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Abstract

Neural networks are sensitive to hyper-parameter and architecture choices. Auto-
mated Machine Learning (AutoML) is a promising paradigm for automating these
choices. Current ML software libraries, however, are quite limited in handling the
dynamic interactions among the components of AutoML. For example, efficient
NAS algorithms, such as ENAS [1] and DARTS [2], typically require an imple-
mentation coupling between the search space and search algorithm, the two key
components in AutoML. Furthermore, implementing a complex search flow, such
as searching architectures within a loop of searching hardware configurations, is
difficult. To summarize, changing the search space, search algorithm, or search flow
in current ML libraries usually requires a significant change in the program logic.

In this paper, we introduce a new way of programming AutoML based on symbolic
programming. Under this paradigm, ML programs are mutable, thus can be
manipulated easily by another program. As a result, AutoML can be reformulated
as an automated process of symbolic manipulation. With this formulation, we
decouple the triangle of the search algorithm, the search space and the child
program. This decoupling makes it easy to change the search space and search
algorithm (without and with weight sharing), as well as to add search capabilities
to existing code and implement complex search flows. We then introduce PyGlove,
a new Python library that implements this paradigm. Through case studies on
ImageNet and NAS-Bench-101, we show that with PyGlove users can easily
convert a static program into a search space, quickly iterate on the search spaces
and search algorithms, and craft complex search flows to achieve better results.

1 Introduction

Neural networks are sensitive to architecture and hyper-parameter choices [3,/4]]. For example,
on the ImageNet dataset [5]], we have observed a large increase in accuracy thanks to changes in
architectures, hyper-parameters, and training algorithms, from the seminal work of AlexNet [5]]
to recent state-of-the-art models such as EfficientNet [6]. However, as neural networks become
increasingly complex, the potential number of architecture and hyper-parameter choices becomes
numerous. Hand-crafting neural network architectures and selecting the right hyper-parameters is,
therefore, increasingly difficult and often take months of experimentation.

Automated Machine Learning (AutoML) is a promising paradigm for tackling this difficulty. In
AutoML, selecting architectures and hyper-parameters is formulated as a search problem, where a
search space is defined to represent all possible choices and a search algorithm is used to find the
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best choices. For hyper-parameter search, the search space would specify the range of values to try.
For architecture search, the search space would specify the architectural configurations to try. The
search space plays a critical role in the success of neural architecture search (NAS) [7,|8]], and can be
significantly different from one application to another [8-11]]. In addition, there are also many different
search algorithms, such as random search [12]], Bayesian optimization [13|], RL-based methods [/1}
9l/14}15]], evolutionary methods [16]], gradient-based methods [2L|10L/17]] and neural predictors 18]

This proliferation of search spaces and search algorithms in AutoML makes it difficult to program with
existing software libraries. In particular, a common problem of current libraries is that search spaces
and search algorithms are tightly coupled, making it hard to modify search space or search algorithm
alone. A practical scenario that arises is the need to upgrade a search algorithm while keeping the rest
of the infrastructure the same. For example, recent years have seen a transition from AutoML algo-
rithms that train each model from scratch [8l(9] to those that employ weight-sharing to attain massive
efficiency gains, such as ENAS and DARTS [1}214},/15}|19]]. Yet, upgrading an existing search space
by introducing weight-sharing requires significant changes to both the search algorithm and the model
building logic, as we will see in Section[2.2] Such coupling between search spaces and search algo-
rithms, and the resulting inflexibility, impose a heavy burden on AutoML researchers and practitioners.

We believe that the main challenge lies in the programming paradigm mismatch between existing
software libraries and AutoML. Most existing libraries are built on the premise of immutable
programs, where a fixed program is used to process different data. On the contrary, AutoML requires
programs (i.e. model architectures) to be mutable, as they must be dynamically modified by another
program (i.e. the search algorithm) whose job is to explore the search space. Due to this mismatch,
predefined interfaces for search spaces and search algorithms struggle to accommodate unanticipated
interactions, making it difficult to try new AutoML approaches. Symbolic programming, which
originated from LISP [20], provides a potential solution to this problem, by allowing a program to
manipulate its own components as if they were plain data [21]. However, despite its long history,
symbolic programming has not yet been widely explored in the ML community.

In this paper, we reformulate AutoML as an automated process of manipulating ML programs
symbolically. Under this formulation, programs are mutable objects which can be cloned and
modified after their creation. These mutable objects can express standard machine learning concepts,
from a convolutional unit to a complex user-defined training procedure. As a result, all parts of a ML
program are mutable. Moreover, through symbolic programming, programs can modify programs.
Therefore the interactions between the child program, search space, and search algorithm are no
longer static. We can mediate them or change them via meta-programs. For example, we can map
the search space into an abstract view which is understood by the search algorithm, translating an
architectural search space into a super-network that can be optimized by efficient NAS algorithms.

Further, we propose PyGlove, a library that enables general symbolic programming in Python, as an
implementation of our method tested on real-world AutoML scenarios. With PyGlove, Python classes
and functions can be made mutable through brief Python annotations, which makes it much easier to
write AutoML programs. PyGlove allows AutoML techniques to be easily dropped into preexisting
ML pipelines, while also benefiting open-ended research which requires extreme flexibility.

To summarize, our contributions are the following:

o We reformulate AutoML under the symbolic programming paradigm, greatly simplifying the
programming interface for AutoML by accommodating unanticipated interactions among
the child programs, search spaces and search algorithms via a mutable object model.

e We introduce PyGlove, a general symbolic programming library for Python which im-
plements our symbolic formulation of AutoML. With PyGlove, AutoML can be easily
dropped into preexisting ML programs, with all program parts searchable, permitting rapid
exploration on different dimensions of AutoML.

e Through case studies, we demonstrate the expressiveness of PyGlove in real-world search
spaces. We demonstrate how PyGlove allows AutoML researchers and practitioners to
change search spaces, search algorithms and search flows with only a few lines of code.

2 Symbolic Programming for AutoML

Many AutoML approaches (e.g., [21|9,22]) can be formulated as three interacting components: the
child program, the search space, and the search algorithm. AutoML’s goal is to discover a performant
child program (e.g., a neural network architecture or a data augmentation policy) out of a large set



of possibilities defined by the search space. The search algorithm accomplishes the said goal by
iteratively sampling child programs from the search space. Each sampled child program is then
evaluated, resulting in a numeric measure of its quality. This measure is called the rewaraﬂ The
reward is then fed back to the search algorithm to improve future sampling of child programs.

In typical AutoML libraries [23-31]], these three components are usually tightly coupled. The cou-
pling between these components means that we cannot change the interactions between them unless
non-trivial modifications are made. This limits the flexibility of the libraries. Some successful at-
tempts have been made to break these couplings. For example, Vizier [26] decouples the search space
and the search algorithm by using a dictionary as the search space contract between the child program
and the search algorithm, resulting in modular black-box search algorithms. Another example is the
NNI library [27]], which tries to unify search algorithms with and without weight sharing by carefully
designed APIs. This paper, however, solves the coupling problem in a different and more general way:
with symbolic programming, programs are allowed to be modified by other programs. Therefore, in-
stead of solving fixed couplings, we allow dynamic couplings through a mutable object model. In this
section, we will explain our method and show how this makes AutoML programming more flexible.

2.1 AutoML as an Automated Symbolic Manipulation Process

AutoML can be interpreted as an automated process of searching for a child program from a search
space to maximize a reward. We decompose this process into a sequence of symbolic operations. A
(regular) child program (Figure[T}a) is symbolized into a symbolic child program (Figure[T}b), which
can be then cloned and modified. The symbolic program is further hyperified into a search space
(Figure[T}c) by replacing some of the fixed parts with to-be-determined specifications. During the
search, the search space is materialized into different child programs (Figure[T}d) based on search
algorithm decisions, or can be rewritten into a super-program (Figure[T}e) to apply complex search
algorithms such as efficient NAS.

symbolize hyperify materialize / rewrite
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An analogy to this process is to have a robot build a house with LEGO [32] bricks to meet a human
being’s taste: symbolizing a regular program is like converting molded plastic parts into LEGO
bricks; hyperifying a symbolic program into a search space is like providing a blueprint of the house
with variations. With the help of the search algorithm, the search space is materialized into different
child programs whose rewards are fed back to the search algorithm to improve future sampling, like a
robot trying different ways to build the house and gradually learning what humans prefer.

(@) (b) (d) (e)

Figure 1: AutoML as an automated symbolic manipulation process.

Symbolization. A (regular) child program can be @symbolize

described as a complex object, which is a composi- C'ajszO?:i(tLaﬁg; :

tion of its sub-objects. A symbolic child program is — — . -

such a composition whose sub-objects are no longer def call(self, input):

tied together forever, but are detachable from each

other hence can be replaced by other sub-objects. L ______

The symbolic object can be hierarchical, forming ) /’@’s‘ymbolize

a symbolic tree which can be manipulated or N )_.*" class Trainer(object);
executed. A symbolic object is manipulated through def _init__(self,

its hyper-parameters, which are like the studs
of a LEGO brick, interfacing connections with Figure 2: Symbolizing classes into mutable sym-
other bricks. However, symbolic objects, unlike bolic trees. Their hyper-parameters are like the studs
LEGO bricks, can have internal states which are of LEGO bricks, while their implementations are
automatically recomputed upon modifications. For less interesting while we manipulate the trees.

2While we use RL concepts to illustrate the core idea of our method, as will be shown later, the proposed
paradigm is applicable to other types of AutoML methods as well.



example, when we change the dataset of a trainer, the train steps will be recomputed from the
number of examples in the dataset if the training is based on the number of epochs. With such a
mutable object model, we no longer need to create objects from scratch repeatedly, or modify the
producers up-stream, but can clone existing objects and modify them into new ones. The symbolic
tree representation puts an emphasis on manipulating the object definitions, while leaving the
implementation details behind. Figure [2]illustrates the symbolization process.

2.2 Disentangling AutoML through Symbolic Programming

Disentangling search spaces from child programs. The
search space can be disentangled from the child program

/fAdam(ZeA)
/

p .-
in that 1) the classes and functions of the child program .|
can be implemented without depending on any AutoML "([ S
library (Appendix B.1.1), which applies to most preexisting piAdam(2e-4),

. S . Conv(4, (3,3) . floatv(1e-6, 1e-
ML projects whose programs were started without taking spropfloah e 1o

AutoML in mind; 2) a child program can be manipulated Bgﬂ e 0,
into a search space without modifying its implementation. ‘ ¥: MaxPool(3, 3)),
Figure 3| shows that a child program is turned into a search [ifa), - = oo o .3

space by replacing a fixed Conv with a choice of Identity,

MaxPool and Conv with searchable filter size. Meanwhile, Figure 3: Hyperifying a child program
it swaps a fixed Adam optimizer with a choice between the into a search space by replacing fixed parts
Adam and an RMSProp with a searchable learning rate. with to-be-determined specifications.

Disentangling search spaces from search algorithms.
Symbolic programming breaks the coupling between the
search space and the search algorithm by preventing the
algorithm from seeing the full search space specification.
Instead, the algorithm only sees what it needs to see for
the purposes of searching. We refer to the algorithm’s view
of the search space as the abstract search space. The full
specification, in contrast, will be called the concrete search (@ Materialize
space (or just the “search space” outside this section). The
Fligtinction bej,twe.en the concrete and abstract search space program (d) from the search space (a) with
is illustrated in Figure [} the concrete search space acts as  ,;, apstract child program (c) proposed
a boilerplate for producing concrete child programs, which  from the search algorithm, which holds an
holds all the program details (e.g., the fixed parts). How- abstract search space (b) as the algorithm’s
ever, the abstract search space only sees the parts that need view for the (concrete) search space.
decisions, along with their numeric ranges. Based on the

abstract search space, an abstract child program is proposed, which can be static numeric values
or variables. The static form is for obtaining a concrete child program, shown in Figure ] while
the variable form is used for making a super-program used in efficient NAS — the variables can be
either discrete for RL-based use cases or real-valued vectors for gradient-based methods. Mediated
by the abstract search space and the abstract child program, the search algorithm can be thoroughly
decoupled from the child program. Figure[5]gives a more detailed illustration of Figure 4]

Figure 4: Materializing a (concrete) child
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Figure 5: The path from a (concrete) search space to a (concrete) child program. The disentanglement between
the search space and the search algorithm is achieved by (1) abstracting the search space, (2) proposing an
abstract child program, and (3) materializing the abstract child program into a concrete one.



Disentangling search algorithms from child programs.
While many search algorithms can be implemented by

rewriting symbolic objects, complex algorithms such as b { rewrite

ENAS [[1]], DARTS [2]] and TuNAS [15]] can be decom- %Eﬂ. —>

posed into 1) a child-program-agnostic algorithm, plus 2) a 77, Trainer I \uper network
meta-program (e.g. a Python function) which rewrites the ' @ Switch(
seaych space into a representation requ}red by the search al- o 5322‘38( 3, 3) :\‘,’lg;‘g‘gg( 3.9,
gorithm. The meta-program only manipulates the symbols z: Cony( MaskedConv2D(
which are interesting to the search algorithm and ignores (14,8)). 3, 3)) 4.8, 3. 30

the rest. In this way, we can decouple the search algorithm Figure 6: Rewriting a search space (a) into
from the child program. a super-program (b) required by TuNAS.

For example, the TuNAS [15] algorithm can be decomposed into 1) an implementation of RE-
INFORCE [33]] and 2) a rewrite function which transforms the architecture search space into a
super-network, and replaces the regular trainer with a trainer that samples and trains the super-
network, illustrated in Figure @ If we want to switch the search algorithm to DARTS [2], we use a
different rewrite function that generates a super-network with soft choices, and replace the trainer
with a super-network trainer that updates the choice weights based on the gradients.

2.3 Search space partitioning and complex search flows

Early work [[19}34//35] shows that factorized search can help partition the computation for optimizing
different parts of the program. Yet, complex search flows have been less explored, possibly due
in part to their implementation complexity. The effort involved in partitioning a search space and
coordinating the search algorithms is usually non-trivial. However, the symbolic tree representation
makes search space partitioning a much easier task: with a partition function, we can divide those
to-be-determined parts into different groups and optimize each group separately. As a result, each
optimization process sees only a portion of the search space — a sub-space — and they work together
to optimize the complete search space. Section [3.4]discusses common patterns of such collaboration
and how we express complex search flows.

3 AutoML with PyGlove

In this section, we introduce PyGlove, a general symbolic programming library on Python, which
also implements our method for AutoML. With examples, we demonstrate how a regular program
is made symbolically programmable, then turned into search spaces, searched with different search
algorithms and flows in a dozen lines of code.

@symbolize Trainer ( def swap(k, v, Conv):
class Trainer (object): model=ResNetLike ( if isinstance (v, Conv):
def _ init_ ( return MaxPool (v.kernel)

block=Sequential ([
Conv (4, (3, 3)),
BatchNormalization (),

self, model, optimizer): return v

def train(self): print (trainer.query(

return trainer impl ( ReLU(), lambda v: isinstance (v, Layer)))
self.optimizer, num_blocks=12),
self.model) optimizer=Adam(2e-4)) trainer.clone () .rebind (swap)
Symbolic class Symbolic tree of object Symbolic operations

Figure 7: A regular Python class made symbolically programmable via the symbolize decorator (left), whose
object is a symbolic tree (middle), in which all nodes can be symbolically operated (right). For example, we
can (i) retrieve all the Layer objects in the tree via query, (ii) clone the object and (iii) modify the copy by
swapping all Conv layers with MaxPool layers of the same kernel size using rebind.

3.1 Symbolize a Python program Table ‘1 : The development cost of dropping PyGlove
into existing projects on different ML frameworks. The

In PyGlove, preexisting Python programs can be ~ Source code of MNIST is included in Appendix B.S5.

made symbolically programmable with a sym- Original ~ Modified

Projects . .
bolize decorator. Besides classes, functions ! lines of code lines of code
can be symbolized too, as discussed in Ap- PyTorch ResNet [36] 353 15
pendix B.1.2. To facilitate manipulation, Py- "7 "0 =m0 Gre B 120 2%

Glove provides a wide range of symbolic opera-
tions. Among them, query, clone and rebind are of special importance as they are foundational to



other symbolic operations. Examples of these operations can be found in Appendix B.2. Figure[7]
shows (1) a symbolic Python class, (2) an instance of the class as a symbolic tree, and (3) key
symbolic operations which are applicable to a symbolic object. To convey the amount of work
required to drop PyGlove into real-life projects, we show the number of lines of code in making a

PyTorch [36] and a TensorFlow [37]] projects searchable in Table[T]

3.2 From a symbolic program to a search space

With a child program being a symbolic tree, any node in the
tree can be replaced with a to-be-determined specification,
which we call hyper value (in correspondence to hyperify,
a verb introduced in Section 2.1)in making search spaces).
A search space is naturally represented as a symbolic tree
with hyper values. In PyGlove, there are three classes of
hyper values: 1) a continuous value declared by floatv;
2) a discrete value declared by intv; and 3) a categorical
value declared by oneof, manyof or permutate. Table 2]
summarizes different hyper value classes with their semantics.
Figure [§]shows a search space that jointly optimizes a model
and an optimizer. The model space is a number of blocks
whose structure is a sequence of permutation from [Conv,
BatchNormalization, ReLU] with searchable filter size.

Dependent hyper-parameters can be achieved by using higher-
order symbolic objects. For example, if we want to search
for the filters of a Conv, which follows another Conv whose
filters are twice the input filters, we can create a symbolic
Block class, which takes only one filter size — the output
filters of the first Conv — as its hyper-parameters. When it’s

Trainer (
model=ResNetLike (
block=Sequential (
permutate([

Conv (
filters=oneof([4,
kernel=(3, 3)),

BatchNormalization(),

ReLU ()

1)),
num_blocks=intv (6,
optimizer=oneof ([
Adam (2e-4),
RMSProp (floatv(le-6,
1))

81),

12)),
le-3))

Figure 8: The child program from Fig-
ure 2 is turned into a search space.

olize

Block (object) :
£ _ init_ (self, filters):
f.filters = filters
f__call ¢ f):
n Sequential ([

Conv (self.filters, (3, 3)),
Conv (self.filters*2, (3, 3))1])

called, it returns a sequence of 2 Conv units based on its
filters, as shown in Figure[0] The filters of the block can be
a hyper value at construction time, appearing as a node in the
symbolic tree, but will be materialized when it’s called.

Figure 9: Expressing dependent hyper-
parameters by introducing a higher-order
symbolic Block class.

3.3 Search algorithms

Without interacting with the child program and the search space directly, the search algorithm in
PyGlove repeatedly 1) proposes an abstract child program based on the abstract search space and
2) receives measured qualities for the abstract child program to improve future proposals. PyGlove
implements many search algorithms, including Random Search, PPO and Regularized Evolution.

Table 2: Hyper value classes and their semantics.

Strategy Hyper-parameter annotation Search space semantics
Continuous floatv(min, max) A float value from R[™#maz]
Discrete intv(min, max) An int value from Z"#mex]
Categorical oneof (candidates) Choose 1 out of N candidates
Choose K out of N candidates
manyof (K, candidates, 0) with optional constraints 6 on the
uniqueness and order of chosen candidates
. A special case of manyof which
permutate(candidates) searches for a permutation of all candidates
. . h ical h 1 o
Hierarchical (when a categorical hyper value Conditional search space

contains child hyper values)

3.4 Expressing search flows

With a search space, a search algorithm, and an optional search space partition function, a search flow
can be expressed as a for-loop, illustrated in Figure [TO}Heft. Search space partitioning enables various
ways in optimizing the divided sub-spaces, resulting in three basic search types: 1) optimize the sub-



for trainer, feedback in sample( Search type  for-loop pattern
search spaceshyper trainer, Joint for(z, fz) : ...
algo}fl?hm:PPO() ’ Separate for(z1, fo1) : ..
partition fre=None) : for(za, fa) ...
reward = trainer.train()
feedback(reward)

Factorized  for(z1, fz1) :
for(wa, fz2) : ...

Figure 10: PyGlove expresses search as a for-loop (left). Complex search flows can be expressed as
compositions of for-loops (right).

spaces jointly; 2) optimize the sub-spaces separately; or 3) factorize the optimization. Figure[T0}right
maps the three search types into different compositions of for-loop.

Let’s take the search space defined in Figure [§]as an example, which has a hyper-parameter sub-
space (the hyper optimizer) and an architectural sub-space (the hyper model). Towards the two
sub-spaces, we can 1) jointly optimize them without specifying a partition function, as is shown in
Figure [TO}Heft; 2) separately optimize them, by searching the hyper optimizer first with a fixed
model, then use the best optimizer found to optimize the hyper model; or 3) factorize the optimization,
by searching the hyper optimizer with a partition function in the outer loop. Each example in the
loop is a trainer with a fixed optimizer and a hyper model; the latter will be optimized in the inner
loop. The combination of these basic patterns can express very complex search flows, which will be
further studied through our NAS-Bench-101 experiments discussed in Section 4.3]

3.5 Switching between search spaces
def relax filters(k, v, parent):

Making changes to the search space is a daily routine for Au- E i“;““‘ "““;@ift)arent' conv) :
os i == 'filters':
toML practitioners, who may move from one search space to return oneof (1v//2, v, v*2])

another, or to combine orthogonal search spaces into more return v

complex ones. For example, we may start by searching for

different operations at each layer, then try the idea of search- hyper_trainer = trainerclone()

ing for different output filters (Figure [IT)), and eventually -rebind(relax_filters)

end up with searching for both. We showcase such search  Figure 11: Manipulating the model in a

space exploration in Section 4.2 trainer into a search space by relaxing the
fixed filters of the Conv as a set of options.

3.6 Switching between search algorithms

The search algorithm is another dimension to experiment with. We can easily switch between search
algorithms by passing a different algorithm to the sample function shown in Figure [I0}1. When
applying efficient NAS algorithms, the hyper_trainer will be rewritten into a trainer that samples
and trains the super-network transformed from the architectural search space.

4 Case Study

ModelSpec (
nodes=[oneof (range (K)) ] *N,
In this section, we demonstrate that with PyGlove how users edges=[oneof ([0, 1])]*N* (N-1)/2)
can define complex search spaces, explore new search spaces,
search algorithms, and search flows with simplicity. FpnNode (
type=oneof (['sum', 'attention']),
level=3,
4.1 Expressing complex search spaces input_offsets=manyof (

2, range (NUM_PRE_NODES),
distinct=True,

The composition of hyper values can represent complex search sorted=True))
spaces. We have reproduced popular NAS papers, including

NAS-Bench-101 [38], MNASNet [8], NAS-FPN [39], Prox- Residual (oneof ([
ylessNAS [14], TuNAS [15], and NATS-Bench [40]]. Here we InvertedBottleneck (

filters=oneof ([32, 48, 64]),
use the search spaces from NAS—B.ench—IOI, NAS-FPN, and xernelooneof ([3, 5, 711,
TuNAS to demonstrate the expressiveness of PyGlove. expansion=oneof ([3, 6])),

zero() 1))

In the NAS-Bench-101 search space (Figure[I2}top), there are

N different positions in the network and (3) = Y=1) eqge Figure 12: Partial search space defi-
positions that can be independently turned on or off. Each nition for NAS-Bench-101 (top), NAS-
node independently selects one of K possible operations. FPN (middle) and TuNAS (bottom).



The NAS-FPN search space is a repeated FPN cell, each of whose nodes (Figure [[2}middle) ag-
gregates two outputs of previous nodes. The aggregation is either sum or global attention. We use
manyof with the constraints distinct and sorted to select input nodes without duplication.

The TuNAS search space is a stack of blocks, each containing a number of residual layers (Figure
bottom) of inverted bottleneck units, whose filter size, kernel size and expansion factor will be
tuned. To search the number of layers in a block, we put Zeros as a candidate in the Residual layer
so the residual layer may downgrade into an identity mapping.

4.2 Exploring search spaces and search algorithms

We use MobileNetV2 [41] as an example to demonstrate how to explore new search spaces and
search algorithms. For a fair comparison, we first retrain the MobileNetV2 model on ImageNet to
obtain a baseline. With our training setup, it achieves a validation accuracy of 73.1% (Table[3] row 1)
compared with 72.0% in the original MobileNetV2 paper. Details about our experiment setup, search
space definitions, and the code for creating search spaces can be found in Appendix C.1.

Search space exploration: Similar to previous AutoML works [8l|14]], we explore 3 search spaces
derived from MobileNetV2 that tune the hyper-parameters of the inverted bottleneck units [41]]: (1)
Search space S; tunes the kernel size and expansion ratio. (2) Search space S» tunes the output filters
(3) Search space S3 combines S; and Ss to tune the kernel size, expansion ratio and output filters.

From Table[3] we can see that with PyGlove we were able to convert MobileNetV2 into S; with 23
lines of code (row 2) and Sy with 10 lines of code (row 5). From &7 and Ss, we obtain S3 in just a
single line of code (row 6) using rebind with chaining the transform functions from S; and S,.

Search algorithm exploration: On the search algorithm dimension, we start by exploring different
search algorithms on &7 using black-box search algorithms (Random Search [[12], Bayesian [26])) and
then efficient NAS (TuNAS [15]]). To make model sizes comparable, we constrain the search to 300M
multiply-add{] using TuNAS’s absolute reward function [[15]]. To switch between these algorithms,
we only had to change 1 line of code.

Table 3: Programming cost of switching between three search spaces and rhree AutoML algorithms based
on PyGlove. Lines of code in red is the cost in creating new search spaces, while the lines of code in black is
the cost for switching algorithms. The unit cost for search and training is defined as the TPU hours to train a
MobileNetV2 model on ImageNet for 360 epochs. The test accuracies and MAdds are based on 3 runs.

4 Search Search Lines  Search Train Test #of
earch space algorithm of codes  cost cost accuracy MAdds
1 (static) N/A N/A N/A 1 73.1+0.1 300M
2 (static) = Si RS +23 25 1 73.7+0.3(10.6) 300+£3M
3 Si RS — Bayesian +1 25 1 739+03(10.8) 301+5M
4 S1 Bayesian — TuNAS +1 1 1 7424+0.1(11.1) 301£5M
5 (static) — S2 TuNAS +10 1 1 73.3+£0.1(10.2) 302+7M
6 51,5 —S3 TuNAS +1 2 1 73.8 £0.1 (10.7) 302+ 6M
4.3 Exploring complex search flows on NAS-Bench-101 %944
30.943

PyGlove can greatly reduce the engineering cost when ex- §o.942
ploring complex search flows. In this section, we explore 3 o.041
various ways to optimize the NAS-Bench-101 search space. Eo,gao

NAS-Bench-101 is a NAS benchmark where the goal isto T g.939 — standard

find high-performing image classifiers in a search space of g3/ [ fpctorized search
neural network architectures. This search space requires op- g51 fybrid search
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We experiment with three search flows in this exploration: search performances with different search
1) we reproduce the original paper to establish a baseline, flows on NAS-Bench-101 (500 runs), using
which uses the search space defined in Figure [[2}top to Regularized Evolution [16] .

Jjointly optimize the nodes and edges. 2) we try a factorized search, which optimizes the nodes in the
outer loop and the edges in the inner loop — the reward for a node setting is computed as the average

3For RS and Bayesian, we use rejection sampling to ensure sampled architectures have around 300M MAdds.



of top 5 rewards from the architectures sampled in the inner loop. While its performance is not as
good as the baseline under the same search budget, we suspect that under each fixed node setting,
the edge space is not explored enough. 3) To alleviate this problem, we come out a hybrid solution,
which uses the first half of the budget to optimize the nodes as in search flow 2, while using the
other half to optimize the edges, based on the best node setting found in the first phase. Interestingly,
the search trajectory crosses over the baseline in the second phase, ended with a noticeable margin
(Figure[T3)). We used Regularized Evolution [[16] for all these searches, each with 500 runs. It takes
only 15 lines of code to implement the factorized search and 26 lines of code to implement the hybrid
search. Source codes are included in Appendix C.2.

5 Related Work

Software frameworks have greatly influenced and fueled the advancement of machine learning.
The need for computing gradients has made auto-gradient based frameworks [36}37.[42-45] flourish.
To support modular machine learning programs with the flexibility to modify them, frameworks were
introduced with an emphasis on hyper-parameter management [46,47]. The sensitivity of machine
learning to hyper-parameters and model architecture has led to the advent of AutoML libraries [23H31]].
Some (e.g., [23H25]]) formulate AutoML as a problem of jointly optimizing architectures and hyper-
parameters. Others (e.g., [26-28]]) focus on providing interfaces for black-box optimization. In
particular, Google’s Vizier library [26] provides tools for optimizing a user-specified search space
using black-box algorithms [[12,48]], but makes the end user responsible for translating a point in the
search space into a user program. DeepArchitect [29] proposes a language to create a search space as a
program that connects user components. Keras-tuner [30] employs a different way to annotate a model
into a search space, though this annotation is limited to a list of supported components. Optuna [49]
embraces eager evaluation of tunable parameters, making it easy to declare a search space on the go
(Appendix B.4). Meanwhile, efficient NAS algorithms [[1,/2,|14]] brought new challenges to AutoML
frameworks, which require coupling between the controller and child program. AutoGluon [28]]
and NNI [27] partially solve this problem by building predefined modules that work in both general
search mode and weight-sharing mode, however, supporting different efficient NAS algorithms are
still non-trivial. Among the existing AutoML systems we are aware of, complex search flows are less
explored. Compared to existing systems, PyGlove employs a mutable programming model to solve
these problems, making AutoML easily accessible to preexisting ML programs. It also accommodates
the dynamic interactions among the child programs, search spaces, search algorithms, and search
flows to provide the flexibility needed for future AutoML research.

Symbolic programming , where a program manipulates symbolic representations, has a long history
dating back to LISP [20]. The symbolic representation can be programs as in meta-programming,
rules as in logic programming [50] and math expressions as in symbolic computation [51,/52]]. In this
work, we introduce the symbolic programming paradigm to AutoML by manipulating a symbolic tree-
based representation that encodes the key elements of a machine learning program. Such program
manipulation is also reminiscent of program synthesis [53H55]], which searches for programs to
solve different tasks like string and number manipulation [S6H59]], question answering [60,/61]], and
learning tasks [62,/63]]. Our method also shares similarities with prior works in non-deterministic
programming [64-660], which define non-deterministic operators like choice in the programming
environment that can be connected to optimization algorithms. Last but not least, our work echos the
idea of building robust software systems that can cope with unanticipated requirements via advanced
symbolic programming [[67].

6 Conclusion

In this paper, we reformulate AutoML as an automated process of manipulating a ML program
through symbolic programming. Under this formulation, the complex interactions between the child
program, the search space, and the search algorithm are elegantly disentangled. Complex search flows
can be expressed as compositions of for-loops, greatly simplifying the programming interface of
AutoML without sacrificing flexibility. This is achieved by resolving the conflict between AutoML’s
intrinsic requirement in modifying programs and the immutable-program premise of existing software
libraries. We then introduce PyGlove, a general-purpose symbolic programming library for Python
which implements our method and is tested on real-world AutoML scenarios. With PyGlove, AutoML
can be easily dropped into preexisting ML programs, with all program parts searchable, permitting
rapid exploration of different dimensions of AutoML.



Broader Impact

Symbolic programming/PyGlove makes AutoML more accessible to machine learning practitioners,
which means manual trial-and-error of many categories can be replaced by machines. This can
also greatly increase the productivity of AutoML research, at the cost of increasing demand for
computation, and — a result — increasing CO5 emissions.

We see a big potential in symbolic programming/PyGlove in making machine learning researchers
more productive. On a new ground of mutable programs, experiments can be reproduced more easily,
modified with lower cost, and shared like data. A large variety of experiments can co-exist in a shared
code base that makes combining and comparing different techniques more convenient.

Symbolic programming/PyGlove makes it much easier to develop search-based programs which can
be used in a broad spectrum of research and product areas. Some potential areas, such as medicine
design, have a clear societal benefit, while others potential applications, such as video surveillance,
could improve security while raising new privacy concerns.

Acknowledgments and Disclosure of Funding

We would like to thank Pieter-Jan Kindermans and David Dohan for their help in preparing the case
study section of this paper; Jiquan Ngiam, Rishabh Singh for their feedback to the early versions
of the paper; Ruoming Pang, Vijay Vasudevan, Da Huang, Ming Cheng, Yanping Huang, Jie Yang,
Jinsong Mu for their feedback at early stage of PyGlove; Adams Yu, Daniel Park, Golnaz Ghiasi,
Azade Nazi, Thang Luong, Barret Zoph, David So, Daniel De Freitas Adiwardana, Junyang Shen,
Lav Rai, Guanhang Wu, Vishy Tirumalashetty, Pengchong Jin, Xianzhi Du, Yeqing Li, Xiaodan
Song, Abhanshu Sharma, Cong Li, Mei Chen, Aleksandra Faust, Yingjie Miao, JD Co-Reyes, Kevin
Wau, Yanqi Zhang, Berkin Akin, Amir Yazdanbakhsh, Shuyang Cheng, HyoukJoong Lee, Peisheng Li
and Barbara Wang for being early adopters of PyGlove and their invaluable feedback.

Funding disclosure: This work was done as a part of the authors’ full-time job in Google.

References

[1] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. In The International Conference on Machine Learning (ICML), pages 4092-4101,
2018.

[2] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

[3] Gébor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language models.
In International Conference on Learning Representations (ICLR), 2018.

[4] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network models for
practical applications. arXiv preprint arXiv:1605.07678, 2016.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In The Conference on Neural Information Processing Systems (NeurIPS), pages 1097—
1105, 2012.

[6] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
The International Conference on Machine Learning (ICML), pages 6105-6114, 2019.

[7] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8697-8710, 2018.

[8] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.
MNASNet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2820-2828, 2019.

[9] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations (ICLR), 2017.

[10] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. FbNet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10734-10742, 2019.

10



(11]

(12]

(13]

[14]

[15]

[16]

(17]
(18]

(19]

(20]

(21]
[22]

(23]

[24]

[25]

(26]

[27]
(28]

(29]

(30]
(31]

(32]
(33]

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing
Hu, Yiming Wu, Yangqing Jia, et al. ChamNet: Towards efficient network design through platform-aware
model adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 11398-11407, 2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal of
Machine Learning Research (JMLR), 13(Feb):281-305, 2012.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In The Conference on Neural Information Processing Systems (NeurIPS), pages 2951-2959,
2012.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In International Conference on Learning Representations (ICLR), 2019.

Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, and Quoc Le.
Can weight sharing outperform random architecture search? an investigation with TuNAS. In The IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. In AAAI Conference on Artificial Intelligence (AAAI), pages 4780—-4789, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search, 2020.

‘Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural predictor
for neural architecture search. In Proceedings of the European Conference on Computer Vision (ECCV),
2020.

Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan Gabrys, and Quoc V Le. AutoHAS:
Efficient hyperparameter and architecture search. arXiv preprint arXiv:2006.03656, 2020.

John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184-195, 1960.

Symbolic programming. https://en.wikipedia.org/wiki/Symbolic_programming.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In The International Conference on
Machine Learning (ICML), pages 2902-2911, 2017.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In The Conference on Neural Information Processing
Systems (NeurIPS), pages 2962-2970, 2015.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-weka 2.0:
Automatic model selection and hyperparameter optimization in weka. The Journal of Machine Learning
Research (JMLR), 18(1):826-830, 2017.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank
Hutter. Auto-sklearn: efficient and robust automated machine learning. In Automated Machine Learning,
pages 113—134. Springer, 2019.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley. Google
vizier: A service for black-box optimization. In The SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1487-1495, 2017.

Neural network intelligence. https://github.com/microsoft/nni.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505,
2020.

Renato Negrinho, Darshan Patil, Nghia Le, Daniel Ferreira, Matthew Gormley, and Geoffrey Gordon.
Towards modular and programmable architecture search. In The Conference on Neural Information
Processing Systems (NeurlPS), pages 13715-13725, 2019.

Keras tuner. https://github.com/keras-team/keras-tuner.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search system. In
The SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1946—1956,
2019.

The Lego Group. Lego. https://en.wikipedia.org/wiki/Lego,

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

11


https://en.wikipedia.org/wiki/Lego

[34]

(35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]
(52]
(53]

[54]

[55]

[56]

Jeshua Bratman, Satinder Singh, Jonathan Sorg, and Richard Lewis. Strong mitigation: Nesting search
for good policies within search for good reward. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 407-414. International Foundation for
Autonomous Agents and Multiagent Systems, 2012.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning: Efficient
joint neural architecture and hyperparameter search. CoRR, abs/1807.06906, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance
deep learning library. In The Conference on Neural Information Processing Systems (NeurlPS), pages
8024-8035, 2019.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In The {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265-283, 2016.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-
101: Towards reproducible neural architecture search. In The International Conference on Machine
Learning (ICML), pages 7105-7114, 2019.

Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. NAS-FPN: learning scalable feature
pyramid architecture for object detection. CoRR, abs/1904.07392, 2019.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. NATS-Bench: Benchmarking nas algorithms
for architecture topology and size. arXiv preprint arXiv:2009.00437, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510—4520, 2018.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In Proceedings of the Python for scientific computing conference (SciPy), pages 18-24, 2010.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In The
ACM International Conference on Multimedia (ACM MM), pages 675-678, 2014.

Seiya Tokui. Chainer: A powerful, flexible and intuitive framework of neural networks, 2018.

Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning programs via high-level
tracing. In Conference on Machine Learning and Systems (MLSys), 2018.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia, Anjuli Kannan, Tara
Sainath, Yuan Cao, Chung-Cheng Chiu, et al. Lingvo: a modular and scalable framework for sequence-to-
sequence modeling. arXiv preprint arXiv:1902.08295, 2019.

Gin-config. https://github.com/google/gin-config.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali Razavi,
Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training of neural
networks. arXiv preprint arXiv:1711.09846, 2017.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

Alain Colmerauer and Philippe Roussel. The birth of prolog. In History of programming languages—II,
pages 331-367, 1996.

Wolfram Research, Inc. Mathematica, Version 12.1. Champaign, 1L, 2020.
Bruno Buchberger et al. Symbolic computation (an editorial). J. Symbolic Comput, 1(1):1-6, 1985.

Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer programs. The MIT
Press, 1996.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-free programs.
ACM SIGPLAN Notices, 46(6):62-73, 2011.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and Trends®) in
Programming Languages, 4(1-2):1-119, 2017.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program synthesis. In
Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 107-126, 2015.

12



[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Representations
(ICLR), 2017.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In The International Conference on Machine
Learning (ICML), pages 990-998, 2017.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. DeepCoder:
Learning to write programs. In International Conference on Learning Representations (ICLR), 2017.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, and Ni Lao. Memory augmented policy
optimization for program synthesis and semantic parsing. In The Conference on Neural Information
Processing Systems (NeurIPS), pages 9994—-10006, 2018.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with
gradient descent. In International Conference on Learning Representations (ICLR), 2016.

Esteban Real, Chen Liang, David R So, and Quoc V Le. Automl-zero: Evolving machine learning
algorithms from scratch. In The International Conference on Machine Learning (ICML), 2020.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Houdini:
Lifelong learning as program synthesis. In The Conference on Neural Information Processing Systems
(NeurIPS), pages 8687-8698, 2018.

D. Andre and S. Russell. State abstraction in programmable reinforcement learning. In AAAI Conference
on Artificial Intelligence (AAAI), 2002.

Harald Sgndergaard and Peter Sestoft. Non-determinism in functional languages. The Computer Journal,
35(5):514-523, 1992.

Armando Solar-Lezama. The sketching approach to program synthesis. In Asian Symposium on Program-
ming Languages and Systems, pages 4—13. Springer, 2009.

G. Sussman. Building robust systems an essay. In Massachusetts Institute of Technology, 2007.

13



	Introduction
	Symbolic Programming for AutoML
	AutoML as an Automated Symbolic Manipulation Process
	Disentangling AutoML through Symbolic Programming
	Search space partitioning and complex search flows

	AutoML with PyGlove
	Symbolize a Python program
	From a symbolic program to a search space
	Search algorithms
	Expressing search flows
	Switching between search spaces
	Switching between search algorithms

	Case Study
	Expressing complex search spaces
	Exploring search spaces and search algorithms
	Exploring complex search flows on NAS-Bench-101

	Related Work
	Conclusion

