
Supplementary for
Neural Methods for Point-wise Dependency Estimation

Yao-Hung Hubert Tsai1, Han Zhao2∗,
Makoto Yamada34, Louis-Philippe Morency1, Ruslan Salakhutdinov1

1Carnegie Mellon University, 2D.E. Shaw & Co., 3 Kyoto University, 4RIKEN AIP

1 Optimization Objectives for Point-wise Dependency Neural Estimation

In this section, we shall show detailed derivations for the point-wise dependency estimation methods.
Four approaches are discussed: Variational Bounds of Mutual Information, Density Matching,
Probabilistic Classifier, and Density-Ratio Fitting. For convenience, we define Ω = X ×Y . We have
PX,Y and PXPY (can also be written as PX⊗PY) be the probability measures over σ−algebras over
Ω with their probability densities being the Radon-Nikodym derivatives (i.e., p(x, y) = dPX,Y /dµ
and p(x)p(y) = dPXPY /dµ with µ being the Lebesgue measure).

1.1 Method I: Variational Bounds of Mutual Information

Recent advances [5, 22] propose to estimate mutual information (MI) using neural network either
from variational MI lower bounds (e.g., INWJ [5] and IDV [5]) or a variational form of MI (e.g.,
IJS [22]). These estimators have the logarithm of point-wise dependency (PMI) as the intermediate
product, which we will show in the following. We denoteM be any class of functions m : Ω→ R.
Proposition 1 (INWJ and its neural estimation, restating Nguyen-Wainwright-Jordan bound [5, 18]).

INWJ := sup
m∈M

EPX,Y [m(x, y)]−e−1EPXPY [em(x,y)] = sup
θ∈Θ

EPX,Y [f̂θ(x, y)]−e−1EPXPY [ef̂θ(x,y)]

has the optimal function m∗(x, y) = 1 + log p(x,y)
p(x)p(y) . And when Θ is large enough, the optimal

f̂∗θ (x, y) = 1 + log p(x,y)
p(x)p(y) .

Proof. The second-order functional derivative of the objective is −e−1 · em(x,y) · dPXPY , which is
always negative. The negative second-order functional derivative implies the objective has a supreme
value. Then, take the first-order functional derivative ∂INWJ

∂m and set it to zero:

dPX,Y − e−1 · em(x,y) · dPXPY = 0.

We then get optimal m∗(x, y) = 1 + log
dPX,Y
dPXPY

= 1 + log p(x,y)
p(x)p(y) . When Θ is large enough, by

universal approximation theorem of neural networks [11], the approximation in Proposition 1 is tight,
which means f̂∗θ (x, y) = m∗(x, y) = 1 + log p(x,y)

p(x)p(y) . �

Proposition 2 (IDV and its neural estimation, restating Donsker-Varadhan bound [5, 8]).

IDV := sup
m∈M

EPX,Y [m(x, y)]−log
(
EPXPY [em(x,y)]

)
] = sup

θ∈Θ
EPX,Y [f̂θ(x, y)]−log

(
EPXPY [ef̂θ(x,y)]

)
]

has optimal functions m∗(x, y) = log p(x,y)
p(x)p(y) + Const.. And when Θ is large enough, the optimal

f̂∗θ (x, y) = log p(x,y)
p(x)p(y) + Const..

∗Work done at Carnegie Mellon University.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Proof. Let 1· be an indicator function, and the second-order functional derivative of the objective is

−
em(x,y) · E(x′,y′)∼PXPY

[
em(x′,y′) · 1(x′,y′) 6=(x,y)

]
(
EPXPY [em(x,y)]

)2 · dPXPY ,

which is always negative. The negative second-order functional derivative implies the objective has a
supreme value. Then, take the first-order functional derivative ∂IDV

∂m and set it to zero:

dPX,Y −
em(x,y)

EPXPY [em(x,y)]
· dPXPY = 0.

We then have m∗(x, y) take the forms m∗(x, y) = log
dPX,Y
dPXPY

+ Const. = log p(x,y)
p(x)p(y) + Const..

When Θ is large enough, by universal approximation theorem of neural networks [11], the approxi-
mation in Proposition 2 is tight, which means f̂∗θ (x, y) = m∗(x, y) = log p(x,y)

p(x)p(y) + Const.. �

Proposition 3 (IJS and its neural estimation, restating Jensen-Shannon bound with f-GAN objec-
tive [22]).

IJS := sup
m∈M

EPX,Y
[
− softplus

(
−m(x, y)

)]
− EPXPY

[
softplus

(
m(x, y)

)]
= sup
θ∈Θ

EPX,Y
[
− softplus

(
− f̂θ(x, y)

)]
− EPXPY

[
softplus

(
f̂θ(x, y)

)]
with softplus function being softplus (x) = log

(
1 + exp (x)

)
and the optimal solution m∗(x, y) =

log p(x,y)
p(x)p(y) . And when Θ is large enough, the optimal f̂∗θ (x, y) = m∗(x, y) = log p(x,y)

p(x)p(y) .

Proof. The second-order functional derivative of the objective is

− 1(
1 + em(x,y)

)2 · e
m(x,y) · dPX,Y −

1(
1 + e−m(x,y)

)2 · e
−m(x,y) · dPXPY ,

which is always negative. The negative second-order functional derivative implies the objective has a
supreme value. Then, take the first-order functional derivative ∂IJS

∂m and set it to zero:

1

1 + e−m(x,y)
· e−m(x,y) · dPX,Y −

1

1 + em(x,y)
· em(x,y) · dPXPY = 0.

We then get m∗(x, y) = log
dPX,Y
dPXPY

= log p(x,y)
p(x)p(y) . When Θ is large enough, by universal approxi-

mation theorem of neural networks [11], the approximation in Proposition 3 is tight, which means
f̂∗θ (x, y) = m∗(x, y) = log p(x,y)

p(x)p(y) . �

We see that either INWJ (Proposition 1) or IJS (Proposition 3) gives us the optimal PMI estimation,
while IDV (Proposition 2) is less preferable since its optimal solution includes an arbitrary constant.
In practice, we prefer IJS over INWJ/IDV due to its better training stability [22].

1.2 Method II: Density Matching

This method considers to match the true joint density p(x, y) and the estimated joint density via
KL-divergence. We let the estimated joint probability be Pm,X,Y with its joint density being
em(x,y)p(x)p(y), where em(x,y) acts to ensure the estimated joint density is a valid probability
density function. Hence, we let m ∈M′′ withM′′ being 1) any class of functions m : Ω→ R; and
2)
∫
em(x,y) dPXPY = EPXPY [em(x,y)] = 1.

2

Proposition 4 (KL Loss in Density Matching and its neural estimation).

LKLDM
:= sup
m∈M′′

EPX,Y [m(x, y)]

= sup
θ∈Θ

EPX,Y [f̂θ(x, y)] s.t. EPXPY [ef̂θ(x,y)] = 1

with the optimal m∗(x, y) = log p(x,y)
p(x)p(y) . And when Θ is large enough, the optimal f̂∗θ (x, y) =

log p(x,y)
p(x)p(y) .

Proof. First, we compute the KL-divergence:

LKLDM
= inf
m∈M′′

DKL(PX,Y ‖ P̂X,Y) = inf
m∈M′′

H(PX,Y)− EPX,Y
[
log em(x,y)p(x)p(y)

]
= inf
m∈M′′

H(PX,Y)− EPX,Y
[
log p(x)p(y)

]
− EPX,Y

[
m(x, y)

]
= inf
m∈M′′

I(X;Y)− EPX,Y
[
m(x, y)

]
= Const.+ sup

m∈M′′
EPX,Y

[
m(x, y)

]
⇔ sup

m∈M
EPX,Y [m(x, y)] s.t. EPXPY [em(x,y)] = 1.

Consider the following Lagrangian:

h(m,λ1, λ2) := EPX,Y [m]− λ(EPXPY [em]− 1),

where λ ∈ R. Taking the functional derivative and setting it to be zero, we see

dPX,Y − λ · em · dPXdPY = 0.

To satisfy the constraint, we obtain

EPXPY [em] = 1 ⇐⇒ EPXPY [
1

λ

dPX,Y
dPXPY

] =
1

λ
EPXPY [

dPX,Y
dPXPY

] =
1

λ
= 1 ⇐⇒ λ = 1.

Plugging-in λ = 1, the optimal m∗(x, y) = log dPXY
dPXPY

= log p(x,y)
p(x)p(y) . When Θ is large enough, by

universal approximation theorem of neural networks [11], the approximation in Proposition 4 is tight,
which means f̂∗θ (x, y) = m∗(x, y) = log p(x,y)

p(x)p(y) . �

The objective function in Proposition 4 is a constrained optimization problem, and we present two
relaxed optimization objectives. The first one is Lagrange relaxation:

sup
θ∈Θ

EPX,Y [f̂θ(x, y)]− λ
(
EPXPY [e

f̂θ(x,y)]− 1
)

with the optimal Lagrange coefficient λ = 1 (see proof for Proposition 4).

The second one is log barrier method:

sup
θ∈Θ

EPX,Y [f̂θ(x, y)]− η
(
logEPXPY [e

f̂θ(x,y)]
)2

,

where η > 0 is a hyper-parameter controlling the regularization term.

1.3 Method III: Probabilistic Classifier

This approach casts the PD estimation as the problem of estimating the ‘class’-posterior probability.
We use a Bernoulli random variable C to classify the samples drawn from the joint density (C = 1
for (x, y) ∼ PX,Y) and the samples drawn from product of the marginal densities (C = 0 for
(x, y) ∼ PXPY). In order to present our derivation, we define H(·) as the entropy and H(·, ·) as the
cross entropy. Slightly abusing notation, in this subsection, we define Ω′ = X × Y × {0, 1} andM′
is 1) any class of functions m : Ω′ → (0, 1); and 2) m(x, y, 0) + m(x, y, 1) = 1 for any x and y.
Note that since m(x, y, c) is always positive and m(x, y, 0) +m(x, y, 1) = 1 for any x, y, m(x, y, c)
is a proper probability mass function with respect to C given any x, y. Consider the binary cross
entropy loss:

3

Proposition 5 (Binary Cross Entropy Loss in Probabilistic Classifier Method and its neural estima-
tion).

LBCEPC
:= sup
m∈M′

EPX,Y [logm(x, y, C = 1)] + EPXPY [log
(

1−m(x, y, C = 1)
)

]

=sup
θ∈Θ

EPX,Y [log p̂θ(C = 1|(x, y))] + EPXPY [log
(

1− p̂θ(C = 1|(x, y))
)

]

with the optimal m∗(x, y, c) = p(c|(x, y)). And when Θ is large enough, the optimal p̂∗θ(c|(x, y)) =
p(c|(x, y)).

Proof. We see

LBCEPC = inf
m∈M′

EPXY
[
H
(
P (C|(x, y)),m(x, y, C)

)]
+ EPXPY

[
H
(
P (C|(x, y)),m(x, y, C))

)]
= inf
m∈M′

EPXY
[
H
(
P (C|(x, y))

)
+DKL(P (C|(x, y)) ‖ m(x, y, C))

]
+ EPXPY

[
H
(
P (C|(x, y))

)
+DKL(P (C|(x, y)) ‖ m(x, y, C))

]
= Const.+ inf

m∈M′
EPXY

[
DKL(P (C|(x, y)) ‖ m(x, y, C))

]
+ EPXPY

[
DKL(P (C|(x, y)) ‖ m(x, y, C))

]
= Const.+ inf

m∈M′
EPXY

[
EP (C|(x,y))[−logm(x, y, c)]

]
+ EPXPY

[
EP (C|(x,y))[−logm(x, y, c)]

]
= Const.+ inf

m∈M′
EPXY [−logm(x, y, C = 1)] + EPXPY [−logm(x, y, C = 0)]

⇔ sup
m∈M′

EPX,Y [logm(x, y, C = 1)] + EPXPY [log
(

1−m(x, y, C = 1)
)

].

The optimal m∗ happens when DKL(P (C|(x, y)) ‖ m∗(x, y, C)) = 0 for any (x, y), which implies
m∗(x, y, c) = p(c|(x, y)). When Θ is large enough, by universal approximation theorem of neural
networks [11], the approximation in Proposition 5 is tight, which means p̂∗θ(c|(x, y)) = m∗(x, y, c) =
p(c|(x, y)). �

The obtained estimated class-posterior classifier can be used for approximating point-wise dependency
(PD):

r̂θ(x, y) =
nPXPY
nPX,Y

p̂θ(C = 1|(x, y))

p̂θ(C = 0|(x, y))
with (x, y) ∼ PX,Y or (x, y) ∼ PXPY .

1.4 Method IV: Density-Ratio Fitting

LetM be any class of functions m : Ω→ R. This approach considers to minimize the expected (in
EPXPY [·]) least-square difference between the true PD r(x, y) and the estimated PD m(x, y):

Proposition 6 (Least-Square Loss in Density-Ratio Fitting and its neural estimation).

LLSD−RF
:= sup

m∈M
EPX,Y [m(x, y)]−1

2
EPXPY [m2(x, y)] = sup

θ∈Θ
EPX,Y [r̂θ(x, y)]−1

2
EPXPY [r̂2

θ(x, y)]

with the optimalm∗(x, y) = p(x,y)
p(x)p(y) . And when Θ is larger enough, the optimal r̂∗θ(x, y) = p(x,y)

p(x)p(y) .

4

Proof.

LLSD−RF
= inf
m∈M

EPXPY [
(
r(x, y)−m(x, y)

)2
]

= inf
m∈M

EPXPY [r2(x, y)]− 2EPXPY [r(x, y)m(x, y)] + EPXPY [m2(x, y)]

= Const.+ inf
m∈M

− 2EPXPY [r(x, y)m(x, y)] + EPXPY [m2(x, y)]

= Const.+ inf
m∈M

− 2EPXY [m(x, y)] + EPXPY [m2(x, y)]

⇔ sup
m∈M

EPXY [m(x, y)]− 1

2
EPXPY [m2(x, y)].

Take the first-order functional derivative and set it to zero:
dPXY −m(x, y) · dPXPY = 0.

We then get m∗(x, y) =
dPX,Y
dPXPY

= p(x,y)
p(x)p(y) . When Θ is large enough, by universal approximation

theorem of neural networks [11], the approximation in Proposition 6 is tight, which means r̂∗θ(x, y) =

m∗(x, y) = p(x,y)
p(x)p(y) . �

2 More on Mutual Information Neural Estimation

In this section, we present more analysis on estimating mutual information (MI) using neural networks.
Before going into more details, we would like to 1) show INWJ and IDV are MI lower bounds; and 2)
present ICPC [20] objective.
Lemma 1 (INWJ as a MI lower bound).

∀θ ∈ Θ, I(X;Y) ≥ EPX,Y [f̂θ(x, y)]− e−1EPXPY [ef̂θ(x,y)].

Therefore,
I(X;Y) ≥ INWJ := sup

θ∈Θ
EPX,Y [f̂θ(x, y)]− e−1EPXPY [ef̂θ(x,y)].

Proof. In Proposition 1, we show the supreme value of EPX,Y [f̂θ(x, y)] − e−1EPXPY [ef̂θ(x,y)]

happens when f̂∗θ (x, y) = 1 + log p(x,y)
p(x)p(y) . Plugging-in f̂∗θ (x, y), we get

EPX,Y [f̂∗θ (x, y)]− e−1EPXPY [ef̂
∗
θ (x,y)] = EPX,Y [1 + log

p(x, y)

p(x)p(y)
]− e−1EPXPY [e1 · p(x, y)

p(x)p(y)
]

=1 + EPX,Y [log
p(x, y)

p(x)p(y)
]− e−1 · e1 · EPXPY [

p(x, y)

p(x)p(y)
] = 1 + I(X;Y)− 1 = I(X;Y). �

Lemma 2 (IDV as a MI lower bound).

∀θ ∈ Θ, I(X;Y) ≥ EPX,Y [f̂θ(x, y)]− log
(
EPXPY [ef̂θ(x,y)]

)
.

Therefore,

I(X;Y) ≥ IDV := sup
θ∈Θ

EPX,Y [f̂θ(x, y)]−−log
(
EPXPY [ef̂θ(x,y)]

)
.

Proof. In Proposition 2, we show the supreme value of EPX,Y [f̂θ(x, y)] − log
(
EPXPY [ef̂θ(x,y)]

)
happens when f̂∗θ (x, y) = Const.+ log p(x,y)

p(x)p(y) . Plugging-in f̂∗θ (x, y), we get

EPX,Y [f̂∗θ (x, y)]− log
(
EPXPY [ef̂

∗
θ (x,y)]

)
=EPX,Y [Const.+ log

p(x, y)

p(x)p(y)
]− log

(
EPXPY [eConst.+log

p(x,y)
p(x)p(y)]

)
=Const.+ EPX,Y [log

p(x, y)

p(x)p(y)
]− Const. · EPXPY [

p(x, y)

p(x)p(y)
] = I(X;Y).

�

5

Proposition 7 (ICPC, restating Contrastive Predictive Coding [20]). With ĉθ(x, y) representing a
real-valued measureable function on X × Y which is parametrized by a neural network θ,

LCPC := sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]

with an upper bound value log n.

Proof.

LCPC = sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]

= sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)∑n
j=1 e

ĉθ(xi,yj)
] + log n

≤ sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

eĉθ(xi,yi)
] + log n

= sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log 1] + log n

= log n.

�

Lemma 3 (ICPC as a MI lower bound).

∀θ ∈ Θ, I(X;Y) ≥ E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
].

Therefore,

I(X;Y) ≥ ICPC := sup
θ∈Θ

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
].

Proof. First, we use independent and identical random variablesX1, X2, · · · , Xn and Y1, Y2, · · · , Yn
to represent the copies of X and Y , where (xi, yi) ∼ PXi,Yi . Replacing the random variables in
Lemma 1, we obtain

∀θ ∈ Θ, I(Xi;Y1:n) ≥ EPXi,Y1:n [f̂θ(xi, y1:k)]− e−1EPXiPY1:n [ef̂θ(xi,y1:k)].

Next, we define f̂θ(xi, y1:k) = 1 + log eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
and get

∀θ ∈ Θ, I(Xi;Y1:n) ≥ 1 + EPXi,Y1:n [log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]− EPXiPY1:n [

eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
].

Since Y1, Y2, · · · , Yn are independent and identical samples, EPXiPY1:n [eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] =

EPXiPY1:n [eĉθ(xi,yi′)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] ∀i′ ∈ {1, 2, · · · , n}. Therefore, EPXiPY1:n [eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] =

1
n

∑n
i′=1 EPXiPY1:n [eĉθ(xi,yi′)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] = EPXiPY1:n [

1
n

∑n
i′=1

eĉθ(xi,yi′)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] = 1. Plugging-in this result,

we have

∀θ ∈ Θ, I(Xi;Y1:n) ≥ 1 + EPXi,Y1:n [log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]− 1 = EPXi,Y1:n [log

eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
].

Note that Yi′ is independent to Xi when i′ 6= i, and therefore I(Xi;Y1:n) = I(Xi;Yi) = I(X;Y).

6

Bringing everything together, the original objective can be reformulated as

E(x1,y1)∼PX,Y ,···(xn,yn)∼PX,Y [
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]

=EPX1:n,Y1:n
[
1

n

n∑
i=1

log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
] =

1

n

n∑
i=1

EPXi,Y1:n [log
eĉθ(xi,yi)

1
n

∑n
j=1 e

ĉθ(xi,yj)
]

≤ 1

n

n∑
i=1

I(Xi;Y1:n) =
1

n

n∑
i=1

I(X;Y) = I(X;Y).

�

2.1 Learning/ Inference in MI Neural Estimation and Baselines

The MI neural estimation methods can be dissected into two procedures: learning and inference. The
learning step learns the parameters when estimating 1) point-wise dependency (PD)/ logarithm of
point-wise dependency (PMI); or 2) MI lower bound. The inference step considers the parameters
from the learning step and infers value for 1) MI itself; or 2) a lower bound of MI. We summarize
different approaches in Table 1 in the main text, and we discuss the baselines in this subsection. We
present the comparisons between baselines and our methods in Table 1/ Figure 1 in the main text.

CPC Oord et al. [20] presented Contrastive Predictive Coding (CPC) as an unsupervised learning
objective, which adopts ICPC (see Proposition 7) in both learning and inference stages. From
Proposition 7 and Lemma 3, we conclude

ICPC ≤ min
(

log n, I(X;Y)
)
.

Hence, the difference between ICPC and I(X;Y) is large when n is small. This fact implies a large
bias when using ICPC to estimate MI. Nevertheless, empirical evidences [22, 23] showed that ICPC

has low variance, which is also verified in our experiments.

NWJ Belghazi et al. [5] presented to use neural networks to estimate Nguyen-Wainwright-Jordan
bound [5, 18] (NWJ) bound of MI, which adopts INWJ (see Proposition 1) in both learning and
inference stages. In Proposition 1 and Lemma 1, we show that when Θ is large enough, the supreme
value of INWJ is I(X;Y). Hence, we can expect a smaller bias when comparing INWJ to ICPC. Song
et al. [23] acknowledged the variance of an empirical INWJ estimation is Ω(eI(X;Y)), suggesting a
large variance when the true MI is large. We verify these facts in our experiments.

DV (MINE) Belghazi et al. [5] presented to use neural networks to estimate Donsker-Varadhan
bound [5, 18] (DV) bound of MI, which adopts IDV (see Proposition 2) in both learning and inference
stages. The author also refers this MI estimation procedure as Mutual Information Neural Estimation
(MINE). In Proposition 2 and Lemma 2, we show that when Θ is large enough, the supreme value of
IDV is I(X;Y). Hence, we can expect a smaller bias when comparing IDV to ICPC. Song et al. [23]
acknowledged the limiting variance of an empirical IDV estimation is Ω(eI(X;Y)), which implies the
variance is large when the true MI is large. We verify these facts in our experiments.

JS Unlike CPC, NWJ, and DV, Poole et al. [22] presented to adopt different objectives in learning
and inference stages for MI estimation. Precisely, the author uses Jensen-Shannon F-GAN [19]
objective (see Proposition 3) to estimate PMI and then plugs in the PMI into INWJ (see Proposition 1)
for the inference. The author refers this MI estimation method as JS since it considers Jensen-
Shannon divergence during learning. Unfortunately, this estimation method still considers INWJ as
its inference objective, and therefore the variance is still Ω(eI(X;Y)). Empirical results are shown in
our experiments.

SMILE To overcome the large variance issue in NWJ, DV, and JS, Song et al. [23] presented to
use IJS (see Proposition 3) for estimating PMI and then plug in the PMI to a modified IDV (see
Proposition 2). Specifically, the author clipped the value of ef̂θ(x,y) in the second term of IDV to
control the variance during the inference stage. Although the modification introduces some bias for
MI estimation, it is empirically admitting a small variance, which we also find in our experiments.

7

2.2 Architecture Design in Experiments

We follow the same training and evaluation protocal for Correlated Gaussians experiments in
prior work [22, 23]. We adopt the “concatenate critic” design [20, 22, 23] for our neural net-
work parametrized function. The neural network parametrized functions are ĉθ in CPC, f̂θ in
NWJ/JS/DV/SMILE/Variational MI Bounds/Density Matching I/Density Matchinig II, r̂θ in Density-
Ratio Fitting, and p̂θ in Probabilistic Classifier. Take ĉθ as an example, the concatenate critic design
admits ĉθ(x, y) = gθ([x, y]) with gθ being multiple-layer perceptrons. We consider gθ to be 1-hidden-
layer neural network with 512 neurons for each layer and ReLU function as the activation. The
optimization considers batch size 128 and Adam optimizer [12] with learning rate 0.001. For a fair
comparison, we fix everything except for the learning and inference objectives. Note that Probabilistic
Classifier method applies sigmoid function to the outputs to ensure probabilistic outputs. We set
η = 1.0 in Density Matching II.

Reproducibility Please refer to our released code.

2.3 Theoretical Analysis

We restate the Assumptions in the main text:
Assumption 1 (Boundedness of the density ratio; restating Assumption 1 in the main text). There
exist universal constants Cl ≤ Cu such that ∀r̂θ ∈ F and ∀x, y, Cl ≤ log r̂θ(x, y) ≤ Cu.
Assumption 2 (log-smoothness of the density ratio; restating Assumption 2 in the main text). There
exists ρ > 0 such that for ∀x, y and ∀θ1, θ2 ∈ Θ, | log r̂θ1(x, y)− log r̂θ2(x, y)| ≤ ρ · ‖θ1 − θ2‖.

In what follows, we first prove the following lemma. The main idea is from Bartlett [4], while here
we focus on the covering number of the parameter space Θ using L2 norm.
Lemma 4 (estimation; restating Lemma 1 in the main text). Let ε > 0 and N (Θ, ε) be the covering
number of Θ with radius ε under L2 norm. Let PX,Y be any distribution where S = {xi, yi}ni=1 are
sampled from and define M := Cu − Cl, then

Pr
S

(
sup
r̂θ∈F

∣∣∣Î(n)
θ (X;Y)− EPX,Y [log r̂θ(x, y)]

∣∣∣ ≥ ε) ≤ 2N (Θ, ε/4ρ) exp

(
− nε2

2M2

)
. (1)

Proof. Define lS(θ) := Î
(n)
θ (X;Y) − EPX,Y [log r̂θ(x, y)]. For θ1, θ2 ∈ Θ, we first bound the

difference |lS(θ1) − lS(θ2)| in terms of the distance between θ1 and θ2. To do so, for any joint
distribution P over X × Y , we first bound the following difference:

|EP [log r̂θ1(x, y)]− EP [log r̂θ2(x, y)]| ≤ EP [| log r̂θ1(x, y)− log r̂θ2(x, y)|]
≤ EP [ρ · ‖θ1 − θ2‖2]

= ρ · ‖θ1 − θ2‖2,
where the first inequality is due to the triangle inequality and the second one is from Assumption 2.
Next we bound |lS(θ1)− lS(θ2)| by applying the above inequality twice:

|lS(θ1)− lS(θ2)| =
∣∣∣(Î(n)

θ1
(X;Y)− EPX,Y [log r̂θ1(x, y)]

)
−
(
Î

(n)
θ2

(X;Y)− EPX,Y [log r̂θ2(x, y)]
)∣∣∣

≤
∣∣∣Î(n)
θ1

(X;Y)− Î(n)
θ2

(X;Y)
∣∣∣+
∣∣EPX,Y [log r̂θ1(x, y)]− EPX,Y [log r̂θ2(x, y)]

∣∣
≤ ρ · ‖θ1 − θ2‖+ ρ · ‖θ1 − θ2‖2
= 2ρ · ‖θ1 − θ2‖.

Now we consider the covering of Θ. Since Θ is compact, it admits a finite covering. To simplify the
notation, let T := N (Θ, ε/4ρ) and let ∪Tk=1Θk be a finite cover of Θ. Furthermore, assume θi ∈ Θi

be the center of the L2 ball Θi with radius ε/4ρ. As a result, the following bound holds:
Pr
S

(sup
r̂θ∈F

|lS(θ)| ≥ ε) = Pr
S

(sup
θ∈Θ
|lS(θ)| ≥ ε)

≤ Pr
S

(∪k∈[T] sup
θ∈Θk

|lS(θ)| ≥ ε)

≤
∑
k∈[T]

Pr
S

(sup
θ∈Θk

|lS(θ)| ≥ ε).

8

The last inequality above is due to the union bound. Next, ∀k ∈ [T], realize that the following
inequality holds:

Pr
S

(sup
θ∈Θk

|lS(θ)| ≥ ε) ≤ Pr
S

(|lS(θk)| ≥ ε/2).

To see this, note that the L2 ball of Θk has radius ε/4ρ, hence supθ∈Θk
|lS(θ)−lS(θk)| ≤ 2ρ·ε/4ρ =

ε/2, which yields:

Pr
S

(sup
θ∈Θk

|lS(θ)| ≥ ε) ≤ Pr
S

(sup
θ∈Θk

|lS(θ)− lS(θk)|+ |lS(θk)| ≥ ε)

≤ Pr
S

(|lS(θk)| ≥ ε/2).

To proceed, it suffices if we could provide an upper bound for PrS(|lS(θk)| ≥ ε/2). Now since
log r̂θk(x, y) is bounded for any pair of input x, y by Assumption 1, it follows from the Hoeffding’s
inequality that

Pr
S

(|lS(θk)| ≥ ε/2) = Pr
S

(∣∣∣Î(n)
θk

(X;Y)− EPX,Y [log r̂θk(x, y)]
∣∣∣ ≥ ε/2)

≤ 2 exp

(
− nε2

2M2

)
.

Now, combine all the pieces together, we have:

Pr
S

(sup
r̂θ∈F

∣∣∣Î(n)
θ (X;Y)− EPX,Y [log r̂θ(x, y)]

∣∣∣ ≥ ε) = Pr
S

(sup
θ∈Θ
|lS(θ)| ≥ ε)

≤
∑
k∈[T]

Pr
S

(sup
θ∈Θk

|lS(θ)| ≥ ε)

≤ N (Θ, ε/4ρ) Pr
S

(sup
θ∈Θk

|lS(θ)| ≥ ε)

≤ N (Θ, ε/4ρ) Pr
S

(|lS(θk)| ≥ ε/2)

≤ 2N (Θ, ε/4ρ) exp

(
− nε2

2M2

)
. �

We restate the Lemma 2 in the main text:
Lemma 5 (Hornik et al. [11], approximation; restating Lemma 2 in the main text). Let ε > 0. There
exists d ∈ N and a family of neural networks F := {r̂θ : θ ∈ Θ ⊆ Rd} where Θ is compact, such
that inf r̂θ∈F

∣∣EPX,Y [log r̂θ(x, y)]− I(X;Y)
∣∣ ≤ ε.

Now, we are ready the present our theorem:
Theorem 1. Let 0 < δ < 1. There exists d ∈ N and a family of neural networks F := {r̂θ : θ ∈
Θ ⊆ Rd} where Θ is compact, so that ∃θ∗ ∈ Θ, with probability at least 1 − δ over the draw of
S = {xi, yi}ni=1 ∼ P

⊗n
X,Y ,∣∣∣Î(n)

θ∗ (X;Y)− I(X;Y)
∣∣∣ ≤ O(√d+ log(1/δ)

n

)
. (2)

Proof. This theorem simply follows a combination of Lemma 4 and Lemma 5. First, by Lemma 5,
for ε > 0, there exists d ∈ N and a family of neural networks F := {r̂θ : θ ∈ Θ ⊆ Rd} where Θ is
compact, such that there ∃θ∗ ∈ Θ,∣∣EPX,Y [log r̂θ∗(x, y)]− I(X;Y)

∣∣ ≤ ε

2
.

Next, we perform analysis on the estimation error
∣∣∣Î(n)
θ∗ (X;Y)− EPX,Y [log r̂θ∗(x, y)]

∣∣∣ ≤ ε
2 . Apply-

ing Lemma 4 with the fact [2] that for Θ ⊆ Rd, logN (Θ, ε/4ρ) = O(d log(ρ/ε)), we can solve for
ε in terms of the given δ. It suffices for us to find ε→ ε

2 such that:

2N (Θ, ε/8ρ) exp

(
− nε2

8M2

)
≤ δ,

9

which is equivalent to finding ε such that the following inequality holds:

c · d log
ε

8ρ
+

nε2

8M2
≥ log

2

δ
,

where c is a universal constant that is independent of d. Now, using the inequality log(x) ≤ x− 1, it
suffices for us to find ε such that

c · d
(
ε

8ρ
− 1

)
+

nε2

8M2
≥ c · d log

ε

8ρ
+

nε2

8M2
≥ log

2

δ
,

which is in turn equivalent to solving:

ε2 + c′ε ≥
(

log
2

δ
+ cd

)
· 8M2

n
,

where c′ = c′(c, d, ρ, n,M). Nevertheless, in order for the above inequality to hold, it suffices if we
choose

ε = O

(√
d+ log(1/δ)

n

)
.

The final step is to combine the above two inequalities together:∣∣∣Î(n)
θ∗ (X;Y)− I(X;Y)

∣∣∣ ≤ ∣∣∣Î(n)
θ∗ (X;Y)− EPX,Y [log r̂θ∗(x, y)]

∣∣∣+
∣∣EPX,Y [log r̂θ∗(x, y)]− I(X;Y)

∣∣
≤ ε

2
+
ε

2
= O

(√
d+ log(1/δ)

n

)
. �

3 More on Self-supervised Representation Learning

In the main text, we have shown how we adapt the proposed point-wise dependency estimation
approaches (Probabilistic Classifier and Density-Ratio Fitting) to contrastive learning objectives
(Probabilistic Classifier Coding and Density-Ratio Fitting Coding) for self-supervised representation
learning. Following the adaptation, it is straightforward to define new contrastive learning objectives
that are inspired by other presented approaches such as Variational MI Bounds, Density Matching I
,and Density Matching II. Nevertheless, instead of presenting new objectives, we would like to discuss
1) the connection between Probabilistic Classifier and Variational MI Bounds; 2) the connection
between Density Matchinig I/II and INWJ (see Proposition 1); and 3) the potential limitations of the
new objectives. Next, we will discuss the baseline method Contrastive Predictive Coding (CPC). Last,
we present the experimental details.

3.1 Connection between Probabilistic Classifier and Variational MI Bounds

Proposition 5 states that the Probabilistic Classifier approach admits a classification task to differ-
entiate the pairs sampled from a joint distribution or the product of marginal distribution. This
classification task minimizes the binary cross entropy loss, which is highly optimized and stabilized
in popular optimization packages such as PyTorch [21] and TensorFlow [1] (e.g., log-sum-exp trick
for numerical stability). Note that, if we let p̂θ = sigmoid

(
lθ
)

with lθ being the logits model,
then reformulating Probabilistic Classifier to optimizing lθ leads to the same objective as IJS (see
Proposition 3), which is the learning objective of Variational MI Bounds method. Although being the
same objective as the Probabilistic Classifier approach, IJS may encounter a relatively higher training
instability (unless a particular take-care on its numerical instability). As pointed out by Tschannen et
al. [25], contrastive learning approaches with higher variance may result in a lower down-stream task
performance, which accords with our empirical observation.

3.2 Connection between Density Matching I/II and INWJ

Density Matching I/II approaches are derived from the KL loss between the true joint density and
estimated joint density (LKLDM in Proposition 4). Specifically, Density Matching I is a Lagrange
relaxation of LKLDM

. If we change f̂θ + 1 = f̂ ′θ in Density Matching I approach, then reformulating

10

our objective to optimizing f̂ ′θ leads to the same objective as INWJ (see Proposition 1). Song et
al. [23] acknowledged the variance of an empirical INWJ estimation is Ω(eI(X;Y)), and hence the
variance is large unless I(X;Y) is small. Having the same conclusion in Sec 3.1, our empirical
observation finds Density Matching I/II lead to worsened representation as comparing to other
contrastive learning objectives.

3.3 Contrastive Predictive Coding (CPC) for Contrastive Representation Learning

Contrastive Predictive Coding (CPC) [20] adapts ICPC (see Proposition 7) to a contrastive represen-
tation learning objective:

sup
F,G

sup
θ∈Θ

E(v11 ,v
1
2)∼PV1,V2 ,···(v

n
1 ,v

n
2)∼PV1,V2 [

1

n

n∑
i=1

log
eĉθ(F (vi1),G(vi2))

1
n

∑n
j=1 e

ĉθ(F (vi1),G(vj2))
],

where {vi1, vi2}ni=1 are independently and identically sampled from PV1,V2 . ĉθ(·) is a function that
takes the representations learned from the data pairs and returns a scalar.

3.4 Experiments Details

Datasets We adopt MNIST [15] and CIFAR10 [14] as the datasets in our experiments. MNIST
contains 60, 000 training and 10, 000 test examples. Each example is a grey-scale digit image (0 ∼ 9)
with size 28× 28. CIFAR10 contains 50, 000 training and 10, 000 test examples. Each example is a
32× 32 colour image from 10 mutual exclusive classes: {airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck}.

Pre-training and Fine-tuning Our self-supervised learning experiments contain two stages: pre-
training and fine-tuning. In pre-training stage, we learn representation from the training samples
using contrastive learning objectives (e.g., Probabilistic Classifier Coding (PCC), Density-Ratio
Fitting Coding (D-RFC), and Contrastive Predictive Coding (CPC) [20]). View 1 (V1) and 2 (V2) are
generated by augmenting the input with different transformations. For example, given an input, v1

can be the 15-degree-rotated one and v2 can be the horizontally flipped one. For shallow experiment,
we consider the same data augmentations adopted in Tschannen [25]; for deep experiment, we
consider the same data augmentations adopted in Bachman [3]. In fine-tuning stage, the network in
the pre-training stage is fixed; we train only the classifier for minimizing classification loss from the
representations. We follow linear evaluation protocol [3, 9, 10, 13, 20, 24, 25] such that the classifier
is a linear layer. After the pre-training and fine-tuning stages, we evaluate the performance of the
model on the test samples.

Architectures To clearly understand how contrastive learning objectives affect the down-stream
performance, we fix the network, learnnig rate, optimizer, and batch size across different objectives.
To be more precise, we stick to the official implementations by Tschannen et al. [25] (for shallow
experiment) and Bachman et al. [3] (for deep experiment). The only change is the contrastive learning
objective, which is the loss in the pre-training stage for self-supervised learning experiments.

Reproducibility One can refer to https://github.com/google-research/
google-research/tree/master/mutual_information_representation_learning and
https://github.com/Philip-Bachman/amdim-public for the authors’ official implementa-
tions, or checking the details in our released code.

Consistent Trend on SimCLR [6] We also evaluate CPC, PCC, and D-RFC in SimCLR [6],
which is a SOTA model and method on self-supervised representation learning. Note that the
default contrastive learning objective considered in SimCLR [6] is CPC, which obtains 91.04%
test accuracy on CIFAR-10 (average for 5 runs). Details can be found in https://github.com/
google-research/simclr. Similar to our shallow and deep experiments, we only change the
contrastive learning objectives in SimCLR, and observing 91.51% and 88.69% average test accuracy
for D-RFC and PCC, respectively. The trend is consistent with our deep experiment, where D-RFC
works slightly better than CPC and PCC works slightly worse than CPC.

11

https://github.com/google-research/google-research/tree/master/mutual_information_representation_learning
https://github.com/google-research/google-research/tree/master/mutual_information_representation_learning
https://github.com/Philip-Bachman/amdim-public
https://github.com/google-research/simclr
https://github.com/google-research/simclr

Figure 1: Dataset Debugging task with unsupervised word features across acoustic and textual modalities.
Probabilistic Classifier approach is used to estimate PD between the audio and textual feature of a given word.
The estimator is trained on the training split. We plot the logarithm of PD (i.e., PMI) distribution for the training
words. We select the words with negative PMI values and categorize them into two groups: one contains the
words end in “ly” and another containts the words end in “s”.

4 More on Cross-Modal Learning

Another Case Study: Cross-modal Adversarial Samples Debugging One important topic in
interpretable machine learning [17] is dataset debugging, which detects adversarial samples in a
given dataset. For instance, in this dataset, an adversarial word feature would have low statistical
dependency between its audio and textual representations. In Fig. 1, we report the PMI distribution
and highlight the training words with PMI < 0 (i.e., the adversarial samples). We note that a negative
PMI means the audio and textual features are either statistically independent or even co-occur less
frequently than the independent assumption.

First, we find the distribution of PMI resembles a Gaussian distribution. The mean of the PMI values
is MI, and our empirical estimation for it is 8.37. Our goal is to identify the training samples with
PMI that deviates far from MI, and especially for the samples with negative PMI. There are 147
words have negative PMI values, approximately 0.45% of the training words. Next, we select some
of these words and categorize them into two groups. The first group contains the words end in “ly”
and another group contains the words end in “s”. That is to say, the words end in “ly” and “s” are
adversarial training sample in our analysis. To sum up, we demonstrate how our PD estimation
approach can be used to detect adversarial training examples in a cross-modal dataset.

Dataset We construct a dataset that contains features from Word2Vec [16] and Speech2Vec [7].
Word2Vec is an unsupervised word embedding learning technique that takes a large text corpus of text
as input and produces a fixed-length vector space. Specifically, each word in the corpus is assigned
a real-valued and fixed-dimensional feature embedding. Similar to Word2Vec, Speech2Vec takes
a large corpus of human speech as input and produces a fixed-length vector space. Specifically, it
transforms a variable-length speech segment (a word in the speech corpus) as a real-valued and fixed-
dimensional feature embedding. There are 37, 622 words shared across Word2Vec and Speech2Vec,
where we consider 32, 622 words of them (randomly selected) to be the training split and 5, 000 of
them to be the test split. That is to say, each word contains a textual feature (from Word2Vec) and
an audio feature (from Speech2Vec), with both feature being 100−dimensional. The dataset can be
downloaded from https://github.com/iamyuanchung/speech2vec-pretrained-vectors
and we include the training/test split in our released code.

12

https://github.com/iamyuanchung/speech2vec-pretrained-vectors

Training and Architectures We adopt the “separate critic” design [20, 22, 23] for our neural
network parametrized function. Suppose l̂θ is the logits model in Probabilistic Classifier approach,
and the separate critic design admits l̂θ(x, y) = gxθ(x)

>
gyθ(y) with gxθ and gyθ being different

multiple layer perceptrons. We consider gxθ and gyθ to be 1-hidden-layer neural network with 512
neurons for intermediate layers, 128 neurons for the output layer, and ReLU function as the activation.
The optimization considers batch size 512 and Adam optimizer [12] with learning rate 0.001. A
sigmoid function is applied to l̂θ (p̂θ = sigmoid(l̂θ)) to ensure p̂θ is a probabilistic output. We
consider 100 training epochs.

Reproducibility Please refer to our released code, where we also include the dataset and its training/
test split.

5 Practical Deployment for Expectation(s)

In practice, the expectations in Propositions 1, 2, 3, 4, 5, 6, and 7 are estimated using empirical
samples from PX,Y and PXPY . With mild assumptions on the compactness of Θ and the boundness
of our measurement, the estimation error would be small by uniform law of large numbers [26].

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[2] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge
university press, 2009.

[3] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual
information across views. In Advances in Neural Information Processing Systems, pages 15509–15519,
2019.

[4] Peter L Bartlett. The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. IEEE transactions on Information Theory, 44(2):
525–536, 1998.

[5] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville,
and R Devon Hjelm. Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062, 2018.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[7] Yu-An Chung and James Glass. Speech2vec: A sequence-to-sequence framework for learning word
embeddings from speech. arXiv preprint arXiv:1803.08976, 2018.

[8] Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
expectations for large time. iv. Communications on Pure and Applied Mathematics, 36(2):183–212, 1983.

[9] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient image
recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019.

[10] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler,
and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

[11] K Hornik, M Stinchcombe, and H White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual representation
learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1920–1929, 2019.

13

[14] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[17] Christoph Molnar. Interpretable machine learning. Lulu. com, 2019.

[18] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals and
the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):
5847–5861, 2010.

[19] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems, pages
271–279, 2016.

[20] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[22] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A Alemi, and George Tucker. On variational
bounds of mutual information. arXiv preprint arXiv:1905.06922, 2019.

[23] Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. arXiv preprint arXiv:1910.06222, 2019.

[24] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

[25] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual
information maximization for representation learning. arXiv preprint arXiv:1907.13625, 2019.

[26] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

14

	Optimization Objectives for Point-wise Dependency Neural Estimation
	Method I: Variational Bounds of Mutual Information
	Method II: Density Matching
	Method III: Probabilistic Classifier
	Method IV: Density-Ratio Fitting

	More on Mutual Information Neural Estimation
	Learning/ Inference in MI Neural Estimation and Baselines
	Architecture Design in Experiments
	Theoretical Analysis

	More on Self-supervised Representation Learning
	Connection between Probabilistic Classifier and Variational MI Bounds
	Connection between Density Matching I/II and INWJ
	Contrastive Predictive Coding (CPC) for Contrastive Representation Learning
	Experiments Details

	More on Cross-Modal Learning
	Practical Deployment for Expectation(s)

