
A Notations, Terms, and Abbreviations

In this section, we summarize the notations used in this paper.

Table 4: Summary of notations
A, X, Y Action, covariate, reward
E[µ(X,A, Y )] Ep(x)πb(a|x)p(y|a,x)[µ(x, a, y)]
E[µ(Z)] Eq(z)[µ(z)]
πb(a | x) Behavior policy
πe(a | x) Evaluation policy
R(πe) Eq(x)πe(a|x)p(y|a,x)[y]
r(x) p(x)/q(x)
w(a, x) πe(a | x)πb(a | x)
f(a, x) Ep(y|a,x)[y | a, x]
v(x) Eπe(a|x)[f(a, x) | x]

Asmse[R̂] limn→∞ E[(R̂−R)2]n
Π Policy class
⊗A AA>

‖µ(X)‖2, ‖µ(X)‖∞ L2-norm, L∞-norm
k(Π) Entropy integral of Π w.r.t ε-Hamming distance
nhst Number of training data
nevl Number of evaluation data
A / B There exists an absolute constant C s.t. A ≤ CB
C1, C2, Rmax Upper bound of r(X), w(A,X), Y
ρ nhst/(nhst + nevl)
Dhst, Deval Train data, evaluation data
nhst

1 ,nhst
2 Split train data

nevl
1 ,nevl

2 Split evaluation data
Di Concatenation of nhst

i and nevl
i i = 1, 2

Gnhst

√
nhst{Enhst − E} Empirical process based on train data

Gnevl

√
nevl{Enevl − E} Empirical process based on evaluation data

Υ(πe) Semiaprametric lower bound of R(πθ) under nonparametric model
Kh(·) Kernel with a bandwidth h
nhst
k k-th train data
nevl
k k-th evaluation data

B Identification under Potential Outcome Framework

We explain how to apply our results in the main draft under potential outcome framework, which
is a common framework in causal inference literature (Rubin, 1987). In this section, our goal is
justifying DM and IPWCS estimators under potential outcome framework.

Let us denote counterfactual variables based on stochastic policies (interventions) as Y (B), where
B is a random variable from the conditional density πe(b|Z) 7 and Z is a random variable following
the evaluation density q(z). Here, note what we can observe is data:

{Xi, Ai, Yi}n
hst

i=1 ∼ p(x)πe(a | x)p(y | a, x), {Zj}n
evl

j=1 ∼ q(z).

A detailed review of the stochastic intervention is shown in Muñoz & Van Der Laan (2012); Young
et al. (2014).

Then, let us put the following assumptions:

• Consistency: Y = Y (a) if A = a for ∀a ∈ A,

7The reason why we use B is to distinguish it from the random variable A.
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• Unconfoundedness: A and Y (a) are conditionally independent given X for any a ∈ A,G
and Y (a) are conditionally independent given Z for any a ∈ A,

• Transportability: E[Y (a) | Z = c] = E[Y (a) | X = c] for any a ∈ A, c ∈ X .

Note that transportability is a weaker assumption compared with the assumption in the main draft:

ptrain(Y (a) | c) = ptest(Y (a) | c),
where ptrain(· | ·) is a condition density of Y (a) given Z, ptest(· | ·) is a condition density of Y (a)
given X . Following Lemma 1 (Kennedy, 2019), we can prove the following lemma.
Lemma 2 (G-formula). E[Y (B)] =

∫
E[Y | A = a,X = x]πe(a | x)q(x)d(a, x).

Proof.

E[Y (B)] =

∫
E[Y (b) | B = b, Z = z]πe(b | z)q(z)d(b, z)

=

∫
E[Y (g) | Z = z]πe(b | z)q(z)d(b, z)

=

∫
E[Y (g) | X = z]πe(b | z)q(z)d(b, z)

=

∫
E[Y (g) | A = g,X = z]πe(b | z)q(z)d(b, z)

=

∫
E[Y (a) | A = a,X = x]πe(a | x)q(x)d(a, x)

=

∫
E[Y | A = a,X = x]πe(a | x)q(x)d(a, x).

From the first line to the second line, we use a uncounfedness assumption. From the second line to
the third line, we use a transportability assumption. From the third line to the fourth line, we use
a uncounfedness assumption. From the fourth line to the fifth line, the random variables a, x are
replaced with b, z. From the fifth line to the sixth line, we use a consistency assumption.

From this lemma, the DM method can be naturally introduced. Note this is equivalent to a transport
formula Pearl & Bareinboim (2014, (3.1)) when the evaluation policy is atomic. The G-formula
described here is its extension when the evaluation policy is stochastic.
Theorem 8 (IPWCS). E[Y (B)] = E[r(X)w(A,X)Y ]

Proof.

E[r(X)w(A,X)Y ] = E[r(X)w(A,X)E[Y | A,X]]

=

∫
E[Y | A = a,X = x]r(x)w(a, x)πb(a | x)p(x)d(a, x)

=

∫
E[Y | A = a,X = x]πe(a | x)q(x)d(a, x)

= E[Y (B)].

From the third line to the fourth line, we use a Lemma 2.

C Density Ratio Estimation

Here, we introduce the formulation of LSIF. In LSIF, we estimate the density ratio r(x) = q(x)
p(x)

directly. Let S be the class of non-negative measurable functions s : X → R+. We consider
minimizing the following squared error between s and r:

Ep(x)[(s(x)− r(x))2] = Ep(x)[(r(x))2]− 2Eq(z)[s(z)] + Ep(x)[(s(x))2]. (7)
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The first term of the last equation does not affect the result of minimization and we can ignore the
term, i.e., the density ratio is estimated through the following minimization problem:

s∗ = arg min
s∈S

[
1

2
Ep(x)[(s(x))2]− Eq(z)[s(z)]

]
,

where S is a hypothesis class of the density ratio. As mentioned above, to minimize the empirical
version of (7), we use uLSIF (Sugiyama et al., 2012). Given a hypothesis class H, we obtain r̂ by

r̂ = arg mins∈H

[
1
2Enhst [(s(X))2] − Enevl [s(Z)] +R(s)

]
, where R is a regularization term. For

a model of uLSIF, Kanamori et al. (2012) proposed using kernel based hypothesis to estimate the
density ratio nonparametrically. Kanamori et al. (2012) called uLSIF with kernel based hypothesis
as KuLSIF. Kanamori et al. (2012) showed that, under some assumptions, the convergence rate of

KuLSIF is
∥∥∥r̂(X)−

(
q(X)
p(X)

)∥∥∥
2

= Op

(
min

(
nhst, nevl

)− 1
2+γ

)
, where 0 < γ < 2 is a constant

depending on the bracketing entropy ofH.

D Efficiency bound for the stratified sampling mechanism

In this section, we discuss the efficiency bound.

D.1 Cramér-Rao lower bound

First, we show the Cramér-Rao lower bound when the DGP is a stratified sampling with the historical
data {αi}n

hst

i=1 and evaluation data {βi}n
evl

i=1 , where αi and βi are random variables. Let Hnhst and
Gnevl be the distributions of {αi}n

hst

i=1 and {βi}n
evl

i=1 . Let us define a set of distributions as Mn =
{Hnhst , Gnevl}. A modelMpara

n is called a regular parametric submodel if the model can be written
asMpara

n = {Hθ1,nhst , Gθ2,nevl}, where θ1 ∈ Θ1, θ2 ∈ Θ2 and it matches the true distribution at
θ∗1 and θ∗2 , and it has a density

hθ1,nhst({αi}) =
∏nhst

i=1 h(αi; θ1), gθ2,nevl({βi})) =
∏nevl

i=1 g(βi; θ2).

Let R(H,G) → R be a target functional. Then, the Cramér-Rao lower bound of the functional R
under the parametric submodelMpara

n is

CR(Mpara
n , R) =∇θ>1 R(Hθ1 , Gθ2)E[⊗∇θ1 log hθ1,nhst ]−1∇θ1R(Hθ1 , Gθ2)

+∇θ>2 R(Hθ1 , Gθ2)E[⊗∇θ1 log gθ2,nevl ]−1∇θ2R(Hθ1 , Gθ2).

Before that, we calculate the Cramér-Rao lower bound in a tabular setting, where the state, action
and reward spaces are finite.
Theorem 9. In a tabular case, nCR(Mpara

n , R) is

ρ−1E[r2(X)w2(A,X)var[Y | A,X]] + (1− ρ)−1var[v(Z)]

.

Proof of Theorem 9. In our setting, we have {Xi, Ai, Yi}n
hst

i=1 and {Zj}n
evl

j=1 . The target functional,
i.e., the value of the evaluation policy πe defined in (1) is

R(πe) =
∫
yq(x)πe(a | x)p(y | a, x)dµ(a, x, y), (8)

where µ is a baseline measure such as Lebesgue or counting measure. The scaled Cramér-Rao lower
bound for regular parametric models underMpara

n :
nCR(Mpara

n , R)

is given by

ρ−1A1B
−1
1 A>1 + (1− ρ)−1A2B

−1
2 A>2 (9)

A1 = Ex∼q(x), a∼πe(a|x),y∼p(y|a,x)[y∇θ>1 log p(y | a, x; θ1)],

A2 = Ex∼q(x), a∼πe(a|x),y∼p(y|a,x)[y∇θ>2 log q(x; θ2)],

B1 = Ex∼p(x),a∼πb(a|x),y∼p(y|a,x)[⊗∇θ1 log p(y | a, x; θ1)],

B2 = Ez∼q(z)[⊗∇θ2 log q(z; θ2)].
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Then, from the Cauchy Schwartz inequality (Tripathi, 1999), we have the following inequality:

E[A(Z)B>(Z)]E[B(Z)B>(Z)]−1E[A(Z)B>(Z)]> ≤ E[A2(Z)],

where E[A(Z)] = 0,E[B(Z)] = 0. Then, we obtain the following upper bound:

A1B
−1
1 A>1

= E[r(X)w(A,X)Y∇θ>1 log p(Y | A,X; θ1)]E[⊗∇θ1 log p(Y | A,X; θ1)]−1

× E[r(X)w(A,X)Y∇θ1 log p(Y | A,X; θ1)]

= E[r(x)w(A,X){Y − E[Y | A,X]}∇θ>1 log p(Y | A,X; θ1)]E[⊗∇θ1 log p(Y | A,X; θ1)]−1

× E[r(x)w(A,X){Y − E[Y | A,X]}∇θ1 log p(Y | A,X; θ1)]

≤ E[r2(X)w2(A,X){Y − E[Y | A,X]}2] = E[r2(X)w2(A,X)var[Y | A,X]].

In the same way,

A2B
−1
1 A>2

= E[v(Z)∇θ>2 log q(Z; θ2)]E[⊗∇θ2 log q(Z; θ2)]−1E[v(Z)∇θ2 log q(z; θ2)]

= E[{v(Z)− E[v(Z)]}∇θ>2 log q(Z; θ2)]E[⊗∇θ2 log q(Z; θ2)]−1E[{v(Z)− E[v(Z)]}∇θ2 log g(Z; θ2)]

≤ E[{v(Z)− E[v(Z)]}2] = var[v(Z)].

Therefore,

ρ−1A1B
−1
1 A>1 + (1− ρ)−1A2B

−1
2 A>2

≤ ρ−1E[r2(X)w2(A,X)var[Y | A,X]] + (1− ρ)−1var[v(Z)].

Finally, we have to show this inequality is equality. This is obvious because our setting is tabular.

D.2 Reduction to i.i.d setting

The Cramér-Rao lower bound we have seen so far can be extended when the model is semipara-
metric. However, because our DGP is not i.i.d, we cannot direct apply standard semiparametric
theory here. To circumvent this problem, we regard the whole n data at hand as one observation and
consider the case where we observe m observations. Then, as m goes to infinity, the total data size
n′ := nm goes to infinity. Because each one observation (n data) is i.i.d, we can apply standard
semiparametric theory. Only in this section, we regard n′ as the total hypothetical sample size when
discussing asymptotics. The value n is the sample size of the actual data at hand, which is fixed.

We explain the definition of the efficient influence function (EIF). This is a function for one obser-
vation

o = (x1, · · · , xnhst , a1, · · · , anhst , y1, · · · , ynhst , z1, · · · , znevl).

This is defined given the target functional and the model. In our context, the EIF has the following
property.
Theorem 10. (van der Vaart, 1998, Theorem 25.20) The EIF φ(o) is the gradient of R(πe) w.r.t the
modelMn, which has the smallest L2-norm. It satisfies that for any regular estimator R̂ of R(πe)

w.r.t the modelMn, AMSE[R̂] ≥ var[φ(o)], where AMSE[R̂] is the second moment of the limiting
distribution of

√
m(R̂−R(πe)).

This states that var[φ(o)] is the lower bound in estimating R(πe). We call nvar[φ(o)] the efficiency
bound because what we want to consider is the lower bound of

√
n′(R̂ − R(πe)). Note that n is

fixed here.

For the current case, the EIF and efficiency bound are explicitly calculated as follows.
Theorem 11. The EIF of R(πe) w.r.t the modelMn is

φ(o) =
1

nhst

nhst∑
i=1

r(xi)w(ai, xi){yi − q(xi, ai)}+
1

nevl

nevl∑
j=1

v(zj)−R(π)

The (scaled) efficiency bound nvar[φ(o)] is

ρ−1E[r2(X)w2(A,X)var[Y | A,X]] + (1− ρ)−1var[v(Z)].
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When assuming the modelMfix
n where πb(a|x) and p(x) are fixed at true values, we can also show

that the EIF and the efficiency bound are the same.

Proof of Theorem 1. We follow the following steps.

1. Calculate some gradient (a candidate of EIF) of the target functional R(πe) w.r.tMn.

2. Calculate the tangent space w.r.tMn.

3. Show that the candidate of EIF in Step 1 lies in the tangent space. Then, this concludes that
a candidate of EIF in Step 1 is actually the EIF.

Calculation of the gradient As mentioned, the modelMpara
n for a nonparametric modelMn is

p(o; θ) =

nhst∏
i=1

p(xi; θx)πb(ai | xi; θa)p(yi | xi, ai; θy)

nevl∏
j=1

q(zj ; θz),

θ = (θ>x , θ
>
a , θ

>
y , θ

>
z )>, o = {xi, ai, yi, zj}n

hst,nevl

i=1,j=1 .

We define the corresponding gradients:

gx = ∇θx log p(x; θx), ga|x = ∇θa log πb(a|x; θa), gy|a,x = ∇θy log p(y|a, x; θy), qz = ∇θz log q(z; θz).

To derive some gradient of the target functional R(πe) w.r.tMn, what we need is finding a function
f(o) satisfying

∇R(θ) = E[f(D)∇ log p(D; θ)]

= E

f(D)

 1

nhst

nhst∑
i=1

{gx(Xi) + ga|x(Xi, Ai) + gy|x,a(Xi, Ai, Yi)}+
1

nevl

nevl∑
j=1

gz(Zj)


 .

We take the derivative as follows:

∇R(θ) = Eq(x)πe(a|x)p(y|a,x)

[
y
{
gz(x) + gy|a,x(y|a, x)

}]
.

By some algebra, this is equal to

E

 1

nhst

nhst∑
i=1

r(Xi)w(Ai, Xi){Yi − q(Xi, Ai)}+
1

nevl

nevl∑
j=1

v(Zj)−R(π)

∇ log p(D; θ)

 .
Thus, the following function

φ(o) =
1

nhst

nhst∑
i=1

r(xi)w(ai, xi){yi − q(xi, ai)}+
1

nevl

nevl∑
j=1

v(zj)−R(π)

is a derivative.

Calculation of the tangent space Following a standard derivation way (Tsiatis, 2006; van der
Vaart, 1998), the tangent space of the modelMn is 1

nhst

nhst∑
i=1

{
tx(xi) + ta|x(xi, ai) + ty|a,x(xi, ai, yi)

}
+

1

nevl

nevl∑
j=1

tz(zj) ∈ L2(o)

 .

where L2(o) is an L2 space at the true density,

E[tx(X)] = 0,E[ta|x(X,A)|X] = 0,E[ty|a,x(X,A, Y )|X,A] = 0,E[tz(Z)] = 0.
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Last Part We can easily check that φ(o) lies in the tangent space by taking

tx = 0, ta|x = 0, ty|a,x = r(x)w(a, x){y − q(a, x)}, tz(z) = v(z)−R(π).

Thus, φ(o) is the EIF.

Remark 6. We can easily see that the EIF is φ(o) when assuming the modelMfix
n where p(x) and

πb(a|x) are fixed at true values. This model is represented as{∏nhst

i=1 p∗(xi)π
b
∗ (ai | xi)p(yi | xi, ai; θy)

∏nevl

j=1 q(zj ; θz)
}

where ·∗ emphasizes that these are fixed at true densities.

The function φ(o) in the proof is still a gradient of R(πe) w.r.t Mfix
n because the model Mfix

n is
smaller than the modelMn. Besides, φ(o) belongs to the tangent space induced by the modelMfix

n

because the tangent space induced byMfix
n is 1

nhst

nhst∑
i=1

{
ty|a,x(xi, ai, yi)

}
+

1

nevl

nevl∑
j=1

tz(zj) ∈ L2(o)


where

E[ty|a,x(X,A, Y )|X,A] = 0,E[tz(Z)] = 0.

We can easily check that φ(o) lies in the above tangent space by taking

ty|a,x = r(x)w(a, x){y − q(a, x)}, tz(z) = v(z)−R(π).

Thus, φ(o) is the EIF regardingMfix
n .

E Proofs

In this section, we show the proofs of theorems. In the proofs of Theorem 2–14, we prove the case
where we use a two-fold cross-fitting. The extension of two fold cross-fitting to the general K-fold
cross-fold is straightforward.

E.1 Required conditions

In order to show Theorems 6–13, we use the following Theorem 12, which shows the convergence
rate of kernel regression. Here, we have data {Bi, Ci}ni=1, which are i.i.d. from p(b, c) = p(c|b)p(b),
and Bi takes a value in B. Then, let us consider a kernel estimation:

n−1
∑n
i=1Kh(Bi − b)Ci,

where Kh(b) = h−dK(b/hd), where d is a dimension of b. Then, we have the following theorem
following Newey & Mcfadden (1994).
Theorem 12. Assume

• the space B is compact and p(b) > 0 on B,

• the kernel K(u) has the bounded derivative of order k, satisfies
∫
K(u)du = 1, and has

zero moments of order ≤ m− 1 and a nonzero m-th order moment,

• E[C | B = b] is continuously differentiable to order k with bounded derivatives on the
opening set in B.

• there is v ≥ 4 such that E[|C|v] ≤ ∞ and E[|C|v | B = b]p(b) is bounded.

Then, when h = h(n) and h(n)→ 0,

‖n−1
∑n
i=1Kh(Bi − b)Ci − p(b)E[C|b]‖∞ = Op

(
logn1/2

(nhd+2k)1/2
+ hm

)
. (10)

Then, under n1−2/vhd/ log n→∞,
√
nhd+2k →∞,

√
nh2m → 0, the above l∞ risk is op(n

−1/2)
(Newey & Mcfadden, 1994).
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Additional assumptions: regarding Theorem 12, we assume the following assumptions when we
prove Theorems 13–6:

Theorem 13 : condition when replacing B with X , C with w(A,X)Y , condition when replacing
B with Z, C with 1.

Theorem 4 : condition when replacing B with X , C with w(A,X)Y , condition when replacing
B with X , C with 1, condition when replacing B with Z, C with 1.

Thorem 5 : condition when replacing B with (X,A), C with 1, condition when replacing B with
(X,A), C with Y , condition when replacing B with X , C with w(A,X)Y , and condition
when replacing B with Z, C with 1

Theorem 6 : condition when replacingB with (X,A), C with Y , condition when replacingB with
(X,A), C with 1

E.2 Warming up

As a warm up, first, we prove the asymptotic property of some simple estimator. When p(x) and
πb(a | x) are known, let us define an IPW estimator:

R̂IPW1(πe) = Enhst

[
q̂(X)

p(X)

πe(A | X)Y

πb(A | X)

]
.

Theorem 13. When q̂(x) = q̂h(x), the asymptotic MSE of R̂IPW1 is

ρ−1var[r(X)w(A,X)Y ] + (1− ρ)−1var[v(Z)].

Proof of Theorem 13. We follow the proof of Newey & Mcfadden (1994). For the ease of notation,
assume ρ = k1/(k1 + k2). In this case, nhst = k1No and nevl = k2No, where No = n/(k1 + k2).
Note that in this asymptotic regime, No →∞. Therefore, we reindex the sample set as

{Xi}n
hst

i=1 = {Xb,i} (1 ≤ b ≤ k1, 1 ≤ i ≤ No),

{Zi}n
hst

j=1 = {Zc,j} (1 ≤ c ≤ k2, 1 ≤ j ≤ No).

Here, we only consider the estimator R̂IPW1(πe) based on based on {Xb,i}Noi=1 and {Zc,j}Noj=1, and
denote it as R̂b,c. Then, the final estimator R̂IPW1(πe) using all set of samples is equal to

1
k1k2

∑k1
b=1

∑k2
c=1 R̂b,c,

because the kernel estimator has a linear property. More specifically, we have

R̂IPW1(πe) =
1

nhst

nhst∑
i=1

 1

nevl

nevl∑
j=1

Kh(Zj −Xi)

 πe(Ai | Xi)Yi
πb(Ai | Xi)p(Xi)

=
1

nhstnevl

nhst∑
i=1

nevl∑
j=1

Kh(Zj −Xi)π
e(Ai | Xi)Yi

πb(Ai | Xi)p(Xi)

=
1

k1k2

k1∑
b=1

k2∑
c=1

 1

nhstnevl

nhst∑
i=1

nevl∑
j=1

Kh(Zc,j −Xb,i)π
e(Ab,i | Xb,i)Yb,i

πb(Ab,i | Xb,i)p(Xb,i)


=

1

k1k2

k1∑
b=1

k2∑
c=1

R̂b,c.

First, we analyze R̂1,1.
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Step 1 We prove the following in this step:

R̂b,c = 1
No

∑No
i=1 r(Xb,i)w(Xb,i, Ab,i)Yb,i + 1

No

∑No
j=1 v(Zc,j) + op(n

−1/2).

Especially, we prove the statement for R̂1,1 when k1 = 1, k2 = 1, nhst = nevl = n/2. We have

R̂1,1 = Enhst

[
q̂h(X)

p(X)

πe(A | X)Y

πb(A | X)

]

=
1

nhst

nhst∑
i=1

1

p(Xi)

πb(Ai | Xi)Yi
πb(Ai | Xi)

 1

nevl

nevl∑
j=1

Kh(Zj −Xi)


= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

1

nhstnevl

nhst∑
i=1

nevl∑
j=1

ai,j

= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

2

nhstnevl

∑
i<j

bi,j ,

where

ai,j((Xi, Ai, Yi), (Zj)) =
1

p(Xi)

πb(Ai | Xi)Yi
πb(Ai | Xi)

{Kh(Zj −Xi)− q(Xi)},

bi,j((Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj)) = 0.5{ai,j + aj,i}.

Then,

2

nhstnevl

∑
i<j

bi,j(Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj))

=
2

nhst


nhst∑
i=1

E[bi,j | Xi, Ai, Yi, Zi]

+ op(n
−1/2)

=
1

nevl

nevl∑
i=1

E[aj,i | Xi, Ai, Yi, Zi] +
1

nhst

nhst∑
i=1

E[ai,j | Xi, Ai, Yi, Zi] + op(n
−1/2)

=
1

nevl

nevl∑
i=1

{v(Zi)−R(πe)}+ op(n
−1/2).

From the first line to the second line, we used the U-statistics theory (van der Vaart, 1998, Theorem
12.3). From the third line to the fourth line, based on Theorem 12, we used

E[aj,i | Xi, Ai, Yi, Zi] = op(n
−1/2) + E[w(Ai, Xi)Yi | Xi = Zi]

p(Xi)

p(Xi)
+ E[r(Xi)w(Ai, Xi)Yi]

= op(n
−1/2) + v(Zi)−R(πe),

E[ai,j | Xi, Ai, Yi, Zi] = op(n
−1/2) +

1

p(Xi)

πb(Ai | Xi)Yi
πb(Ai | Xi)

{q(Xi)− q(Xi)}

= op(n
−1/2).

Remark 7. E[h(Ai, Xi, Yi) | Xi = Zi] is an abbreviation of {E[h(Ai, Xi, Yi) | Xi = x]}x=Zi .

Therefore,

R̂IPWCSB = Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+ Enevl [v(Z)]−R(πe) + op(n

−1/2).
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Step 2 Based on Step 1, we have

R̂IPW1 =
1

k1k2

k1∑
b=1

k2∑
c=1

R̂b,c

=
1

k1k2

k1∑
b=1

k2∑
c=1

 1

No

No∑
i=1

r(Xb,i)w(Xb,i, Ab,i)Yb,i +
1

No

No∑
j=1

{v(Zc,j)}

−R(πe) + op(n
−1/2)

=
1

k1No

k1∑
b=1

[
No∑
i=1

r(Xb,i)w(Xb,i, Ab,i)Yb,i

]
+

1

k2No

k2∑
c=1

 No∑
j=1

v(Zc,j)

−R(πe) + op(n
−1/2)

=
1

nhst

nhst∑
i=1

r(Xi)w(Xi, Ai)Yi +
1

nevl

nevl∑
j=1

v(Zj)−R(πe) + op(n
−1/2).

Finally, from stratified sampling CLT, the statement is concluded.

E.3 Proof of Theorem 2

Proof. We denote

φ1(x, a, y; r, w, f) = r(x)w(a, x){y − f(a, x)}, φ2(z; f) = v(z).

We also denote the union of nhst
i and nevl

i asDi for i = 1, 2, and the number of nhst
1 , nhst

2 , nevl
1 , nevl

2
as n11, n21, n12, n22. For simplicity, we assume n11 = n12, n21 = n22.

Then, we have
√
n{Enhst

1
[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + Enevl

1
[φ2(Z; f̂ (1))]−R(πe)}

=
√
n

{
1
√
n11

Gnevl
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f)] +
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]

}
(11)

+
√
n{E[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1)) | r̂(1), ŵ(1), f̂ (1)] + E[φ2(Z; f̂ (1)) | f̂ (1)] (12)

− E[φ1(X,A, Y ; r, w, f)]− E[φ2(Z; f)]}
+
√
n{E

nhst
1

[φ1(X,A, Y ; r, w, f)] + Enevl
1

[φ2(Z; f)]−R(πe)}. (13)

The term (11) is op(1) by Step 1. The term Eq. (12) is also op(1) by Step 2 as follows.

Step 1: Eq. (11) is op(1).

If we can show that for any ε > 0,

lim
n→∞

P [|
√
n{ 1
√
n11

Gnhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f)] (14)

+
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]}| > ε | D2] = 0,

then by the bounded convergence theorem, we would have

lim
n→∞

P [|
√
n{ 1
√
n11

Gnhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f)]

+
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]}| > ε] = 0,

yielding the statement.

To show (14), we show that the conditional mean is 0 and the conditional variance is op(1). Then,
(14) is proved by the Chebyshev inequality following the proof of (Kallus & Uehara, 2020, Theorem
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4). The conditional mean is

E[
√
n{ 1
√
n11

Gnhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f)]

+
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]} | D2]

= E[
√
n{ 1
√
n11

Gnhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f)]

+
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]} | D2, r̂
(1), ŵ(1), f̂ (1)]

= 0.

Here, we used a cross-fitting construction. More specifically, regarding the second term, we have

E[Enevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)]− E[φ2(Z; f̂ (1))− φ2(Z; f)] | D2, r̂
(1), ŵ(1), f̂ (1)]

= E[Enevl
1

[φ2(Z; f̂ (1))− φ2(Z; f)] | D2, r̂
(1), ŵ(1), f̂ (1)]− E[φ2(Z; f̂ (1))− φ2(Z; f)] | f̂ (1)]

= E[φ2(Z; f̂ (1))− φ2(Z; f) | f̂ (1)]− E[φ2(Z; f̂ (1))− φ2(Z; f) | f̂ (1)] = 0.

The conditional variance is bounded as

var[
√
n{ 1
√
n11

Gn11
[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f) | D2]

+
1
√
n12

Gn12 [φ2(Z; f̂ (1))− φ2(Z; f)]} | D2]

=
n

n11
var[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r, w, f) | D2]

+
n

n22
var[φ2(Z; f̂ (1))− φ2(Z; f) | D2]

≤ n

n11
E[{r̂(1)(X)ŵ(1)(A,X)(Y − f̂ (1)(A,X))− r(X)w(A,X)(Y − f(A,X))}2 | D2]

+
n

n22
E[{v̂(1)(Z)− v(Z)}2 | D2] = op(1) + op(1) = op(1).

Here, we used

n
n11

E[{r̂(1)(X)ŵ(1)(A,X)(Y − f̂ (1)(A,X))− r(X)w(A,X)(Y − f(A,X))}2 | D2] = op(1).

(15)

and

E[{v̂(1)(Z)− v(Z)}2 | D2] = op(1). (16)

The first equation (15) is proved by

E[{r̂(1)ŵ(1)(Y − f̂ (1))− rw(Y − f)}2 | D2]

= E[{r̂(1)ŵ(1)(Y − f̂ (1))− r̂(1)ŵ(1)(Y − f) + r̂(1)ŵ(1)(Y − f)− rw(Y − f)}2 | D2]

≤ 2E[{r̂(1)ŵ(1)(Y − f̂ (1))− r̂(1)ŵ(1)(Y − f)}2 | D2] + 2E[{r̂(1)ŵ(1)(Y − f)− rw(Y − f)}2 | D2]

≤ 2C1C2‖f − f̂ (1)‖22 + 2× 4R2
max‖r̂(1)ŵ(1) − rw‖22 = op(1).

Here, we have used a parallelogram law from the second line to the third line. We have use 0 < r̂ <

C1, 0 < ŵ < C2, |f̂ | < Rmax according to the Assumption 2 and convergence rate conditions, from
the third line to the fourth line. The second equation (16) is proved by Jensen’s inequality.

Step 2: Eq. (12) is op(1).
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We have

|E[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1)) | r̂(1), ŵ(1), f̂ ] + E[φ2(Z; f̂ (1)) | f̂ ]− E[φ1(x; r, w, f)]− E[φ2(Z; f)]|
≤ |E[{r̂(1)(X)ŵ(1)(A,X)− r(X)w(A,X)}{−f̂ (1)(A,X) + f(A,X)} | r̂(1), ŵ(1), f̂ (1)]|
+ |E[r(x)w(A,X){−f̂(A,X) + f(A,X)} | r̂(1), ŵ(1), f̂ (1)] + E[v̂(1)(Z)− v(Z) | f̂ (1)]|
+ |E[r̂(1)(X)ŵ(1)(A,X){Y − f(A,X)} | r̂(1), ŵ(1)]|
≤ ‖r̂(1)(X)ŵ(1)(A,X)− r(X)w(A,X)‖2‖f̂ (1)(A,X)− f(A,X)‖2 + 0 + 0

= αβ + 0 + 0 = op(n
−1/2).

Here, we have used Hölder’s inequality:

‖fg‖1 ≤ ‖f‖2‖g‖2,

the relation

E[r(X)w(A,X){−f̂ (1)(A,X) + f(A,X)} | r̂(1), ŵ(1), f̂ (1)] + E[v̂(1)(Z)− v(Z) | f̂ (1)]

= E[−r(X)w(A,X)f̂ (1)(A,X) + v̂(1)(z) | r̂(1), ŵ(1), f̂ (1)] + E[−r(X)w(A,X)f(A,X) + v(Z)]

= 0 + 0 = 0,

and

E[r̂(1)(X)ŵ(1)(A,X){Y − f(A,X)} | r̂(1), ŵ(1)]

= E[r̂(1)(X)ŵ(1)(A,X){f(A,X)− f(A,X)} | r̂(1), ŵ(1)] = 0.

Step 3: By combining everything, we have

Enhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + Enevl
1

[φ2(Z; f̂ (1))]−R(πe)

= Enhst
1

[φ1(X,A, Y ; r, w, f)] + Enevl
1

[φ2(Z; f)]−R(πe) + op(1/
√
n).

Then,

R̂DRCS = 0.5Enhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + 0.5Enevl
1

[φ2(Z; f̂ (1))]

+ 0.5Enhst
2

[φ1(X,A, Y ; r̂(2), ŵ(2), f̂ (2))] + 0.5Enevl
2

[φ2(Z; f̂ (2))]

= 0.5Enhst
1

[φ1(X,A, Y ; r, w, f)] + 0.5Enevl
1

[φ2(Z; f)]+

+ 0.5Enhst
2

[φ1(X,A, Y ; r, w, f)] + 0.5Enevl
2

[φ2(Z; f)] + op(1/
√
n)

= Enhst [φ1(X,A, Y ; r, w, f)] + Enevl [φ2(Z; f)] + op(1/
√
n).

Finally, by using a stratified sampling CLT (Wooldridge, 2001), the statement is concluded based on
Assumption 1.

E.4 Proof of Lemma 1

Proof. We can bound ‖r̂(X)ŵ(A,X)− r(x)w(A,X)‖2 = op(n
−p):

‖r̂(X)ŵ(A,X)− r(X)w(A,X)‖2 ≤ ‖r̂(X)ŵ(A,X)− r̂(X)w(A,X)‖2
+ ‖r̂(X)w(A,X)− r(X)w(A,X)‖2
≤ C1op(n

−p) + C2op(n
−p) = op(n

−p).

Here, we used the assumptions that r(X) is uniformly bounded by C1 and w(A,X) is uniformly
bounded by C2.

E.5 Proof of Theorem 3

Proof. Let us define φ1(x, a, y; r, w, f) and φ2(z; f):

φ1(x, a, y; r, w, f) = r(x)w(a, x){y − f(a, x)}, φ2(z; f) = v(z). (17)
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We also denote the union of nhst
i and nevl

i byDi for i = 1, 2, and the number of nhst
1 , nhst

2 , nevl
1 , nevl

2
by n11, n21, n12, n22. For simplicity, we assume n11 = n12, n21 = n22.

Then, we have

{Enhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + Enevl
1

[φ2(Z; f̂ (1))]−R(πe)}

=

{
1
√
n11

Gnhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))− φ1(X,A, Y ; r†, w†, f†)] +
1
√
n12

Gnevl
1

[φ2(Z; f̂ (1))− φ2(Z; f†)]

}
+

(18)

+ {E[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1)) | r̂(1), ŵ(1), f̂ (1)] + E[φ2(Z; f̂ (1)) | f̂ (1)] (19)

− E[φ1(X,A, Y ; r†, w†, f†)]− E[φ2(Z; f†)]}
+ {E

nhst
1

[φ1(X,A, Y ; r†, w†, f†)] + Enevl
1

[φ2(Z; f†)]−R(πe)}. (20)

The term (18) is op(1/
√
n) by Step 1 in the previous theorem noting that what we have used is

‖r̂(X)ŵ(A,X)− w†(A,X)r†(X)‖ = op(1), ‖f̂(A,X)− f†(A,X)‖ = op(1). The term Eq. (19)
is also op(1) by Step 1 as we will show soon.

Step 1: Eq. (19) is op(1). We have

|E[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1)) | r̂(1), ŵ(1), f̂ (1)] + E[φ2(Z; f̂ (1)) | f̂ (1)]− E[φ1(x; r, w, f)]− E[φ2(Z; f)]|
≤ |E[{r̂(1)(X)ŵ(1)(A,X)− r†(X)w†(A,X)}{−f̂ (1)(A,X) + f†(A,X)} | r̂(1), ŵ(1), f̂ (1)]|
+ |E[r†(x)w†(A,X){−f̂ (1)(A,X) + f†(A,X)} | r̂(1), ŵ(1), f̂ (1)] + E[v̂(1)(Z)− v†(Z) | f̂ (1)]|
+ |E[r̂(1)(X)ŵ(1)(A,X){Y − f†(A,X)} | r̂(1), ŵ(1)].

Here, if f†(a, x) = f(a, x), we have

op(1)op(1) + op(1) + 0 = op(1) = op(1).

if r†(x)w†(a, x) = r(x)w(a, x), we have

op(1)op(1) + 0 + op(1) = op(1) = op(1).

Therefore, Eq. (19) is op(1).

Step 2: By combining togather, we have

Enhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + Enevl
1

[φ2(Z; f̂ (1))]−R(πe)

= Enhst
1

[φ1(X,A, Y ; r†, w†, f†)] + Enevl
1

[φ2(Z; f†)]−R(πe) + op(1).

Then,

R̂DRCS = 0.5Enhst
1

[φ1(X,A, Y ; r̂(1), ŵ(1), f̂ (1))] + 0.5Enevl
1

[φ2(Z; f̂ (1))]

+ 0.5Enhst
2

[φ1(X,A, Y ; r̂(2), ŵ(2), f̂ (2))] + 0.5Enevl
2

[φ2(Z; f̂ (2))]

= 0.5Enhst
1

[φ1(X,A, Y ; r†, w†, f†)] + 0.5Enevl
1

[φ2(Z; f†)]+

+ 0.5Enhst
2

[φ1(X,A, Y ; r†, w†, f†)] + 0.5Enevl
2

[φ2(Z; f†)] + op(1)

= Enhst [φ1(X,A, Y ; r†, w†, f†)] + Enevl [φ2(Z; f†)] + op(1).

Then, the statement is concluded because

E
[
Enhst [φ1(X,A, Y ; r†, w†, f†)] + Enevl [φ2(Z; f†)]

]
= R(πe)

based on the double robust structure and

Enhst [φ1(X,A, Y ; r†, w†, f†)] + Enevl [φ2(Z; f†)] = R(πe) + op(1)

from the law of large numbers based on Assumption 1.
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E.6 Proof of Theorem 14

Proof. We can prove similarly as in the proof of Theorem 1. Therefore, we omit the proof.

E.7 Proof of Theorem 4

Proof of Theorem 4. For the ease of notation, we prove the case nhst = nevl noting the kernel
estimator is linearized as in Theorem 13 and and the generalization is easy. We have∥∥∥ q̂h(x)

p̂h(x) −
q(x)
p(x) − êh(x)

∥∥∥
∞

= op(n
−1/2),

where
êh(x) = 1

p(x){q̂h(x)− q(x)} − q(x)
p2(x){p̂h(x)− p(x)}.

This is proved by Theorem 12. Then,

R̂IPWCSB = Enhst

[
q̂h(X)

p̂h(X)

πe(A | X)Y

πb(A | X)

]

=
1

nhst

nhst∑
i=1

πe(Ai | Xi)Yi
πb(Ai | Xi)

{r(Xi) + êh(Xi)}

= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

1

nhstnevl

nhst∑
i=1

nevl∑
j=1

ai,j

= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

2

nhstnevl

∑
i<j

bi,j ,

where

ai,j((Xi, Ai, Yi), (Zj)) =
1

p(Xi)

πe(Ai | Xi)Yi
πb(Ai | Xi)

{Kh(Zj −Xi)− q(Xi)}

− q(Xi)

p2(Xi)

πe(Ai | Xi)Yi
πb(Ai | Xi)

{Kh(Xj −Xi)− p(Xi)},

bi,j((Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj)) = 0.5{ai,j + aj,i}.
Then,

2

nhstnevl

∑
i<j

bi,j(Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj))

=
2

nhst


nhst∑
i=1

E[bi,j | Xi, Ai, Yi, Zi]

+ op(n
−1/2)

=
1

nevl

nevl∑
i=1

E[aj,i | Xi, Ai, Yi, Zi] +
1

nhst

nhst∑
i=1

E[ai,j | Xi, Ai, Yi, Zi] + op(n
−1/2)

=
1

nevl

nevl∑
i=1

{v(Zi)− r(Xi)v(Xi)}+ op(n
−1/2).

From the first line to the second line, we have used a U-statistics theory (van der Vaart, 1998, Chapter
12). From the third line to the fourth line, we have used
E[aj,i | Zi, Xi, Ai, Yi]

= op(n
−1/2) +

{
E
[

1

p(Xi)

πe(Ai | Xi)Yi
πb(Ai | Xi)

| Xi = Zi

]
− E

[
q(Xi)

p2(Xi)

πe(Ai | Xi)Yi
πb(Ai | Xi)

| Xi

]}
p(Xi)

= op(n
−1/2) + v(Zi)− r(Xi)v(Xi),

E[ai,j | Zi, Xi, Ai, Yi] = op(n
−1/2).
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Therefore,

R̂IPWCSB = Enhst

[
q(X)

p(X)

{
πe(A | X)Y

πb(A | X)
− v(X)

}]
+ Enevl [v(Z)] + op(n

−1/2).

The final statement is concluded by CLT.

E.8 Proof of Theorem 5

Proof. For the ease of the notation, we prove the case nhst = nevl noting the kernel estimator is
linearized as in Theorem 13 and the generalization is easy. Here, we concatenate X and A as D.
We also write p(x)πb(a | x) as u(d).∥∥∥ q̂h(x)

ûh(d) −
q(x)
u(d) − êh(d)

∥∥∥
∞

= op(n
−1/2),

where
êh(d) = 1

u(d){q̂h(x)− q(x)} − q(x)
u2(d){ûh(d)− u(d)}.

This is proved by Theorem 12. Then,

R̂IPWCS = Enhst

[
q̂h(X)

p̂h(X)

πe(A | X)Y

π̂bh(A | X)

]

=
1

nhst

nhst∑
i=1

πe(Ai | Xi)Yi

{
q(Xi)

u(Di)
+ êh(Xi)

}

= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

1

nhstnevl

nhst∑
i=1

nevl∑
j=1

ai,j

= Enhst

[
q(X)

p(X)

πe(A | X)Y

πb(A | X)

]
+

2

nhstnevl

∑
i<j

bi,j ,

where

ai,j((Xi, Ai, Yi), (Zj)) =
1

p(Xi)

πe(Ai | Xi)Yi
πb(Ai | Xi)

{Kh(Zj −Xi)− q(Xi)}

− q(Xi)

u2(Di)
πe(Ai | Xi)Yi{Kh(Dj −Di)− u(Di)},

bi,j((Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj)) = 0.5{ai,j + aj,i}.
Then,

2

nhstnevl

∑
i<j

bi,j((Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj))

=
2

nhst


nhst∑
i=1

E[bi,j | Xi, Ai, Yi, Zi]

+ op(n
−1/2)

=
1

nevl

nevl∑
i=1

E[aj,i | Xi, Ai, Yi, Zi] +
1

nhst

nhst∑
i=1

E[ai,j | Xi, Ai, Yi, Zi] + op(n
−1/2)

=
1

nevl

nevl∑
i=1

{v(Zi)− r(Xi)w(Xi, Ai)f(Di)}+ op(n
−1/2).

From the first line to the second line, we used the U-statistics theory (van der Vaart, 1998, Chapter
12). From the third line to the fourth line, we used
E[aj,i | Zi, Xi, Ai, Yi]

= op(n
−1/2) + E

[
1

p(Xi)
w(Ai, Xi)Yi | Xi = Zi

]
p(Xi)− E

[
q(Xi)

u2(Di)
πe(Ai | Xi)Yi | Di = Di

]
u(Di)

= op(n
−1/2) + v(Zi)− r(Xi)w(Xi, Ai)f(Di),

E[ai,j | Zi, Xi, Ai, Yi] = op(n
−1/2).
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Therefore,

R̂IPWCS = Enhst

[
q(X)

p(X)

πe(A | X)

πb(A | X)
{Y − f(A,X)}

]
+ Enevl [v(Z)] + op(n

−1/2).

The final statement is concluded by CLT.

E.9 Proof of Theorem 6

Proof. For the ease of the notation, we prove the case nhst = nevl noting the kernel estimator is
linearized as in Theorem 13 and and generalization is easy. Here, v̂h(a, x) is defined as

v̂h(a, x) =
p̂h(a, x)

ûh(a, x)
, p̂h(a, x) =

1

nhst

nhst∑
i=1

YiKh({Xi, Ai} − {x, a})

ûh(a, x) =
1

nhst

nhst∑
i=1

Kh({Xi, Ai} − {x, a}).

We have ∥∥∥ p̂h(a,x)
ûh(a,x) −

f(a,x)u(a,x)
u(a,x) − êh(x, a)

∥∥∥
∞

= op(n
−1/2),

where

êh(x, a) = 1
u(a,x){p̂h(a, x)− f(a, x)u(a, x)} − f(a,x)

u(a,x){ûh(a, x)− u(a, x)}.

This is proved by Theorem 12. Then, we have

R̂DM = Enevl [v̂h(Z,A)]

= Enevl [v(Z,A)] +
1

nhstnevl

nevl∑
i=1

nhst∑
j=1

ai,j

= Enevl [v(Z,A)] +
2

nhstnevl

∑
i<j

bi,j ,

where

ai,j((Zi, Ai), (Xj , Aj , Yj)) =
1

u(Zi, Ai)
{YjKh({Xj , Aj} − {Zi, Ai})− u(Zi, Ai)f(Zi, Ai)}−

f(Zi, Ai)

u(Zi, Ai)
{Kh({Xj , Aj} − {Zi, Ai})− u(Zi, Ai)},

bi,j((Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj)) = 0.5{ai,j + aj,i}.

Then,

2

nhstnevl

∑
i<j

bi,j(Xi, Ai, Yi, Zi), (Xj , Aj , Yj , Zj))

=
2

nhst


nhst∑
i=1

E[bi,j | Xi, Ai, Yi, Zi]

+ op(n
−1/2)

=
1

nevl

nevl∑
i=1

E[aj,i | Xi, Ai, Yi, Zi] +
1

nhst

nhst∑
i=1

E[ai,j | Xi, Ai, Yi, Zi] + op(n
−1/2)

=
1

nevl

nevl∑
i=1

{Yi − f(Xi, Ai)}r(Xi)w(Xi, Ai) + op(n
−1/2).
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From the first line to the second line, we used a U-statistics theory (van der Vaart, 1998, Chapter
12). From the third line to the fourth line, we used

E[aj,i | Zi, Xi, Ai, Yi]

= op(n
−1/2) +

{
Yi

u(Xi, Ai)
− f(Xi, Ai)

u(Xi, Ai)

}
q(Xi)π

e(Ai | Xi)

= op(n
−1/2) + Yir(Xi)w(Ai, Xi)− r(Xi)f(Xi, Ai)w(Ai, Xi),

E[ai,j | Zi, Xi, Ai, Yi] = op(n
−1/2).

This is proved by Theorem 12. Therefore,

R̂DM = Enhst [r(X)w(A,X) {Y − f(A,X)}] + Enevl [v(Z)] + op(n
−1/2).

The final statement is concluded by CLT.

E.10 Proof of Theorem 7

Proof. We prove the statement following Zhou et al. (2018). Though the proof is very similar, for
completeness, we sketch the proof the case ρ = 0.5. Because the estimator is asymptotically linear,
the generalization is easy as in Theorem 13.

Define two scores;

Γ̂i = r̂(Di)
w (Xi, Ai){Yi − f (Di)(Xi, Ai)}+ [f(a1, Xi), · · · , f(aα, Xi)]

>,

Γi = rw(Xi, Ai){Yi − f(Xi, Ai)}+ [f(a1, Xi), · · · , f(aα, Xi)]
>,

where Di is an indicator which cross-fold estimator is used and α is a dimension of the action,
rw(x) = r(x)/πb(a | x). Then, we have R̂DRCS(π) = 2

n{
∑n/2
i=1〈π(Zi), Γ̂i〉}. Here, we define the

estimator with oracle efficient influence function

R̃(π) =
2

n

n/2∑
i=1

〈π(Zi),Γi〉.

In addition, we define

∆(πa, πb) = R(πa)−R(πb), ∆̃(πa, πb) = R̃(πa)− R̃(πb),

∆̂(πa, πb) = R̂(πa)− R̂(πb).

Step 1: First, following Zhou et al. (2018, Theorem 2), we prove the following. Let π̃ ∈
arg minπ∈Π R̃(π). Then for any δ > 0, with probability at least 1− 2δ,

R(π̃)−R(π∗) ≤ O

({
k(Π) +

√
log(1/δ)

}√Υ∗
n

)
,

where

Υ∗ = sup
π∈Π

E[〈Γi, π(Zi)〉2]

= sup
π∈Π

E[r(Xi)
2w2

π(Xi, Ai){Yi − f(Xi, Ai)}2] + E[{vπ(Zi)}2],

when wπ(a, x) = π(a, x)/πb(a, x), vπ(x) = Eπ(a|x)[f(a, x) | x].

This is proved as follows. We have

R(π̃)−R(π∗) ≤ sup
πa,πb∈Π

|∆̃(πa, πb)−∆(πa, πb)|.

Then, by using a Chaining argument as Lemma 1 (Zhou et al., 2018), we can bound an expectation
of supπa,πb∈Π |∆̃(πa, πb) − ∆(πa, πb)| via Rademacher complexity. Then, as in Lemma 2 (Zhou
et al., 2018), the high probability bound is obtained via Talagrand inequality. Then, we have

R(π̃)−R(π∗) ≤ O

({
k(Π) +

√
log(1/δ)

}√Υ′∗
n

)
,
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where

Υ′∗ = sup
πa,πb∈Π

E[〈Γi, πa(Zi)− πb(Zi)〉2].

This concludes the above statement because

Υ∗ = sup
πa,πb∈Π

E[〈Γi, πa(Zi)− πb(Zi)〉2]

= sup
πa,πb∈Π

E[r(Xi)
2{wπa − wπb}2{Yi − f(Xi, Ai)}2] + E[{vπa(Zi)− vπb(Zi)}2]

≤ sup
π∈Π

2E[r(Xi)
2w2

π(Xi, Ai){Yi − f(Xi, Ai)}2] + 2E[{vπ(Zi)}2].

Step 2: Assume κ(Π) <∞, then

sup
πa,πb∈Π

|∆̃(πa, πb)− ∆̂(πa, πb)| = op(n
−1/2).

The proof of this statement is based on the double structure of the influence function and cross-
fitting. We omit the proof because it is long, and almost the same as Lemma 3 (Zhou et al., 2018).

Step 3: Finally, based on Theorem 3 (Zhou et al., 2018), we have

R(π̂)−R(π∗) ≤ sup
πa,πb∈Π

|∆̃(πa, πb)− ∆̂(πa, πb)|+ sup
πa,πb∈Π

|∆̃(πa, πb)−∆(πa, πb)|

≤ Op

({
k(Π) +

√
log(1/δ)

}√Υ∗
n

)
.

This means there exists an integer Nδ such that with probability at least 1− 2δ, for all n ≥ Nδ:

R(π̂)−R(π∗) /
(
k(Π) +

√
log(1/δ)

)√Υ∗
n
.

Remark 8. In the general case,

Υ∗ = sup
π∈Π

ρ−1E[r(Xi)
2w2

π(Xi, Ai){Yi − f(Xi, Ai)}2] + (1− ρ)−1E[{vπ(Zi)}2].

F OPE with Known Distribution of Evaluation Data

In this section, we consider a special case where q(x) is known.

By applying (3) in Section 2.3, we obtain the efficiency bound under nonparametric model defined,
which is defined as Υ̃(πe) = E[r2(X)w2(A,X)var[Y | A,X]].

As the estimator R̂DRCS(πe) in Section 4, we construct an estimator with cross-fitting. In-
stead of (6), we use an estimator defined as Enhst

k
[r̂(k)(X)ŵ(k)(A,X){Y − f̂ (k)(A,X)}] +

Eq(z)πe(a|z)[f̂
(k)(a, z)]. The algorithm is almost the same as before. To estimate r(x), we can sim-

ply use density estimation for p(x) because q(x) is known and the integration in Eq(z)πe(a|z)[f̂(a, z)]

can be taken exactly because q(x) and πe(a | x) are known. Let us denote this estimator as R̃DRCS.
We can show that R̃DRCS(πe) achieves the efficiency bound.

Theorem 14 (Efficiency of R̃DRCS). For k ∈ {1, · · · , ξ}, assume there exists p > 0, q > 0, p+q ≥
1/2 such that ‖r̂(k)(X)ŵ(k)(A,X)−r(X)w(A,X)‖2 = op(n

−p) and ‖f̂ (k)(A,X)−f(A,X)‖2 =

op(n
−q). Then, we have

√
nhst(R̃DRCS(πe)−R(πe))

d→ N (0, Υ̃(πe)).

This asymptotic variance is equal to the asymptotic variance when ρ = 0 as shown in Remark 2
because the case ρ = 0 implies that we have infinite data from q(x).
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Table 5: Specification of datasets

Dataset the number of samples Dimension the number of classes
satimage 4,435 35 6
vehicle 846 18 4

pendigits 7,496 16 10

G Algorithm for Off-Policy Learning with Cross-Fitting

In the proposed method of OPL under a covariate shift, we train an evaluation policy by using
an estimator R̂DRCS(πe), which is constructed via cross-fitting. In this section, we introduce an
algorithm where we use a linear-in-parameter model with kernel functions to approximate a new
policy. For x ∈ X , a linear-in-parameter model is defined as π(a | x;σ2) = exp(g(a,x;σ2))∑

a∈A exp(g(a,x;σ2)) ,

where g(a, x;σ2) = β>a ϕ(x;σ2) + β0,a, ϕ(x;σ2) =
[
ϕ1(x;σ2), . . . , ϕm(x;σ2)

]>
, ϕm(x;σ2) is

the Gaussian kernel defined as ϕu(x;σ2) = exp
(
−‖x−cu‖

2

2σ2

)
, 1 ≤ u ≤ m, where {c1, ..., cm} is

m chosen points from {Xi}n
hst

i=1 , βa ∈ Rm, and β0,a ∈ R. In optimization, we put a regularization
termR({βa, β0,a}) and train a new policy as π̂DRCS = arg maxπ∈Π R̂DRCS(π) + λR({βa, β0,a}),
where λ > 0. The parameters σ2 and λ are hyper-parameters selected via cross-validation. Thus,
in the proposed method, we use the cross-fitting and cross-validation. We describe the algo-
rithm in Algorithm 2 with K fold cross-fitting and L fold cross-validation. For brevity, in the
algorithm, let us assume nhst/ξ, nhst/L, nevl/ξ, nevl/L ∈ N. In Algorithm 2, we express the
objective function with hyper-parameters σ2 and λ as Enhst

[
r̂(X)π(A|X;σ2)

π̂b(A|X)
{Y − f̂(A,X)}

]
+

Enevl [Eπe(a|Z)[f̂(a, Z)π(a | Z;σ2)] + λR({βa, β0,a}).

H Details of Experiments in Section 7.1

First, we show the description of the datasets in Table. All datasets are downloaded from https:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

In addition to the results shown in Section 7.1, we show the performances of IPWCS and DM
estimator with nuisance functions estimated by the kernel Ridge regression, which are referred as
IPWCS-R and DM-R. In addition, for OPE, we also show the results with the different sample size.

In Tables 6–7, we show the additional experimental results with the same setting as Section 7. In
this setting, the sample size is fixed at 800.

In Tables 8–9, we show the additional experimental results with 500 samples. The other setting is
the same as Section 7.1.

In Tables 10–11, we show the additional experimental results with 300 samples. The other setting is
the same as Section 7.1.

We also add the OPE and OPL experiment with the pendigits dataset in Tables 12 and 13. In this
experiment, the sample size is fixed at 800.

In Tables 14–15, we show the additional experimental results with 1, 000 samples for the satimage
and pendigits datasets. We could not conduct experiments for the vehicle dataset because it
only has 800 samples. The other setting is the same as Section 7.1.

For OPE, we highlight in bold the best two estimators in each case. For OPL, we highlight in bold
the best one estimator in each case. The proposed DRCS estimator performs well in many datasets.
The DM estimator also works well, but the performance dramatically drops when the model is
misspecified.
Remark 9 (Self-normalization). We can add self-normalization for improving the performances
of the proposed estimator Swaminathan & Joachims (2015a). There can be several ways for in-
corporating the density ratio estimator in the self-normalization. Because the proposition of self-
normalization method is not main topic of this paper, we omit the details.
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Algorithm 2 Off-policy learning using R̂DRCS(πe) with ξ-fold cross-fitting.

Input: ξ: the number of the cross-fitting for constructing R̂DRCS(πe). L: the number of the
cross-validation for constructing the optimal policy. Π: a hypothesis class of πe. {σ2

1 , . . . , σ
2
nσ2
}:

candidates of σ2. {λ1, . . . , λnλ}: candidates of λ.
Take a ξ-fold random partition (Ik)ξk=1 of observation indices [nhst] = {1, . . . , nhst} such that
the size of each fold Ik is nhst

k = nhst/ξ.
Take a ξ-fold random partition (Jk)ξk=1 of observation indices [nevl] = {1, . . . , nevl} such that
the size of each fold Jk is nevl

k = nevl/ξ.
For each k ∈ [ξ] = {1, . . . , ξ}, define Ick := {1, . . . , nhst} \ Ik and Jck := {1, . . . , nevl} \ Jk.
Define Sk = {(Xi, Ai, Yi)}i∈Ick .
for k ∈ [K] do

Construct nuisance estimators π̂b
k(a | X), r̂k(x), and f̂k(a, x) using Sk.

end for
Take a L-fold random partition (I`)

L
`=1 of observation indices [nhst] = {1, . . . , nhst} such that

the size of each fold I` is nhst
` = nhst/L.

Take a L-fold random partition (J`)
L
`=1 of observation indices [nevl] = {1, . . . , nevl} such that

the size of each fold J` is nevl
` = nevl/L.

For each ` ∈ [L] = {1, . . . , L}, define Ic` := {1, . . . , nhst} \ I` and Jc` := {1, . . . , nevl} \ J`.
for σ̃2 ∈ {σ2

1 , . . . , σ
2
nσ2
} do

for λ̃ ∈ {λ1, . . . , λnλ} do
Define Scoreσ̃2,λ̃ = 0.
for ` ∈ [L] do

Obtain π̃ by solving the following optimization problem:

π̃ = arg max
π∈Π

Enhst
I`

[
r̂(X)

π(A | X; σ̃2)

π̂b(A | X)
{Y − f̂(A,X)}

]
+ Enevl

J`

[Eπe(a|Z)[f̂(a, Z)π(a | Z; σ̃2)] + λ̃R({βa, β0,a}),

where Enhst
I`

denotes a empirical approximation using i ∈ I`, Enevl
J`

denotes a sample

approximation using j ∈ J`, and π̂b, r̂, and f̂ are the corresponding nuisance estimators
chosen from π̂b

k , r̂k, and f̂k.
Update the score Scoreσ̃2,λ̃ by

Scoreσ̃2,λ̃

= Scoreσ̃2,λ̃ + Enhst
Ic
`

[
r̂(X)

π̃(A | X; σ̃2)

π̂b(A | X)
{Y − f̂(A,X)}

]
+ Enevl

J`

[Eπe(a|Z)[f̂(a, Z)π̃(a | Z; σ̃2)],

where Enhst
Ic
`

denotes a empirical approximation using i ∈ Ic` , and Enevl
Jc
`

denotes a sample

approximation using j ∈ Jc` .
end for

end for
end for
Obtain π̃ by solving the following optimization problem:

π̂ = arg max
π∈Π

Enhst

[
r̂(X)

π(A | X; σ̂2)

π̂b(A | X)
{Y − f̂(A,X)}

]
+ Enevl

J`

[Eπe(a|Z)[f̂(a, Z)π(a | Z; σ̂2)] + λ̂R({βa, β0,a}),

where (σ̂2, λ̂) = arg max(σ̃2,λ̃)∈{{σ2
1 ,...,σ

2
n
σ2
},{λ1,...,λnλ}}

Scoreσ̃2,λ̃.
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Table 6: Off-policy evaluation with the satimage dataset with 800 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.107 0.032 67.448 144.845 0.042 0.043 0.045 0.049 0.073 0.023
0.4πd + 0.6πu 0.096 0.025 74.740 155.704 0.134 0.052 0.093 0.069 0.177 0.033
0.0πd + 1.0πu 0.154 0.051 58.031 103.632 0.336 0.079 0.022 0.026 0.372 0.050

Table 7: Off-policy evaluation with the vehicle dataset with 800 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.029 0.019 218390.000 285382.247 0.038 0.035 0.568 0.319 0.040 0.014
0.4πd + 0.6πu 0.019 0.024 329825.704 454301.175 0.095 0.062 0.576 0.357 0.089 0.019
0.0πd + 1.0πu 0.037 0.030 173603.802 141163.618 0.213 0.049 0.233 0.193 0.210 0.031

Table 8: Off-policy evaluation with the satimage dataset with 500 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.112 0.039 729.208 2433.557 0.049 0.042 0.177 0.407 0.079 0.033
0.4πd + 0.6πu 0.087 0.036 790.188 2139.882 0.146 0.074 0.130 0.170 0.173 0.045
0.0πd + 1.0πu 0.179 0.066 453.553 1148.372 0.335 0.097 0.047 0.071 0.374 0.070

Table 9: Off-policy evaluation with the vehicle dataset with 500 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.029 0.020 104311.242 126027.165 0.028 0.027 0.379 0.317 0.036 0.022
0.4πd + 0.6πu 0.014 0.010 186170.520 260715.112 0.081 0.040 0.585 0.553 0.082 0.031
0.0πd + 1.0πu 0.034 0.038 82883.403 115580.232 0.149 0.064 0.230 0.235 0.184 0.042

Table 10: Off-policy evaluation with the satimage dataset with 300 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.103 0.043 765.985 2922.342 0.026 0.027 0.125 0.115 0.067 0.035
0.4πd + 0.6πu 0.074 0.051 40.273 89.381 0.126 0.098 0.261 0.309 0.155 0.055
0.0πd + 1.0πu 0.169 0.095 4367.009 15791.530 0.297 0.084 0.375 1.293 0.341 0.073

Table 11: Off-policy evaluation with the vehicle dataset with 300 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.036 0.023 78064.888 80378.226 0.029 0.028 0.328 0.391 0.038 0.021
0.4πd + 0.6πu 0.020 0.020 108655.809 136013.160 0.096 0.055 0.668 0.608 0.084 0.033
0.0πd + 1.0πu 0.063 0.051 59301.622 74435.924 0.175 0.074 0.125 0.161 0.204 0.053
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Table 12: Off-policy evaluation with pendigits dataset with 800 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.118 0.020 1074.278 838.074 0.083 0.035 0.052 0.045 0.089 0.014
0.4πd + 0.6πu 0.110 0.026 1328.069 1045.287 0.220 0.053 0.056 0.040 0.231 0.026
0.0πd + 1.0πu 0.314 0.086 231.043 217.068 0.503 0.049 0.116 0.187 0.511 0.037

Table 13: Off-policy learning with pendigits dataset with 800 samples

Behavior Policy DRCS IPWCS DM
RWD STD RWD STD RWD STD

0.7πd + 0.3πu 0.683 0.030 0.241 0.048 0.507 0.060
0.4πd + 0.6πu 0.678 0.039 0.252 0.032 0.445 0.096
0.0πd + 1.0πu 0.409 0.067 0.204 0.031 0.212 0.041

Table 14: Off-policy evaluation with the satimage dataset with 1, 000 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.111 0.024 58.724 91.964 0.052 0.034 0.050 0.069 0.067 0.019
0.4πd + 0.6πu 0.090 0.026 118.317 188.729 0.173 0.097 0.099 0.087 0.170 0.039
0.0πd + 1.0πu 0.145 0.038 82.801 103.326 0.369 0.106 0.018 0.026 0.395 0.046

Table 15: Off-policy evaluation with the pendigits dataset with 1, 000 samples

Behavior Policy DRCS IPWCS DM IPWCS-R DM-R
MSE std MSE std MSE std MSE std MSE std

0.7πd + 0.3πu 0.118 0.021 1299.936 829.752 0.094 0.029 0.040 0.040 0.090 0.012
0.4πd + 0.6πu 0.106 0.021 1483.730 1014.923 0.256 0.063 0.067 0.078 0.241 0.023
0.0πd + 1.0πu 0.313 0.091 300.599 216.541 0.496 0.064 0.099 0.167 0.531 0.033
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