number of samples from our simulator (approx. 40,000),
and then training an ensemble of deep neural networks to approximate the simulator. This yields
a highly accurate simulator (mean-squared-error of 6e-5) that is fast, portable, and easy to use by
others. All of our experiments utilize data sampled from this proxy simulator rather than the original
simulator. We hypothesized that the difficulty of our meta-material problem may be undermined
because we use the same class of models (neural networks) for both the proxy-simulator and our
inverse models. We mitigate this risk by providing a much larger set of training data to the simulator
model, and using an ensemble of large and varying models for the proxy-simulator.

5.2 The 2-dimensional sinusoidal benchmark (D2)

This benchmark problem consists of a simple 2-dimensional sinusoidal function, of the following
form: y = sin(3πx1) + cos(3πx2). We included this problem because it had both of the following
properties: (i) despite its simplicity, we found it is challenging for most of the deep inverse model; (ii)
its 2-dimensional input space allowed us to visualize the solutions produced by each inverse model,
and study the nature of their errors. We utilize these properties to gain deeper insights about the
inverse models in Section 6.2.

Table 1: Benchmarking datasets outline
ID Dataset Dim(x) Dim(y)

D1 Ballistics 4 1
D2 Sine wave 2 1
D3 Robotic arm 4 2
D4 Meta-material 8 300 Figure 2: Illustration of the meta-material problem

6 Experimental Design and Results

We follow closely the design of the recent benchmark study [2]. For all experimental scenarios that
we share with [2], we followed their design and obtained (with one exception) similar results. This
includes results for the cINN, INN and cVAE models; on the Robotic Arm and Ballistics tasks. In an
effort to compare models fairly, we constrained the newly included models – Tandem and NA – to
have the same number (or less) of trainable parameters. Furthermore, all models utilized the same
training and testing data, batch size, and stopping criteria (for training). In those cases where model
hyperparameters were not available from [2], we budgeted approximately one day of computation
time (on common hardware) to optimize hyperparameters, while again constraining model sizes. Full
implementation details can be found in the supplementary material.

Once each model was trained, we estimated its error, rT for T ∈ {1, 10, 20, ..., 50} using D =
{xn, yn}Nn=1 random samples from the simulator. We used the following sample estimator of rT :

r̂T =
1

N

N∑
n=1

[ min
z∈ZT

L(ŷ(z), yn)] (11)

where ZT is a randomly drawn sequence of z values of length T . We use mean-squared error as L,
following convention [2, 1]. A unique set of z values was drawn for each model, based upon the
sampling distribution required by that particular model (e.g., Gaussian for cINN).

The main experimental results are presented in Fig. 3. Measuring r̂T as a function of T yields a
much richer characterization of each model’s performance compared to using just T = 1. In Fig.
3 we see that r̂T falls steadily as T increases, except for the Tandem model with is not stochastic.
Therefore r̂T quantifies the error one can expect for each model depending upon the computational
time/hardware permitted for inference available to a user for their application. Much more interesting
is the observation that the performance rank-order of the models also varies with T for all four tasks.
Therefore, the best model for a given task (in terms of r̂) also depends upon the time/hardware
permitted for inference.

7



10-1

10-2

10-3

10-4

10-5

100

10-1

10-2

10-3

10-4

10-1

10-2

10-3

10-4

10-5

r
T

^

r
T

^

r
T

^

D1: Ballistics

Inferences (T)

Inferences (T) Inferences (T)

0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

10-5

D2: Sine Wave

D3: Robotic Arm

(b)(a)

(c)

10-2

10-1

10-3

10-4

r
T

^

Inferences (T)

0 10 20 30 40 50

D4: Meta-Material (d)

INN

NA

Tandem

VAE

cINN

MDN

Figure 3: (a-d) Performance on each model for each benchmark task as a function of T .

6.1 Which models perform best?

The NA method almost always yields the most accurate solutions, across both tasks and settings of T .
Especially notable is its large performance advantage on the higher-dimensional meta-material task,
suggesting it may be especially effective for similar problems. However, NA has the drawback of
significantly greater computational costs than the other models, due to its use of gradient descent. The
inference time for all model/task combinations is shown in Table 2. We report the time for a single
mini-batch of a thousand inferences, which also closely approximates the inference time for a single
inference of each model, due to GPU’s efficient parallel processing. Therefore, if one inverse solution
can be inferred, then (on standard hardware) many inverse solutions can be obtained in roughly the
same amount of time, in which case simulation time becomes the biggest bottleneck (i.e., value of T ).

With these computational considerations in mind, as discussed, if enough time is available for at least
one inference of NA, then it is the best choice for nearly every task and setting of T . However, for
more time-sensitive applications where a single inference from NA is too slow, e.g., many real-time
tasks, we are limited to selecting among the other models, which all have (relatively) similar inference
time. Given these similarities, the best choice depends more strongly upon the remaining time
available for simulation (i.e., value of T ). In this scenario, the Tandem model consistently achieves
the best accuracy for time-sensitive applications, where T is small. If more than a few simulations can
be run, then the cINN and the VAE appear to generally achieve the best results: the cVAE performs
best on the ballistics task, while the cINN performs best for the robotic arm and sine wave task.

Table 2: Total Inference time (t) in seconds for 1,000 solutions
Dataset NA Tandem cVAE INN cINN MDN

D1:Ballistics 1.36 0.31 0.29 0.35 0.78 0.08
D2:Sine wave 1.22 0.19 0.19 0.19 0.20 0.53

D3:Robotic arm 1.12 0.19 0.31 0.21 0.23 0.62
D4:Meta-material 46.10 0.50 0.47 0.22 0.25 0.41
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Table 3: Estimated Asymptotic Performance of Each Model (r̂T=200)
Dataset NA Tandem cVAE INN cINN MDN

D1:Ballistics 2.50e-7 7.84e-3 2.80e-7 2.20e-3 1.18e-6 6.6e-6
D2:Sine wave 1.33e-7 1.17e-2 4.34e-5 1.24e-4 2.72e-5 5.21e-5

D3:Robotic arm 6.61e-7 5.44e-4 1.25e-2 2.12e-4 8.80e-7 1.82e-5
D4:Meta-material 6.67e-5 2.53e-3 5.49e-4 3.83e-2 4.45e-4 5.15e-4

6.2 Why does the neural-adjoint perform so well?

Figure 4: The image axes represent a uniform grid
of potential inverse solutions,(x1, x2), for the 2-
dimensional sinusoid problem. The pixel intensity
at each (x1, x2) location represents the correspond-
ing simulation error of that solution, if our target
measurement is y = −0.3. The blue rings repre-
sent the optimal solutions.

Notably in Table 3, we see that NA always
achieves the lowest asymptotic error as a func-
tion of T , while the other models asymptote at
varying levels. Why are the other models lim-
ited in their accuracy, even as T → ∞? One
potential explanation is that they do not fully ex-
plore x-space, and thereby miss some accurate
solutions. Alternatively, perhaps they can find
solutions near all of the global optima, but they
cannot accurately localize them (e.g., their esti-
mates are noisy). To answer this question, we
visualize the 2-dimensional sinusoid task (D2),
on which most of the models perform poorly.
Fig. 4 presents a random sample of inverse so-
lutions produced by each model, laid on top of
a 2-dimensional error map of x-space (darker
is better). The blue rings indicate the optimal
solutions for a target measurement of y=-0.3.
We can see clearly that NA finds highly accu-
rate solutions in each of the globally optimal
rings. The cVAE and the cINN seem to find so-
lutions near all of the globally optimal solutions,
however they rarely infer perfectly accurate so-
lutions. Therefore both the cVAE and cINN
seem to suffer from noisy solutions, rather than
inability to find the solutions. Finally, the INN
seems unable to search the entire space, in addition to suffering from inaccurate solutions. However,
this is a single visualization, representing a single task and a single instance of training the models.
We find the relative performance of all models (except NA) varies substantially across tasks and
the success of their training (which is somewhat random). This suggests that each of these models
sometimes suffer from limited exploration of x-space, and varying accuracy, depending upon the
aforementioned factors. These findings are consistent with (e.g., [2]) overall.

7 Conclusions

In this work we presented a large benchmark comparison of five modern deep inverse models, on four
benchmark tasks. We propose a new metric, rT , that evaluates the error of models as a function of the
number of inverse solutions they are permitted to propose, denoted T . We find that the performance
of inverse models, both in absolute error and in their rank-order, depends strongly on T , suggesting
that rT is important to characterize inverse model performance. We also introduce a challenging
contemporary inverse problem for meta-material design. Normally, it would be difficult for others to
replicate such real-world problems however, we introduce a strategy for creating simple, fast, and
sharable approximate simulators. Finally, we propose a method called the Neural-Adjoint, which
nearly always achieves the lowest error across all tasks and values of T . Its performance advantage
is especially strong for the higher-dimensional meta-material problem, suggesting it is a promising
approach to solve such problems.
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Broader Impact

We believe the most proximate impacts of this work will be positive. In particular, higher-dimensional
inverse problems like our meta-material problem present a major obstacle to the development of
beneficial technologies across many disciplines e.g., in materials, chemistry, and bio-chemistry. The
Neural-Adjoint method represents a tool to develop much more accurate inverse designs for these
complex problems. Furthermore, the ability to replicate inverse studies for complex problems, as we
propose, will also accelerate progress, and enable many researchers to study these problems even if
they lack sophisticated simulation equipment or expertise. As with many tools, we also acknowledge
that these advances can be used to accelerate the development of technologies that are used for
negative purposes, which we believe is the most immediate negative outcome of our work.
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