A Notations, Terms, and Abbreviations

In this section, we summarize the notations used in this paper.

A XY Action, covariate, reward
E[,U'(Xa A7 Y)] Ep(:v)ﬂb(a\w)p(ma,w) [,U(I, a, y)]
E[u(Z)] Eq(z)[1(2)]
wb(a | ) Behavior policy
m(a | x) Evaluation policy
R(m) Eq(@)me (alo)p(yla,a) Y]
r(z) p(z)/q(x
w(a, x) 7°(a | 2)7°(a | v)
(aa x Ep(y\a.,z) [y | a, {L‘]
’U(JC) . e (a|x) CL,AZZ?) | CC]
Asmse[R] lim,, 00 E[(R — R)?|n
II Policy class
RA AAT
18(X) 2, 18(X) ] | L?norm, L%-norm
k( Entropy integral of II w.r.t e-Hamming distance
nhst Number of training data
nev! Number of evaluation data
ASB There exists an absolute constant C s.t. A < CB

Cl ) 02 ) Rmax

p
Dhst Deval
n}f“,n};“
n?VI,W,SVl

Table 4: Summary of notations

Upper bound of 7(X), w(A, X),Y
nhst/(nhst + nevl)

Train data, evaluation data

Split train data

Split evaluation data

D; Concatenation of n!'* and n$"'i = 1,2

G st vVnbst{E, n+ — E} Empirical process based on train data

Gen vVneY{E,.n — E} Empirical process based on evaluation data
T(7°) Semiaprametric lower bound of R(7?) under nonparametric model
K() Kernel with a bandwidth h

nhst k-th train data

ng! k-th evaluation data

B Identification under Potential Outcome Framework

We explain how to apply our results in the main draft under potential outcome framework, which
is a common framework in causal inference literature (Rubinl [1987). In this section, our goal is
justifying DM and IPWCS estimators under potential outcome framework.

Let us denote counterfactual variables based on stochastic policies (interventions) as Y (B), where
B is a random variable from the conditional density 7¢(b|Z) E]and Z is arandom variable following
the evaluation density ¢(z). Here, note what we can observe is data:

(X0, A YT ~ pla)rc(a | 2)ply | a,x), {23007 ~ q(2).

A detailed review of the stochastic intervention is shown in Munoz & Van Der Laan|(2012); |Young
et al.|(2014).

Then, let us put the following assumptions:

e Consistency: Y =Y (a) if A = aforVa € A,

"The reason why we use B is to distinguish it from the random variable A.
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e Unconfoundedness: A and Y (a) are conditionally independent given X for any a € A, G
and Y (a) are conditionally independent given Z for any a € A,

e Transportability: E[Y (a) | Z=¢] =E[Y(a) | X =] foranya € A,c € X.
Note that transportability is a weaker assumption compared with the assumption in the main draft:

ptrain(Y(a) | C) = ptest(Y(a) | C)7

where pipain (- | +) is a condition density of Y (a) given Z, piest (- | +) is a condition density of Y (a)
given X . Following Lemma 1 (Kennedy, 2019), we can prove the following lemma.

Lemma 2 (G-formula). E[Y(B)] = [E[Y | A =a, X = z]n°(a | z)g(z)d(a, z).
Proof.

EY(B)] = [ E[Y(b) [ B=0b,Z = 2|7°(b | 2)q(2)d(b, 2)

E[Y(g) | Z = 2]m°(b | 2)q(2)d(b, 2)

E[Y(9) | X = 2]7°(b | 2)q(2)d(b, 2)

I
— S

E[Y(g) | A=g,X = 2|7°(b| 2)q(2)d(b, 2)

EY(a) | A=a,X =z|7°(a | )q(x)d(a, z)

= [EY |A=a,X =z|7°(a]| x)q(z)d(a,x).

From the first line to the second line, we use a uncounfedness assumption. From the second line to
the third line, we use a transportability assumption. From the third line to the fourth line, we use
a uncounfedness assumption. From the fourth line to the fifth line, the random variables a, z are
replaced with b, z. From the fifth line to the sixth line, we use a consistency assumption.

O

From this lemma, the DM method can be naturally introduced. Note this is equivalent to a transport
formula [Pear] & Bareinboim| (2014} (3.1)) when the evaluation policy is atomic. The G-formula
described here is its extension when the evaluation policy is stochastic.

Theorem 8 (IPWCS). E[Y (B)] = E[r(X)w(A, X)Y]

Proof.
E[r(X)w(A, X)Y] =E[r(X)w(A, X)E[Y | A, X]]
= /E[Y | A=a,X = z|r(z)w(a, z)7°(a | )p(x)d(a,z)
= /E[Y | A=a,X =z|7°(a]| 2)q(z)d(a,x)
=E[Y(B)].
From the third line to the fourth line, we use a Lemma[2} O

C Density Ratio Estimation

Here, we introduce the formulation of LSIF. In LSIF, we estimate the density ratio r(z) = %

directly. Let S be the class of non-negative measurable functions s : X — R*. We consider
minimizing the following squared error between s and r:

Ep(o)[(s(2) = 7(2))*] = Epay[(r(2))?] = 2Eq () [s(2)] + Ep(ey [(5(2))?]- )
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The first term of the last equation does not affect the result of minimization and we can ignore the
term, i.e., the density ratio is estimated through the following minimization problem:

st = angin | 35,0 [(6(0)] - By 5]

where S is a hypothesis class of the density ratio. As mentioned above, to minimize the empirical
version of (7), we use uLSIF (Sugiyama et al.l 2012). Given a hypothesis class #, we obtain 7 by

7 = argmingey | 5Ene[(s(X))?] — Epen[s(Z)] 4+ R(s) |, where R is a regularization term. For

a model of uLSIF, [Kanamori et al.| (2012) proposed using kernel based hypothesis to estimate the
density ratio nonparametrically. [Kanamori et al.| (2012) called uLSIF with kernel based hypothesis
as KuL.SIF. |[Kanamori et al.[(2012)) showed that, under some assumptions, the convergence rate of

__1
KuLSIF is )f(X) - (%) H =0y (min (nhst, nevt) 2*”), where 0 < 7 < 2 is a constant
2
depending on the bracketing entropy of H.

D Efficiency bound for the stratified sampling mechanism
In this section, we discuss the efficiency bound.

D.1 Cramér-Rao lower bound

First, we show the Cramér-Rao lower bound when the DGP is a stratified sampling with the historical
hst

data {a;}?; and evaluation data {ﬁi}?:ll, where «; and f3; are random variables. Let H,ne: and

. . . hs evl . . .
Gevt be the distributions of {a;}7"; and {53;}7"). Let us define a set of distributions as M, =
{Hnst, Gpevi }. A model MP2™ js called a regular parametric submodel if the model can be written
as MP¥® = {Hy, ,ust, Gy, pevi }, where 0) € Oy, ; € O and it matches the true distribution at
07 and 03, and it has a density

nhst nevl
hg, s ({0 }) = TTimy Ml 01), 9oy nen ({8i})) = T1izy 9(Bi3 02).
Let R(H,G) — R be a target functional. Then, the Cramér-Rao lower bound of the functional R
under the parametric submodel MP?™ is
CR(M3™*, R) =V o7 R(Hy,, Go,)E[2V, log hy, ]~ Vo, R(Hp, , Gp,)
+ V@; R(H91 ) G92 )E[®Ve1 1Og 902 ,ne"l] _1v92 R(H91 ) Gez ) .
Before that, we calculate the Cramér-Rao lower bound in a tabular setting, where the state, action

and reward spaces are finite.
Theorem 9. In a tabular case, nCR(MP*2 R) is

p'E[r?(X)w? (A, X)var[Y | A, X]] + (1 — p) " *var[v(2)]

hst

Proof of Theorem[9 1In our setting, we have {X;, A;, Y;}I';
i.e., the value of the evaluation policy ¢ defined in (I) is

R(r) = [yq(z)7*(a | 2)p(y | a,z)dp(a, z,y), ®)
where ( is a baseline measure such as Lebesgue or counting measure. The scaled Cramér-Rao lower
bound for regular parametric models under MPa?:

nCR(MP2, R)

and {Z; };:11 The target functional,

is given by
pT ALBTAL 4 (1—p) 1 AsBy T Ay 9)
A1 = Eyrg(2), amme (al) y~p(yla,x) YV o7 log p(y | a, 23 61)],
Az = Epng(a), amme (ala) y~p(ylaz) YV o7 108 q(2; 62)],
B1 = Eqrp(a),amn® (alz) y~p(yla.o) (@ Vo, logp(y | a,z;01)],
By = E.q(-)[®Va, log q(z; 02)].
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Then, from the Cauchy Schwartz inequality (Tripathil [1999)), we have the following inequality:
E[A(Z)BT(2)|E[B(2)BT(2)]'E[A(2)BT(2)]" < E[4*(Z)],
where E[A(Z)] = 0,E[B(Z)] = 0. Then, we obtain the following upper bound:
ABTAT
= E[r(X)w(A, X)YVyr logp(Y | A, X;61)|E[©V, logp(Y | A, X;61)] 7
X E[r(X)w(A, X)YVy, logp(Y | A, X;61)]
— E[r(z)w(A, X){Y —E[Y | A, X]}V,7 logp(Y | A, X; 6,)[E[2Vy, log p(Y | 4, X;01)]""
X Elr(z)w(A, X){Y —E[Y | A, X]|} Ve, logp(Y | A, X;01)]
<Er?(X)w?(A, X){Y —E[Y | 4, X]}?] = E[r*(X)w? (A, X)var[Y | 4, X]].
In the same way,
A;BTYA]
= E[v(Z) Vg7 logq(Z;02)E[©V, log ¢(Z; 02)] " E[v(Z) Ve, log ¢(2; 62)]
= E[{v(Z) — E[v(2)]} Vg log 4(Z;62)|E[®V, log 4(Z; 62)] " 'E[{v(Z) — E[v(Z)]} Ve, log g(Z; 6:)]
< E[{v(2) - E[v(2)]}*] = var[v(Z)].
Therefore,
p PAIBTTA + (1 - p) 1 ABy Ay
< p B (X)w? (A, X)var[Y | A, X]] + (1 — p) " 'var[v(Z)].

Finally, we have to show this inequality is equality. This is obvious because our setting is tabular. [

D.2 Reduction to i.i.d setting

The Cramér-Rao lower bound we have seen so far can be extended when the model is semipara-
metric. However, because our DGP is not i.i.d, we cannot direct apply standard semiparametric
theory here. To circumvent this problem, we regard the whole n data at hand as one observation and
consider the case where we observe m observations. Then, as m goes to infinity, the total data size
n' := nm goes to infinity. Because each one observation (n data) is i.i.d, we can apply standard
semiparametric theory. Only in this section, we regard n’ as the total hypothetical sample size when

discussing asymptotics. The value n is the sample size of the actual data at hand, which is fixed.

We explain the definition of the efficient influence function (EIF). This is a function for one obser-
vation

0= (T1, "+ ,Tphst, A1, "+, Gphsty Y1, ** , Yphst, 21, * 5 Zpevl ).
This is defined given the target functional and the model. In our context, the EIF has the following
property.
Theorem 10. (van der Vaart, 1998, Theorem 25.20) The EIF ¢(0) is the gradient of R(m®) w.r.t the
model M.,,, which has the smallest Lo-norm. It satisfies that for any regular estimator R of R(m®)
w.r.t the model M,,, AMSE[R] > var[¢(0)], where AMSE|[R] is the second moment of the limiting
distribution of /m(R — R(7®)).

This states that var[¢(o)] is the lower bound in estimating R(7®). We call nvar[¢(o)] the efficiency
bound because what we want to consider is the lower bound of v/n/(R — R(7®)). Note that n is
fixed here.

For the current case, the EIF and efficiency bound are explicitly calculated as follows.

Theorem 11. The EIF of R(7®) w.r.t the model M., is

1 nhst 1 ncvl
¢(0) = > r(zaw(ai, z:){yi — q(xi, a:)} + T > u(z) - R(r)
i=1 j=1
The (scaled) efficiency bound nvar[¢(0)] is

pE[rA(X)w? (A, X)var[Y | A, X]] + (1 — p)~var[v(2)].
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When assuming the model ME* where 7" (a|z) and p(z) are fixed at true values, we can also show
that the EIF and the efficiency bound are the same.

Proof of Theorem([Il] We follow the following steps.

1. Calculate some gradient (a candidate of EIF) of the target functional R(7¢) w.r.t M,,.

2. Calculate the tangent space w.r.t M,,.

3. Show that the candidate of EIF in Step 1 lies in the tangent space. Then, this concludes that
a candidate of EIF in Step 1 is actually the EIF.

Calculation of the gradient As mentioned, the model MP?™ for a nonparametric model M., is

hst n
Hp x50 z aL ‘ Zi; a) (yi | xiaaﬁey)HQ(zj;oz)
j=1

hst evl

0=(0,],0],0,6)" 0= {zisai yis 25}y joy -

zrYarVyrVz
We define the corresponding gradients:
9z = Vem logp(z, 9m)7 Yalz = v@a 10g 7rb(a|x; 0(1)7 Gyla,x = Vey 1ng(y|a’a Z; 9y)7 q> = VOZ lOg q(Z, 0z)

To derive some gradient of the target functional R(7¢) w.r.t M,,, what we need is finding a function
f (o) satisfying

VR(0) = E[f(D)V logP(D' 9)}
=E hst Z{gm +ga\:r(XuA ) + Gy|z, a(XuAuY; evl Zgz

‘We take the derivative as follows:

VR(H) = Eq(l’)ﬂ'e(a‘z) (yla,z) [y {gz + gy‘a m( |a, fL')}:I .
By some algebra, this is equal to

]mt

I nhstz w(A;, Xi){Vi - (Xi,Ai)}+%Zv(Zj)—R(vr) V log p(D; 6)
j=1

Thus, the following function

"hst

¢(0) = ﬁ > r(@)w(as, @) {y: — a(wi,a:)} + % ZU(ZJ‘) -

i=1

is a derivative.

Calculation of the tangent space Following a standard derivation way (Tsiatis, 2006} [van der
Vaart, [1998), the tangent space of the model M., is

hst

1 n
nhst Z {t -Tz + ta\z(xza az) + ty|a x(xuawyz + evl th<zj) € L2(0)
j=1

where Lo(0) is an Lo space at the true density,

E[tt(X)] = O7E[ta|w(X7 A)|X] = O’E[tym,w(Xv Aa Y)‘X’ A] = OaE[tz(Z)] =0.
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Last Part We can easily check that ¢ (o) lies in the tangent space by taking
tz =0, ta|w =0, ty|a7:v = T(J?)W((l, ac){y - q(av 33)}, tz(z) = U(Z) - R(ﬂ-)
Thus, ¢(0) is the EIF.

Remark 6. We can easily see that the EIF is ¢(0) when assuming the model M!* where p(x) and
7°(a|x) are fixed at true values. This model is represented as

nhst nevl
{I0E pwa)m? s | 2)p(yi | 6,013 0,) TT=y a(z5362) |

where -, emphasizes that these are fixed at true densities.

The function ¢ (o) in the proof is still a gradient of R(7®) w.r.t MfX because the model M is
smaller than the model M,,. Besides, ¢(0) belongs to the tangent space induced by the model M*
because the tangent space induced by M is

nhst nevl

1 1
oy Z {tylae (@i, ai,yi) } + o) t(z;) € La(o)
i=1 j=1

where
Eltyja,.(X, A, Y)|X, Al = 0,E[t.(Z)] = 0.
We can easily check that ¢(o) lies in the above tangent space by taking
tyla,e = r(@)w(a, 2){y — qla, )}, t.(2) = v(z) — R(m).
Thus, ¢(o) is the EIF regarding Mx, O

E Proofs

In this section, we show the proofs of theorems. In the proofs of Theorem [2HI4] we prove the case
where we use a two-fold cross-fitting. The extension of two fold cross-fitting to the general K -fold
cross-fold is straightforward.

E.1 Required conditions

In order to show Theorems [6HI3] we use the following Theorem [12] which shows the convergence
rate of kernel regression. Here, we have data { B;, C;}I'_;, which are i.i.d. from p(b, ¢) = p(c|b)p(b),
and B, takes a value in BB. Then, let us consider a kernel estimation:

Tlil Z:‘L:I Kh(Bl — b)C’z,

where K}, (b) = h=%K(b/h?), where d is a dimension of b. Then, we have the following theorem
following Newey & Mcfadden| (1994)).

Theorem 12. Assume

o the space B is compact and p(b) > 0 on B,

e the kernel K (u) has the bounded derivative of order k, satisfies [ K(u)du = 1, and has
zero moments of order < m — 1 and a nonzero m-th order moment,

o E[C | B = b] is continuously differentiable to order k with bounded derivatives on the
opening set in B.

e thereis v > 4 such that E[|C|"] < co and E[|C|" | B = b]p(b) is bounded.
Then, when h = h(n) and h(n) — 0,
n ogn'/? m
InL S KBy — 00— pOEICH] | = O, (i + 1) (10)
Then, under n*=2/"he/logn — oo, /nh¥T2k — oo, \/nh®™ — 0, the above lo, risk is 0, (n~1/2)

(Newey & Mcfadden, |1994).
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Additional assumptions: regarding Theorem[I2] we assume the following assumptions when we
prove Theorems [T3Ho}

Theorem[I3 : condition when replacing B with X , C' with w(A, X)Y’, condition when replacing
B with Z, C with 1.

Theorem[d] : condition when replacing B with X , C with w(A, X)Y, condition when replacing
B with X, C with 1, condition when replacing B with Z, C' with 1.

Thorem[d : condition when replacing B with (X, A), C with 1, condition when replacing B with
(X, A), C with Y, condition when replacing B with X, C' with w(A, X)Y, and condition
when replacing B with Z, C with 1

Theorem[f] : condition when replacing B with (X, A), C with Y, condition when replacing B with
(X, A), Cwith 1
E.2 Warming up

As a warm up, first, we prove the asymptotic property of some simple estimator. When p(x) and
7°(a | x) are known, let us define an IPW estimator:

¢(X) (A | X)Y

p(X) 7 (A]X)

RIPWl (ﬂ'e) = Enhst

Theorem 13. When G(z) = Gy (x), the asymptotic MSE of Ripw is

p var[r(X)w(A, X)Y] + (1 — p) " tvar[v(Z)].

Proof of Theorem[I3] We follow the proof of Newey & Mcfadden| (1994). For the ease of notation,
assume p = ky /(ky + ky). In this case, n"s* = kN, and n®" = ky N, where N, = n/(k1 + ko).
Note that in this asymptotic regime, N, — oco. Therefore, we reindex the sample set as

hst

(X3 ={Xp:} (1<b<k, 1 <i<N,),
k

hst

{Z}j 1_{ZCJ}( S 271§j§N0)'

Here, we only consider the estimator Rlle( ©) based on based on { X, 1} v, and {Z, ]} and

Jj=1
denote it as Ry .. Then, the final estimator Rypw1 (7°) using all set of samples is equal to

1 k1 k2 f
Trka Dobe1 Do B
because the kernel estimator has a linear property. More specifically, we have

hst evl

Rivwi(r*) = i > : Y Kn(Z - X)) (A | XY,

hs evl b
e E (4 | X)p(X)
h:.t ev
_ Ky( Z — X;)me(4; | X,)Y;
- nhstnevlzz 7rb A; \X) ( )
1=15=1
ii giKh c; — X)) (Api | Xb,0)Ys
" Tiks — = nh‘tne“ == 7 (Api | Xo,)p(Xp,)
k‘l k2
Ry..

First, we analyze 1%171.
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Step1 We prove the following in this step:

Rye= 1= 3o r(Xp0)w(Xpi, Api)Voi + 5 Yooy v(Ze ) + op(n1/2).

Especially, we prove the statement for 1%171 whenk; =1,ky =1, nhst = pevl = /2. We have

R1 1 = E, nst Fh(X) (4] X)Y]
’ "l p(X) w(A]X)

A PRIV D &) 7 I

™ % i) Lq

— i K (Z: — X,

7 2 TR A X | e 2 Kk~ X

,,tht evl

1 n
+ nhstnevl Z Z i

i=1 j=1

X) we(A | X)Y]

2
+ nhstpevl Z bi’j’

1<j

(A | X)Y]
TP (A | X)

where

1 7P(4 | X))Y;
p(Xs) 7P(A; | Xy)
bi i ((Xis Ai, Y5, Z3), (X5, A5, Y5, Z5)) = 0.5{a; j + a;i}.

ai,j((Xi7Ai7 Yi)7 (Zj)) =

{Kn(Z; — Xi) — a(Xa)},

Then,
2
et D bag (Xiy A Y3 Z0), (X5, 43,5, 29))
1<j
nhst
2
= o A D Elbiy | Xi, A Yi Zi) p +0,(n'7?)
i=1
nev! nhst
1 1 .
= D _Blagi | X, ALYs Zil+ 5> Elaij | Xi, A3 Y, Zi) + oy (n”1/?)
=1 i=1

= % Z{U(Zi) — R(7°)} + Op(nfl/Q).

From the first line to the second line, we used the U-statistics theory (van der Vaart, |1998, Theorem
12.3). From the third line to the fourth line, based on Theorem [T2] we used

Elaj; | Xi, A1, Vi, Zi] = 0p(n™/?) + E[w(A;, X3)Y; | X; = Zi]pgii + E[r(X;)w(4;, X;)Yi]
pP{A4

= 0p(n™?) +v(Z)) = R(r),

1 Wb(Ai | XZ)Y;

Ela;; | Xy, Ai, Yi, Zi] = op(n~Y/2) + p(X) (A | X)) {a(Xi) —q(Xi)}

=o0p(n712).

Remark 7. E[h(4;, X;,Y;) | X; = Z,] is an abbreviation of {E[h(A;, X;,Y:) | X = x]}a=2z,.

Therefore,

g(X) (A | X)Y
p(X) 7 (A]X)

EIPWCSB = Enhst + ]Enevl [’U(Z)] — R(?Te) + op(n_l/Q).
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Step 2 Based on Step 1, we have

. 1 R
R = Ry ¢
PW1 = ZZ b,
b=1 c=1
| bk [ N 2 i
=k ZZ N ZT(Xb,i)w(Xb,i,Ab,i)Y%,i tN Z{U(Zc,j)} — R(7°) + 0p(n /%)
V2 =1 o=1 2 =1 2 =1 |
LR | k[ 1
= N Z ZT(Xb,i)w(Xb7i7Ab7i)}/b,i + N Z ZU(ZC’j) —R(ﬂe)+0p(n_1/2)
1Yo 1 Li=1 2% 21 | =1 |
1 nhst
- ’nhst Z (X) (XZ’A evl Z + Op(n_l/Q)'
i=1
Finally, from stratified sampling CLT, the statement is concluded. O

E.3 Proof of Theorem 2]
Proof. We denote
¢1(z,a,y;m 0, f) = r(x)w(a, z){y — fla, )}, ¢2(2; f) = v(2).

hst evl hst ., hst

We also denote the union of ns* and n¢*! as D; for i = 1,2, and the number of n}st, nhst p§vt ngt
as ni1,N21,M12,N22. For 31mp1101ty, we assume ni; = Nni2, N1 = N22.

Then, we have

VB e [61 (X, A, Y370 60, fO)] + B pen [62(Z; V)] — R(x°)}

. 1 .
= \/ﬁ{mGn?v1[¢1(X,A7Y;ﬁ(l),12;(1), FO) =1 (X, A Y5, w, )] + \/TEGnﬁvl[ﬁbz(Z;f(l)) — $2(Z; f)]}
(11)
+ Vi{E[on (X, A, Y570, a0, fO) |70, 0, FO)+ Blgs(25 f0) | fV) (12)
—E[p1(X, A, Yrw, )] — Elg2(Z; f)]}
+ \/E{En{nst [d)l (Xv AYirw, f)} + En‘i"l [(b?(Zv f)] - R(ﬂ—e)}' (13)
The term (L1 is 0,(1) by Step 1. The term Eq. is also 0, (1) by Step 2 as follows.
Step 1: Egq. is 0,(1)
If we can show that for any ¢ > 0,
lim PH\F{F nee |1 (X, A, Y37 M FO) — (X, A Y mw, f)] (14
1 .
T G [62(Z; f ) = ¢2(Z; £)]}] > €| Do] =0,

then by the bounded convergence theorem, we would have

lim P[ly/n F vt [01 (X, A, Y30 M) F) — 60 (X, A, V7w, £)]
1 Py _ . _
- \/@Gn?“[‘b?(z’f V) = 62(Z: ]} > e =

yielding the statement.

To show , we show that the conditional mean is 0 and the conditional variance is o,(1). Then,
(T4) is proved by the Chebyshev inequality following the proof of (Kallus & Uehara, [2020, Theorem
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4). The conditional mean is

]E[\/E{\/:TGTL?“ (61(X, A, Y570, 0@, fO) — 61 (X, A, Y7, w, f)]

11
+ wer [62(2: JV) - 62(2; )]} | D]
E[\/ﬁ{\/%(;nlfm [0(X, A, V37D, oW, FOY Z 6 (X, A, Y7, w, )]
+ leG [62(Z; F) = $2(Z; )]} | Do, 70, 0™, fO]

=0.

Here, we used a cross-fitting construction. More specifically, regarding the second term, we have
E[E,on [92(Z; f1) = 62(Z; [)] = Elp2(Z; f) = 62(Z; f)] | Do, 7,0, f V]
= E[E, 1 [62(Z; fO) = ¢2(Z; )] | Do # D, 0D, fO) — Elga(Z; fV) = d2(Z5 ] | fV]
= El¢2(Z; fV) = 62(Z; £) | fO] = E[ga(Z; ) = 02(Z; f) | fV] = 0.

The conditional variance is bounded as

var[v/n{ MGW[¢1(X,A,Y;f“>,w<”, FOY = 61(X, A, Y;m,w, f) | Do
+ \/,;G (62(2: FO) — 62(Z: D)} | Do)
= varloy(X, A Y30, 00, JO) < 61(X, A, Y im0, f) | Do)

11

+ Lvar[(bz(Z; f(l)) — $2(Z; f) | Do)
n22

< %E[{f(l)(X)@(”(AX)(Y — fO(A, X)) = r(X)w(A, X)(Y = f(A, X))} | Dy

+ B0 (2) ~ o(2)) | Da] = 0p(1) 4 0,(1) = 0,(1),

Here, we used
2 E{AO (X)W (A, X)(Y = fO(A, X)) = r(X)w(A, X)(Y = f(A,X))}? | Da] = 0,(1).
(15)

and

E[{61)(Z) — v(2)}? | D] = 0,(1). 16)

The first equation (I3) is proved by

E[{rMaMW (Y — fO) = rw(Y — £)}? | Do)

=E[{#MpM (Y — fO) — ;WM — £) + DO (Y = f) — rw(Y — )}? | Dy

< 2B[{# DM (Y — fO) — s WMy — £)}? | Do) + 2B[{F DD (Y — ) — rw(Y — f)}? | Do
< 201Gyl f = FOUB + 2 x ARZ, PN — rw)3 = 0,(1).

x|

Here, we have used a parallelogram law from the second line to the third line. We have use 0 < 7 <

C1,0 < < Cy,| f | < Rmax according to the Assumptionand convergence rate conditions, from
the third line to the fourth line. The second equation (I6) is proved by Jensen’s inequality.

Step 2: Eq. is 0,(1).
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We have
[E[o1 (X, A, Y37, 0®, FO) |70 00, f] 4+ Elgo(Z: fD) | f] = Elon (w57, w, £)] — Elg2(Z; )]
< [E[{FD (X))o (4, X) - r(X)w (A XOH=FV(A,X) + £(A, X)) | #D, a0, fO])
+ [E[r(z)w(A, X){ (4, X) + f(A,X)} [+, 0W, fOT+ E[1(Z) - o(2) | fV]]
+ B[ (X)d M (A, XY = £(A, X)) [+, 0M]]
< [P (X)d M (4, X) = r(X)w(A, X) |2 P (A4, X) = F(A,X)]|2+0+0
=af+04+0= op(n_l/Q).
Here, we have used Holder’s inequality:

1£glle < £ ll2llgll2,
the relation
E[r(X)w(A, X){~ D (4, X) + f(A, X)} |+, 00, fO] + B (2) — v(2) | fO)

= E[—r(X)w(A, X)fP (A4, X) + W (2) | #0,0®, fO] + E[—r(X)w(A, X)f(A, X) +v(2)]
=0+0=0,

and
E[FD (X))o (A, X){Y — f(4,X)} |7V, 0]
= B[ (X)dM (4, X){f(A,X) - f(A4,X)} |70, 0] = 0.
Step 3: By combining everything, we have
E, et [61(X, A, Y320, 00, fO)] + B en [62(Z; V)] = R(x°)
= B [0 (X, A, Y57, w, )] + B [62(Z; f)] = R(7°) + 0p(1/v/).
Then,
Rpres = 0.5, [61 (X, A, Y570 oM fO)] 4 0.5E e [62(Z; f V)]
+%EM@MAYH *QWW+%MM@MﬂW
= 0.5E et [01 (X, A, Y r,w, f)] 4 0.5E,ev [¢2(Z; f)]+
+ 0.5E et [01 (X, A, Y5, w, f)] + 0.5E 01 [62(Z; )] + 0p(1/v/n)
=Bt [01(X, A, Y mw, f)] + Epen[62(Z; f)] + 0p(1/v/n).

Finally, by using a stratified sampling CLT (Wooldridgel [2001), the statement is concluded based on
Assumption|T} O

E.4 Proof of Lemmalll
Proof. We can bound ||#(X)w(A4, X) — r(x)w(4, X)|l2 = op(n™P):
[#(X)w(A, X) = r(X)w(A, X)[l2 < [|F(X)d(A, X) = #(X)w(A, X2
+ [P(X)w(A, X) — r(X)w(A, X)ll2
< C1op(n™") + Ca0,(n™") = o,(n~?).

Here, we used the assumptions that r(X) is uniformly bounded by Cy and w(A, X) is uniformly
bounded by Cs. O

E.5 Proof of Theorem[3
Proof. Letus define ¢ (z,a,y;r,w, f) and ¢a(z; f):
d)l(xa a,y; T, w, f) = r(a?)w(a,x){y - f(avx)}7 ¢2(2, f) = U<Z) (17)
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We also denote the union of n** and n$"! by D; fori = 1,2, and the number of nst, nhst p§vl pgvl
by nii,N21,M12,N22. For Simplicity, We assume ni; = nig, N21 = N22.

Then, we have

(Bt [01 (X, A, Y570, 0D, fO)] 4+ Epen[a(Z; f V)] — R(n)}

= { w}u w01 (X, A, YA 0, fO) — g0 (X, A, V5Tl £ + J%Gn;w [62(Z; fV) = 62(Z; fT)]} +
(18)

+{E[p1(X, A, Y;7D 0 fO) [#0) M) O] 4 Elgy(Z; fO) | O] (19)

—E[p1 (X, A, Vet wh £ = Elpo(Z; 1]}

+ {Enll‘“ [¢1 (X’ Aa Y7 TT, wTa fT)] + ]Eni""l [¢2(Za fT)] - R(ﬂ—e)}' (20)

The term is 0,(1/4/n) by Step 1 in the previous theorem noting that what we have used is

[#(X)i(A, X) = wh (A, X)rf(X)|| = 0,(1), | f(A, X) = FT(A, X)|| = 0,(1). The term Eq.
is also 0,(1) by Step 1 as we will show soon.

Step 1: Eq. (19) is 0,(1). We have
[l (X, A, 757,00, f0) | 70,00, fO]+ Elga(Z; fU) | FO) = Bl (27, w, £)] — Elg2(Z; £)]]
< B[P (X)a™M (4, X) = 1 (X)w! (4, X)H= DA, X) + f1(A, X)) | 70,00, fO]]
+ [E[r! (@)w (A, X){=fD(A,X) + f1(A X)) | 7D, 00, O]+ BN (2) - of(2) | FO)]
+ [E[FY ()M (A4, XY = f1(A, X)) [+, aM)].
Here, if ff(a,2) = f(a,z), we have
0p(1)0p(1) + 0p(1) + 0 = 0p(1) = 0p(1).
if 7T (z)w'(a, ) = r(x)w(a, z), we have

0p(1)op(1) + 0+ 0p(1) = 0,(1) = 0p(1).
Therefore, Eq. is 0,(1)

Step 2: By combining togather, we have
E, e [01 (X, A, V5720, 00, O 4 B pen [62(Z; fM)] = R(x°)
= B [01 (X, A Y570 0l f1)] 4+ Epenl2(Z; f1)] — R(7°) + 0p(1).
Then,
Rpres = 0.5E e [61(X, A, V370, 00, fON)] 4 0.5E, 00 [62(Z; f )]
+ 0.5E et [01 (X, A, V572, 0P, fON] 4 058 en [92(Z; f2))]
= 0.5, 0t (01 (X, A, YT wl, f1)] + 0.5E en [62(Z; £1)]+
+ 0.5, 5o [01 (X, A, V57T wl, (1)) + 0.5E,,00 [92(Z; £1)] + 0,(1)
= Epuet [01(X, A, V57T w0l 1] + e 92(Z; £1)] + 0p(1).
Then, the statement is concluded because
E [Epnst [01(X, A, Y577, 0, f1)] 4+ Epen[92(Z; f1)]] = R(7°)
based on the double robust structure and
B [0 (X, A, Y578, w0, f1)] + Epen[¢2(Z; f1)] = R(7°) + 0,(1)

from the law of large numbers based on Assumption|[T} O
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E.6 Proof of Theorem [14]

Proof. We can prove similarly as in the proof of Theorem[I] Therefore, we omit the proof.

O
E.7 Proof of Theorem [
Proof of Theorem[d} For the ease of notation, we prove the case nhst = nev! noting the kernel

estimator is linearized as in Theorem [I3]and and the generalization is easy. We have

Qh(af) _ M _ éh(‘r)H — Op(nfl/Q)’

pn(z)  p(x)
where

én@) = st5{an(@) — g(@)} — S {pn(w) — pl)}.
This is proved by Theorem[I2] Then,

; in(X) (A | X)Y
RipwesB = Eppnet [qh( ) (A ] X) ]

pn(X) (A X)

= i 2 T Ty 0+ )

o(X) (4] X)Y
== E hst 3
" [p(x) AT X) nhstnew;]zl“ﬂ
e a0l xY) 2
~Ewe [ A 1) | 2 b

where
e A vy (7o L T A XYY
az,j((szAz;Y;)v(Zj)) p(Xi) 7Tb(A |X)
(X)) (4 | XY ‘
P2(X;) 7Tb(A1 | X)) {Kh(X X) (Xz)}7
bij ((Xi A, Y5, Z3), (X5, A, Y5, Z5)) = 0.5{ai; + aj:}.

{Kn(Zj — Xi) — q(Xi)}

Then,
2
WZbLJ’(X%Ath,Z) (X;,4;,Y;,2)))
1<j
hst
2
= o A D Elbiy | Xi, A Yi Zi) p +0,(n /)
i=1
ncvl h:.t
1
ZWZE[aj’i|Xi’Ai7K’Z] hst ZE(]’%J |X’L7A7,7Y;,Z]+Op( 1/2)
i=1 i=1

= % Z{U(Zz) — T(Xz)’l/(Xl)} + Op(n—l/Q).

From the first line to the second line, we have used a U-statistics theory (van der Vaart, 1998, Chapter
12). From the third line to the fourth line, we have used

[aJ i | ZHXMAMY;

— op(n~1/2) (A | X)Yi o q(Xi) m(Ai | Xi)Ys | 4
=onln™ )+ {B | T i) = 4] B [ T oy 16 0
=0p(n" %) +0(Z;) — r(Xi)v(Xy),

[alj ‘ ZzaXZaAuY] ( 1/2)
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Therefore,
Ripwoss = Epue BE?% {:[E?J |X)£/ - U(X)H + Epent [0(Z)] + 0p(n~1/2).

The final statement is concluded by CLT. O

E.8 Proof of Theorem 3

Proof. For the ease of the notation, we prove the case n™* = n°"! noting the kernel estimator is
linearized as in Theorem [[3] and the generalization is easy. Here, we concatenate X and A as D.
We also write p(z)7°(a | ) as u(d).

2 g8 (@) = optnV2),

where

en(d) = 2 {an() — a(e)} — S {in(d) — u(d)}.
This is proved by Theorem[I2] Then,

Ripwes = Eppnet Fh(X) (4] X)Y}
(X)) 7 (A] X)
hst
_ 1 e Q(Xz> ~
nhSt ;ﬂ- (A'L | Xz))/; {U(Dl) + E}I(Xl)}
(](X) 7Te(A ‘ X)Y nhst pevl
= e Lo(X) (A X) nhstnevl ;;%
(X)) (A| X)Y 2
=, st L
n {p(X) 7Tb(A | X) + nhstpevl ;b »J
where
1 74 | Xy)Y;
,] XiaAi;)/i, Z;)) = K Z X Xi
a,,](( ) ( ])) p(XZ) 7Tb(AZ | X) { h( ) ( )}
_a(Xa) |
20" Wi | XYl Kn(Dj = Di) — (D)}
bi i (X, Ai, Vi, Z2), (X, A, Y5, Z;)) = 0.5{a;; + a;.}.
Then,
2
et 2 big (X0 A Y, Z0). (X5, A, Y. 2))
i<j
2 nhst )
= 5 ) 2 Blbig | X0 AL Yi, Zi) ¢ +op(n?)
i=1
1 nev! 1 hst .
= W ZE[GJ,Z | X7,7A27-Y’-L7ZZ] + W ZE[G’Z,J | X“A“}/“ZZ} +Op(n 1/2)
=1 i=1
= nevl Z{U ) (XMA ) (Dz)} +Op(n_1/2).

From the first hne to the second line, we used the U-statistics theory (van der Vaart, [1998| Chapter
12). From the third line to the fourth line, we used

Ela;; | Zi, X, A, Yi]

=o,(n W)HE:[

L 4X) eoa | XY, | Dy = D,
ST XY | X = Z] (X)]E{ L ro(4; | X)Y; | Dy = D

= o,(n V) +u(Z) — r(Xi)w(X;, A) f(Di),
E[am- ‘ ZiaXiaAi,}/i] — Op(n*1/2).
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Therefore,

g(X) m°(A | X)

Bipwos = Eq w0 A x) Y A A e 0(Z)] + op(n~17?).

The final statement is concluded by CLT. O

E.9 Proof of Theorem @]

Proof. For the ease of the notation, we prove the case n™* = n°"! noting the kernel estimator is

linearized as in Theorem and and generalization is easy. Here, 0y, (a, x) is defined as

on(a,z) = Zzizgph(a 7) = o ZYKh (X, A} — {z,a})

ap(a,r) = ﬁ ZKh({Xi,Ai} —{z,a}).
i—1

We have

pulea) _ flemulos) o, (a,0)|_ = 0p(n1/?),

where
én(z,a) = @{ﬁh(a,m) — fla,z)u(a,z)} — i(z g {in(a,z) —u(a,z)}.
This is proved by Theorem[T2] Then, we have

Rpy = Epen[n(Z, A)]

evl hbt
- Ena\,l[ (Z A nhstnevl Z Z Qij
=1 j=1
= Enevl[ (Z A nhstnevl Zb ;]’
1<J
where
1
a;,;j((Zi, Ai), (X5, A;,Y5)) = W(Zi A (Vi Kn({X;, A} = {Zi, Ai}) — u(Zs, A) F(Zi, Ai)} —
(3 3
f(ZHAz)
———{Kn({X;,A;} —{Z;, Ai}) —u(Zi, Ay
u(Zi,Ai){ n({X5, Aj} = {Zi Ai}) —u(Zs, Ai)},
bl]((X'm Ai7 3/17 Zl)ﬂ (X]7 A], Y—], Zj)) = OB{U,ZJ + a]z}
Then,
2
Wzbi,j(XiaAi,YmZ) (X;,A;,Y;,2Z;))
i<j
2 nhst
= ohst > Elbig | Xi, Ay, Yi, Zi] ¢+ op(n”?)
i=1
1 evl 1 phst
~ pe > Elagi [ Xi, A, Y, 7] + nbst > Elaij | Xi, Ai Y, Zi] + op(n™'?)
i=1 i=1

evl

= Y= SO AKX, A0 + 0y,
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From the first line to the second line, we used a U-statistics theory (van der Vaart, 1998, Chapter
12). From the third line to the fourth line, we used

Elaj,i | Zi, Xi, Ai, Yi]
_ Y; f(Xq, Ay)
_ 1/2 _ ) Nr€( A )
o) +{ s - e bacxome s )

= 0p(n2) + Yir(Xs)w(As, Xi) — r(X) f(Xi, Ai)w(As, X5),

Elai; | Zi, Xi, A, Yi] = op(n/?).
This is proved by Theorem[I2] Therefore,

RDM = ]Enh“ [T(X)w(Aa X) {Y - f(Aa X)H + Enc"l [U(Z)] + O;D(nil/Q)'

The final statement is concluded by CLT. O

E.10 Proof of Theorem/[7]

Proof. We prove the statement following |Zhou et al.| (2018)). Though the proof is very similar, for
completeness, we sketch the proof the case p = 0.5. Because the estimator is asymptotically linear,
the generalization is easy as in Theorem[I3]

Define two scores;
f‘i = ’f'q(l;Dl)(X’mAl){)/Z - f(Dl)(Xﬂ Al)} + [f(ala X’L)7 T 7f(a‘a7Xi)]T7
Fi == THJ(X’U Az){}/z - f(X’ia A?,)} + [f(ala XZ)a e 7f(a’0¢7Xi)]T?
where D; is an indicator which cross-fold estimator is used and « is a dimension of the action,
ro(x) = r(2)/7°(a | z). Then, we have Rpros(m) = 2{3 73 (x(Z;),T;)}. Here, we define the
estimator with oracle efficient influence function
n/2

In addition, we define

A(ma, 1) = R(ma) — R(my), A, mp) = R(ma) — R(m),

A(rmg, m) = R(mg) — R(mp).

Step 1: Fir§t, following Zhou et al.| (2018, Theorem 2), we prove the following. Let 7 €
arg min_rp R(7). Then for any § > 0, with probability at least 1 — 24,

R(ﬁ)—mmso({k(ﬂw log(1/6) } i)

where
T. = sup BT, m(Z:))’]
= TSrlelgE[T(Xi)zwi(Xn A{Y; = f(Xi, A0)}?] + E[{vx(Z:)}?),
when w(a,z) = 7(a,z)/7"(a,z), vz (x) = Br(e)n)[f(a,2) | 2].

This is proved as follows. We have

R(7) — R(r*) < sup  |A(ma,m) — A(7a, ™))
Ta,mp €11
Then, by using a Chaining argument as Lemma 1 (Zhou et al., [2018)), we can bound an expectation
of sup, . ey |A(7q, m) — A(ma, )| via Rademacher complexity. Then, as in Lemma 2 (Zhou
et al.,[2018)), the high probability bound is obtained via Talagrand inequality. Then, we have

R(%) - R(x") <O ({k(ﬂ) + Vlog(1/0) } \/f ) ,
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where

Y, = sup E[Ty,7a(Z;) —m(Z:))?].

Ta,TpEIL
This concludes the above statement because

YT.= sup E[L,7m(Z;) — m(Zi))°]
Ta,TpEIL

= sup E[r(X;)*{wn, — we, }{Y; — f(Xi, A) Y] + E[{vr, (Zi) — vr,(Z:)}?]

Ta,mp €Il

< sup 2E[r(X;)*w2(X;, A){Yi — f(Xi, 4:) ] + 2E[{v=(Z:)}?).

Step 2:  Assume x(IT) < oo, then

sup |A(7Ta,ﬂ'b) - A(ﬂ'a, 7'('1,)‘ = Op(’n_l/Q).

Ta,mp €Il

The proof of this statement is based on the double structure of the influence function and cross-
fitting. We omit the proof because it is long, and almost the same as Lemma 3 (Zhou et al., 2018)).

Step 3: Finally, based on Theorem 3 (Zhou et al.,2018)), we have
R(7) — R(m*) < sup |A(ma,m) — A(Wa, )|+ sup  |A(ma, ) — Almg, m)|

Ta,TpEIL Ta,TpEIL
T,
<o, ({k(l‘[) + 1og(1/5)} n) .

This means there exists an integer Ns such that with probability at least 1 — 24, for all n > Nj:

T,

R(7) = R(x*) £ (k(D) + /Iog(1/3))

Remark 8. In the general case,

T, = i p ' E[r(Xa)?wi (X, A{Y: — f( X3, A) Y2+ (1= p) 'E[{va(Z)}7).

F OPE with Known Distribution of Evaluation Data

In this section, we consider a special case where ¢(x) is known.

By applying (3) in Section [2.3] we obtain the efficiency bound under nonparametric model defined,
which is defined as T (7¢) = E[r?(X)w?(A, X)var[Y | A, X]].

As the estimator RDRcs(Tre) in Section we construct an estimator with cross-fitting. In-
stead of (@) we use an estimator defined as K, [P (X)) ®) (A4, X){Y — fB(A4,X)}] +
Eq(z)re(al2) [f*)(a, 2)]. The algorithm is almost the same as before. To estimate 7 (), we can sim-
ply use density estimation for p(z) because ¢(z) is known and the integration in Eq () re(q)2) [f(a, 2)]

can be taken exactly because g(z) and 7°(a | x) are known. Let us denote this estimator as Rprcs.
We can show that Rprcs(7°) achieves the efficiency bound.

Theorem 14 (Efficiency of Rprcs). Fork € {1, ,&}, assume there existsp > 0, ¢ > 0, p+q >
1/2 such that ||#*) (X)) (A, X)—r(X)w(A, X) |2 = op(n~P) and || fF) (A, X)— f(A, X)||2 =
0p(n~%). Then, we have V'nhs*( Rprcs (7°) — R(7¢)) 4 N0, T (7).

This asymptotic variance is equal to the asymptotic variance when p = 0 as shown in Remark 2
because the case p = 0 implies that we have infinite data from g(x).
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Table 5: Specification of datasets

Dataset the number of samples Dimension the number of classes
satimage 4,435 35 6

vehicle 846 18 4
pendigits 7,496 16 10

G Algorithm for Off-Policy Learning with Cross-Fitting

In the proposed method of OPL under a covariate shift, we train an evaluation policy by using
an estimator Rpreg(7©), which is constructed via cross-fitting. In this section, we introduce an
algorithm where we use a linear-in-parameter model with kernel functions to approximate a new

exp(g(a,z;0°))
aca exp(g(a,z;02))’

policy. For z € X, a linear-in-parameter model is defined as 7(a | z;0%) = >

T :
where g(a,z;0%) = B, p(250%) + Bo.a. ¢(x;07) = [p1(2;0%), ... om(@:10%)] ., om(@:07) is

e |12 .
the Gaussian kernel defined as ¢, (z;02) = exp (—%) , 1 < u < m, where {ci,...,crn } is

m chosen points from {Xi}?:hsf, Ba € R™, and By, € R. In optimization, we put a regularization

term R({fBa, Bo.a}) and train a new policy as *pres = arg max, iy Rpros (1) + AR({Ba, Bo.a}),
where A > 0. The parameters o and )\ are hyper-parameters selected via cross-validation. Thus,
in the proposed method, we use the cross-fitting and cross-validation. We describe the algo-
rithm in Algorithm [2| with K fold cross-fitting and L fold cross-validation. For brevity, in the
algorithm, let us assume nt/& nhst /L nev1/¢ neV!/I € N. In Algorithm [2} we express the

objective function with hyper-parameters o and A as E,ns [f(X )%{Y —f(A,X )}} +
Epen [Bre (i) [f (0, Z)m(a | Z;0%)] + XR({Ba, Bo.a}).

H Details of Experiments in Section

First, we show the description of the datasets in Table. All datasets are downloaded from https:
//www.csie.ntu.edu.tw/"cjlin/libsvmtools/datasets/.

In addition to the results shown in Section [/.1] we show the performances of IPWCS and DM
estimator with nuisance functions estimated by the kernel Ridge regression, which are referred as
IPWCS-R and DM-R. In addition, for OPE, we also show the results with the different sample size.

In Tables we show the additional experimental results with the same setting as Section [/} In
this setting, the sample size is fixed at 800.

In Tables [SH9] we show the additional experimental results with 500 samples. The other setting is
the same as Section[7.1]

In Tables [TOHTT] we show the additional experimental results with 300 samples. The other setting is
the same as Section[Z.1]

We also add the OPE and OPL experiment with the pendigits dataset in Tables[12]and[13] In this
experiment, the sample size is fixed at 800.

In Tables[T4HT3] we show the additional experimental results with 1,000 samples for the satimage
and pendigits datasets. We could not conduct experiments for the vehicle dataset because it
only has 800 samples. The other setting is the same as Section

For OPE, we highlight in bold the best two estimators in each case. For OPL, we highlight in bold
the best one estimator in each case. The proposed DRCS estimator performs well in many datasets.
The DM estimator also works well, but the performance dramatically drops when the model is
misspecified.

Remark 9 (Self-normalization). We can add self-normalization for improving the performances
of the proposed estimator [Swaminathan & Joachims| (2015a). There can be several ways for in-
corporating the density ratio estimator in the self-normalization. Because the proposition of self-
normalization method is not main topic of this paper, we omit the details.
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Algorithm 2 Off-policy learning using Rprcs(7¢) with &-fold cross-fitting.

Input: &: the number of the cross-fitting for constructing RDRcs(’R’e). L: the number of the

cross-validation for constructing the optimal policy. IT: a hypothesis class of 7. {07, ...,02 L)
candidates of o2. {\1, ..., \,, }: candidates of \. 0
Take a ¢-fold random partition (I )5_, of observation indices [n**] = {1,...,n""} such that
the size of each fold I, is n}st = nhst /¢

Take a ¢-fold random partition (J;)5_, of observation indices [n®'] = {1,...,n°"!} such that

the size of each fold Jj, is ng"! = n°v1/¢.
Foreach k € [¢] = {1,...,&}, define I¢ := {1,...,n™'} \ Iy and J§ := {1,...,n®"1} \ J.
Define Sk = {(X7, Ai, K)}’eli
for k € [K] do
Construct nuisance estimators 77 (a | X), 7z (), and fi(a, z) using Sg.
end for
Take a L-fold random partition (1)}, of observation indices [n"'] = {1,...,n"*} such that
the size of each fold I, is n}s* = nPst/L.
Take a L-fold random partition (.J;)%_, of observation indices [n®*!] = {1,...,n°"!} such that
the size of each fold J; is ng"! = n°!/L.
Foreach ¢ € [L] = {1,..., L}, define I := {1,...,n™'} \ I, and J§ := {1,...,n°1}\ J,.
for 5% € {0f,...,05 ,} do
for A € {\1,..., \n, } do
Define Scorez. 5 = 0.
for £ € [L] do
Obtain 7 by solving the following optimization problem:

o o T(A] X57) ;
m™ = ar%en'l}[aXEn?zt T(X)W{Y — f(A, X)}

+ Eps B (a2) [f(a, Z)(a | Z;6)] + AR({Ba; Bo.a})s

where Enl;st denotes a empirical approximation using ¢ € Iy, E7L3vl denotes a sample
£ £

approximation using j € J;, and 7#°, #, and f are the corresponding nuisance estimators

chosen from 72, 7, and fj.
Update the score Score;. 5 by

Score&zj
7(A| X;52%)
(A | X)

where E ».. denotes a empirical approximation using ¢ € I, and E .. denotes a sample
Ig Tg

= Scoregs 5 + Eppe |#(X) v — f(A, X))} + Eppge [Enea12) [f(a, 2)7(a | Z;52)),
4 4

approximation using j € Jg.

end for
end for
end for
Obtain 7 by solving the following optimization problem:
. . (A | X;62) 2
= Ense |[P(X)—F———{Y — f(A4, X
T ar%gll'lax nh T‘( ) ﬁ'b(A‘X) { f( ) )}

+ g [Eneaj2) [/ (a. Z)m(a | 2:6%)] + AR({Ba, o)),

~2 1\ N -
where (64, \) = AGMAX (52 )& ({02,002 _ 1 LA, hny 1} Scoress .
o
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Table 6: Off-policy evaluation with the satimage dataset with 800 samples
Behavior Poli DRCS IPWCS DM IPWCS-R DM-R
chaviortoley | MSE  std | MSE std | MSE  std | MSE  std | MSE st
0.777 + 0.37% 0.107 0.032 | 67.448 144.845 | 0.042 0.043 | 0.045 0.049 | 0.073 0.023
0.4 + 0.67 0.096 0.025 | 74.740 155.704 | 0.134 0.052 | 0.093 0.069 | 0.177 0.033
0.07? +1.07* | 0.154 0.051 | 58.031 103.632 | 0.336 0.079 | 0.022 0.026 | 0.372 0.050
Table 7: Off-policy evaluation with the vehicle dataset with 800 samples
Behavior Polic DRCS IPWCS DM IPWCS-R DM-R
Y| MSE std MSE std | MSE std | MSE std | MSE std
0.777+0.37% | 0.029 0.019 | 218390.000 285382.247 | 0.038 0.035 | 0.568 0.319 | 0.040 0.014
0.47% +0.67* | 0.019 0.024 | 329825.704 454301.175 | 0.095 0.062 | 0.576 0.357 | 0.089 0.019
0.0 +1.07* | 0.037 0.030 | 173603.802 141163.618 | 0.213 0.049 | 0.233 0.193 | 0.210 0.031
Table 8: Off-policy evaluation with the satimage dataset with 500 samples
Behavior Poli DRCS IPWCS DM IPWCS-R DM-R
CHAVIOTTOIYY | MSE  std | MSE std | MSE std | MSE  std | MSE s
0.777 +0.37% [ 0.112 0.039 | 729.208 2433.557 | 0.049 0.042 | 0.177 0.407 | 0.079 0.033
0.47% 4+ 0.67* | 0.087 0.036 | 790.188 2139.882 | 0.146 0.074 | 0.130 0.170 | 0.173  0.045
0.07% +1.07% | 0.179 0.066 | 453.553 1148.372 | 0.335 0.097 | 0.047 0.071 | 0.374 0.070
Table 9: Off-policy evaluation with the vehicle dataset with 500 samples
Behavior Polic DRCS IPWCS DM IPWCS-R DM-R
Y| MSE std MSE std | MSE std | MSE std | MSE std
0.779 +0.37% [ 0.029 0.020 | 104311.242 126027.165 | 0.028 0.027 | 0.379 0.317 | 0.036 0.022
0.47% +0.67* | 0.014 0.010 | 186170.520 260715.112 | 0.081 0.040 | 0.585 0.553 | 0.082 0.031
0.0 +1.07* | 0.034 0.038 82883.403 115580.232 | 0.149 0.064 | 0.230 0.235 | 0.184 0.042
Table 10: Off-policy evaluation with the satimage dataset with 300 samples
Behavior Polic DRCS IPWCS DM IPWCS-R DM-R
Y| MSE s MSE std | MSE  std | MSE  std | MSE  sud
0.777+0.37% [0.103 0.043 | 765985 2922.342 [ 0.026 0.027 | 0.125 0.115 | 0.067 0.035
0.47¢ + 0.67* | 0.074 0.051 40.273 89.381 | 0.126 0.098 | 0.261 0.309 | 0.155 0.055
0.07% +1.07* | 0.169 0.095 | 4367.009 15791.530 | 0.297 0.084 | 0.375 1.293 | 0.341 0.073
Table 11: Off-policy evaluation with the vehicle dataset with 300 samples
Behavior Polic DRCS IPWCS DM IPWCS-R DM-R
Y| MSE std MSE std | MSE std | MSE std | MSE std
0.779 +0.37% | 0.036 0.023 78064.888 80378.226 | 0.029 0.028 | 0.328 0.391 | 0.038 0.021
0.47% +0.67* | 0.020 0.020 | 108655.809 136013.160 | 0.096 0.055 | 0.668 0.608 | 0.084 0.033
0.07¢ +1.07* | 0.063 0.051 59301.622  74435.924 | 0.175 0.074 | 0.125 0.161 | 0.204 0.053
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Table 12: Off-policy evaluation with pendigits dataset with 800 samples

Behavior Poli DRCS IPWCS DM IPWCS-R DM-R
ChaviorFolCY | MSE  std MSE std | MSE  std | MSE  std | MSE st
0.779 4+ 0.37% [ 0.118 0.020 | 1074.278 838.074 | 0.083 0.035 | 0.052 0.045 | 0.089 0.014
0.47% +0.67* | 0.110  0.026 | 1328.069 1045.287 | 0.220 0.053 | 0.056 0.040 | 0.231 0.026
0.07% +1.07* | 0314 0.086 | 231.043  217.068 | 0.503 0.049 | 0.116 0.187 | 0.511 0.037
Table 13: Off-policy learning with pendigits dataset with 800 samples
Behavior Poli DRCS IPWCS DM
CHavIorFoleY | RWD  STD | RWD  STD | RWD  STD
0.777+0.37% | 0.683 0.030 | 0.241 0.048 | 0.507 0.060
0.47¢ 4 0.67% 0.678 0.039 | 0.252 0.032 | 0.445 0.096
0.07% +1.07* | 0.409 0.067 | 0.204 0.031 | 0.212 0.041
Table 14: Off-policy evaluation with the satimage dataset with 1, 000 samples
Behavior Polic DRCS IPWCS DM IPWCS-R DM-R
Y| MSE std MSE std | MSE std | MSE std | MSE std
0.77% 4+ 0.37% 0.111 0.024 | 58.724  91.964 | 0.052 0.034 | 0.050 0.069 | 0.067 0.019
0.47% +0.67* | 0.090 0.026 | 118317 188.729 | 0.173 0.097 | 0.099 0.087 | 0.170 0.039
0.07? + 1.07* 0.145 0.038 82.801 103.326 | 0.369 0.106 | 0.018 0.026 | 0.395 0.046
Table 15: Off-policy evaluation with the pendigits dataset with 1,000 samples
Behavior Poli DRCS IPWCS DM IPWCS-R DM-R
ChavIorFOlCY | MSE  std MSE std | MSE  std | MSE  std | MSE  std
0.779 4+ 0.37% | 0.118 0.021 | 1299.936 829.752 | 0.094 0.029 | 0.040 0.040 | 0.090 0.012
0.47% +0.67* | 0.106 0.021 | 1483.730 1014.923 | 0.256 0.063 | 0.067 0.078 | 0.241  0.023
0.07% + 1.07* | 0.313  0.091 300.599  216.541 | 0.496 0.064 | 0.099 0.167 | 0.531 0.033
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