
Appendix of PyGlove

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu
Hanxiao Liu, Gabriel Bender, Adam Kraft, Chen Liang, Quoc V. Le

Google Research, Brain Team
{daiyip, ereal, tanmingxing, yifenglu,

hanxiaol, gbender, adamkraft, crazydonkey, qvl}@google.com
xuanyi.dxy@gmail.com ∗

Appendix A provides a formal definition of symbolic programs in our method, including symbolic
counterparts of different program constructs, supported operations, and the description of algorithms
used in the materialization process. Appendix B gives a more detailed introduction to PyGlove –
our implementation of the method – with an example of dropping neural architecture search (NAS)
into an existing Tensorflow program (MNIST [1]). Appendix C provides additional information for
experiments used in our case studies, including experiment setup, source code for creating search
spaces and complex search flows.

A More on Symbolic Programming for AutoML

A.1 Formal definition of a symbolic program

Give a program construct type t, let the hyper-parameters (which defines the uniqueness of an instance
of t) be noted as P (t) = 〈p0, ..., pn〉. The symbolic type of t can then be defined as the output
of the symbolization function S applied on t, which returns a tuple of t’s type information and its
hyper-parameter definitions:

s = S(t) = 〈t, P (t)〉 (1)

A hyper-parameter pi of s is either a primitive type or a symbolic type. Therefore an instance x of s –
a symbolic object – is a tree node, whose sub-nodes are its hyper-parameters. For convenience, x is
called a symbolic t, e.g: symbolic Dataset, symbolic Conv, etc. A symbolic program is a symbolic
object that can be executed, for example, a symbolic Trainer that trains and evaluates a ResNet (as
a sub-node) on ImageNet.

Two tree nodes are equal if and only if their type and hyper-parameters are equal. For example,
consider a symbolic Conv class which takes filters, kernel_size as its hyper-parameters. Two
Conv instances are equal if and only if their filters and kernel_size are equal.

We can clone a tree by copying its type information and hyper-parameters. Similarly, we can replace
a hyper-parameter value with a new value, which is the foundation for symbolic manipulation. For
example, a symbolic Conv’s kernel_size can be changed from (3, 3) to (5, 5) by another program.

Symbolic constraints can be specified on the hyper-parameters. These constraints define the hyper-
parameters’ value types and ranges. When a value is assigned as a hyper-parameter of another
symbolic object, it will be validated based on the symbolic constraint on that hyper-parameter. Since
the sub-nodes of a symbolic object can be manipulated, the constraints are helpful in catching
mistakes during symbolic manipulation.

∗Work done as a research intern at Google.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A.2 Symbolic types

The basic elements of a computer program are classes and functions, plus a few built-in data structure
that works with the classes and functions for composition. To symbolize a computer program, we
need to map these basic program constructs to their symbolic counterparts. Based on Equation 1, the
symbolic type of t is defined by t’s type information and hyper-parameters, illustrated in Table 1

Table 1: Hyper-parameters of basic program constructs

Program construct type Hyper-parameters
class Constructor arguments.

function Function arguments.
list Indices in the list.
dict Keys in the dict.

Though a regular function takes arguments, the function itself doesn’t hold its hyper-parameter values.
Therefore, in order to manipulate the hyper-parameters of a function, a symbolic function – functor –
behaves like an object: an function with bound arguments. As a result, a functor is no different from
a class object with a call method, whose arguments could be bound either at construction time or call
time. Therefore, a functor can be a node in the symbolic tree.

A.3 Operations on symbolic types

Symbolic objects can be manipulated via a set of operations. Table 2 lists the basic operations
applicable to all symbolic types. Particularly, rebind in the modification category is of special
importance, as it’s the foundation for implementing complex program transforms.

Table 2: Basic operations applicable to symbolic types.

Category Operation Description
Modification rebind(x, dict) Replace each node in x whose path is a key in dict

rebind(x, λ) Recursively apply the function λ to each node in x

Inference isinstance(x, t) Returns true if x is an instance of t, false otherwise
has(x, p) Returns true if p is a property of x, false otherwise

equal(x, x′) Returns true if x equals x′, false otherwise

Inquiry parent(x) Returns the parent node of x
path(x) Returns the path from the tree root to x
get(x, l) Returns the sub-node of x which has path l

query(x, θ) Returns a dict of 〈path, value〉 pairs which
contains all sub-nodes of x satisfying predicate θ

Replication clone(x) Returns a symbolic copy of x

A.4 Materializing a child program from an abstract child program

As we decouple the search algorithm from the search space and child program by introducing the
abstract search space and abstract child program, we need to materialize the abstract child program
into a concrete child program based on the search space. Algorithm 1 illustrates this process, which
recursively merges the hyper values from the search space and the numeric choices from the abstract
child program. For a continuous or discrete hyper value, the value of choice is the final value to be

2

assigned to its target node in the tree, while for a categorical hyper value, the value of choice is the
index of the selected candidate.

Algorithm 1: materialize
Input: search_space, abstract_child_program
Output: child_program

if isinstance(search_space, Choice) then
xcs← ()
forall c ∈ child_space(search_space) do

dc← child_value(abstract_child_program, path(c))
xc← materialize(c, dc)
append(xcs, xc)

child_program← xcs[value_of(abstract_child_program)]

else
child_program← value_of(abstract_child_program)

return child_program

A.5 Sampling child programs from a search space

Sampling a child program from a search space can be described as a process in which 1) the search
algorithm proposes an abstract child program, and 2) the search space materializes the abstract child
program into a concrete program. Before the process starts, an abstract search space will be obtained
from the search space for setting up the search algorithm. This process is described by Algorithm 2.

Algorithm 2: sample
Input: search_space, search_algorithm
Output: Iterator(〈child_program, feedback_for_child〉)
setup(search_algorithm, abstract_search_space(search_space))
while true do

abstract_child_program← propose(search_algorithm)
child_program← materialize(search_space, abstract_child_program)
feedback_for_child←
partial_bind(feedback, search_algorithm, abstract_child_program)

yield 〈child_program, feedback_for_child〉

3

B More on PyGlove

In this section, we will map the concepts from our method into PyGlove programs, to illustrate how
a regular Python program is made symbolic programmable, turned into a search space, and then
optimized in a search flow. At the end of this section, we provide an example of enabling NAS for an
existing Tensorflow-based MNIST program.

B.1 Symbolize a child program

B.1.1 Symbolize classes

A symbolic class can be converted from a regular Python class using the @symbolize decorator, or
can be created on-the-fly without modifying the original class. The symbolize decorator creates a
class on-the-fly by multi-inheriting the symbolic Object base class and the user class. The resulting
class therefore possesses the capabilities of both parents. Figure 1 shows an code example of
symbolizing existing/new classes.

import pyglove as pg
import tensorflow as tf

Symbolizing preexisting keras layers into symbolic
classes without modifying original classes.
Conv2D = pg.symbolize(tf.keras.layers.Conv2D)
Dense = pg.symbolize(tf.keras.layers.Dense)
Sequential = pg.symbolize(tf.keras.Sequential)

Symbolizing a newly created class with constraints.
@pg.symbolize ([

(’learning_rate ’, pg.typing.Float(min_value =0)),
(’steps’, pg.typing.Int(min_value =1))

])
class CosineDecay(object):

def __init__(self , learning_rate , steps):
self.learning_rate = learning_rate
self.steps = steps

def __call__(self , current_step):
return (tf.cos(np.pi * current_step / self.steps)

* self.learning_rate)

Figure 1: Symbolizing existing classes and new classes.

Using symbolic constraints Constraints which validate new values during object construction or
upon modification can be optionally provided when using the @symbolize decorator. Symbolic
constraints can greatly reduce human mistakes when a program is manipulated by other programs.
It also make the program implementation more crisp: user can program against an argument as it
claims to be without additional check.

Recomputing internal states Symbolic objects may have internal states. The mutable program-
ming model will only work when the internal states are consistent upon modification. When one or
more hyper-parameters are modified through rebind, the object’s state will be reset, and the object’s
constructor will be invoked (again) on the same instance. Moreover, the change propagates back from
the current node to the root of the symbolic tree, allowing all impacted nodes to recompute states
upon modification.

B.1.2 Symbolize functions

From function to functor Making functions symbolic programmable is trickier than for classes,
for the following reasons: First: functions don’t explicitly hold their parameters as member variables,

4

although functions’ bound arguments are analogous to member variables in classes. Second: functions
don’t have the concept of inheritance, which is necessary to get access to the capabilities provided by
the symbolic Object base class. To address these two issues, we introduce the concept of functor,
which is a symbolic class with a __call__ method; all the function arguments becoming the
functor’s hyper-parameters. Under the functor concept, we unify the representation and operations
of classes and functions. Figure 2 shows that functions can be symbolized in the same way as we
symbolize classes. Figure 3 shows how functors can be used with great flexibility in binding their
hyper-parameters.

@pg.symbolize
def random_augment(image , magnitude):

return random_augment_impl(data , magnitude)

@pg.symbolize ([
(’model’, pg.typing.Instance(Layer)),
(’augment_policy ’, pg.typing.Callable(

[pg.typing.Instance(tf.Tensor)],
returns=pg.typing.Instance(tf.Tensor))),

(’learning_schedule ’, pg.typing.Callable ([
pg.typing.Instance(tf.Tensor)]))

])
def train_model(model ,

augment_policy ,
learning_schedule):

return train_model_impl(
model , augment_policy , learning_schedule)

Figure 2: Decorator symbolize converts functions into functors. Since
properties for functors are automatically added from function signature,
constraints are optional. Nevertheless, users are encouraged to add
constraints for functor properties for safety and productivity.

model = Sequential(children =[
Conv2D(filters=8, kernel_size =(3, 3)),
Dense(units =10)

])

Partial parameter binding , in which ‘model ‘ is missing.
trainer = train_model(

augment_policy=random_augment(
magnitude =8))

Incremental parameter binding via assignment.
trainer.learning_schedule = CosineDecay (1e-5, 5000)

Incremental parameter binding at call time.
accuracy1 = trainer(model=model)

Call with overriding previously bound parameters.
accuracy2 = trainer(

model=model ,
learning_schedule=CosineDecay (2e-4, 5000),
override_args=True)

Figure 3: Functors can be used as objects, with a rich set of argument
binding features.

Partial and incremental argument binding Functor comes with a capability that allows argu-
ments to be partially bound at construction time, incrementally bound via property assignment and at
call time. We can even override a previously bound argument during the call to the functor.

5

B.2 Operating symbolic values

Symbolic values can be operated as if they were plain data, including inference, inquiry, modification
and replication. Figure 4 gives some examples to these operations.

model = Sequential(children =[
Conv2D(filters=8, kernel_size =(3, 3)),
Dense(units =10)

])

Partial parameter binding , in which ‘model ‘ is missing.
trainer = train_model(

augment_policy=random_augment(
magnitude =8))

Inference.
assert isinstance(trainer , train_model)
assert isinstance(trainer.model , Layer)
assert trainer.model.children [1] == Dense (10)
assert trainer.model != Conv2D (16, (3, 3))

Inquiry.
assert trainer.query(’.* filters ’) == {

’model.children [0]. filters ’: 8
}

assert trainer.query(where=(
lambda v: isinstance(v, Dense))) == {

’model.children [1]’: Dense(units =10)
}

Modification.
assert trainer.rebind ({

’model.children [0]. filters ’: 16,
’model.children [1]’: insert(Dense (20))

}). model == Sequential ([
Conv2D (16, (3, 3)), Dense (20), Dense (10)

])

def conv_to_dense(k, v):
return Dense(v.filters) if isinstance(v.Conv2D) else v

assert trainer.rebind(conv_to_dense) == (
Sequential ([Dense (16), Dense (20), Dense (10)])

Replication.
assert trainer.clone() == trainer
assert trainer.clone(deep=True) == trainer
trainer.save(’trainer.json’)
assert pg.load(’trainer.json’) == trainer

Figure 4: Example code for symbolic operations on inference, comparison,
inquiry, modification, replication and serialization.

B.3 Using PyGlove for search

B.3.1 Creating search spaces

With the definition of functors train_model and random_augment, as well as the layer classes, we
can create a search space by replacing concrete values with hyper values, illustrated in Figure 5.

6

hyper_trainer = train_model(
model=Sequential(

pg.manyof(k=3, candidates =[
Conv2D(filters=pg.oneof ([8, 16]),

kernel_size=pg.oneof ([(3, 3), (5, 5)])),
Dense(units=pg.oneof ([10, 20]))

], choices_distinct=False)),
augment_policy=random_augment(

magnitude=pg.oneof ([3, 6, 9])),
learning_schedule=CosineDecay(pg.floatv (1e-5, 1e-4), 5000))

Figure 5: An example of conditional search space for jointly searching the model
architecture, data augment policy, and learning rate.

B.3.2 Search: putting things together

With hyper_trainer as the search space, we can start a search by sampling concrete trainers from
the search space with a search algorithm (e.g. RegularizedEvolution [2]). The trainer is
a concrete instance of train_model, which can be invoked to return the validation accuracy on
ImageNet. We use the validation accuracy as a reward to feedback to the search algorithm, illustrated
in Figure 6.

for trainer , feedback in pg.sample(
hyper_trainer , pg.generators.RegularizedEvolution (),
partition_fn=None):

reward = trainer ()
feedback(reward)

Figure 6: Creating a search flow from a search space and a search algorithm. We
pass None to the search space partition function here as to optimize the whole
search space.

B.4 More on materialization of hyper values

Materialization of hyper values can take place either eagerly or in a late-bound fashion. In the former
case, the hyper value evaluates to a concrete value within its range upon creation, and register the
search space into a global context for the first run, which can be picked up by the search algorithm
later to propose values for future runs. This conditional evaluation makes it possible to support the
define-by-run style search space definition advocated by Optuna [3]. In the latter case, the search
space will be inspected from the symbolic tree and the tree can be manipulated freely by the search
algorithm before the program is executed.

def oneof(candidates , hints=None):
""" Oneof with optional eager execution."""
choice = Choice(candidates , hints)
if is_eager_mode ():

if is_apply_decisions ():
Apply next decision from the global context.
chosen_index = next_global_decision ()

else:
Collect the decision points when running
the program for the first time.
add_global_decision_point(choice)
chosen_index = 0

choice = candidates[chosen_index]
return choice

Figure 7: Eagerly evaluation of hyper values.

7

The advantage of eager evaluation is that one can drop AutoML into a new ML program with minimal
code changes. Users do not need to explicitly define the hyper-parameters to search. Instead, we can
automatically identify them by executing the user’s code before the start of the search. On the other
hand, scattered searchable hyper-parameters makes it hard or error-prone to modify search space over
many files, especially when we want to explore multiple search spaces.

Meanwhile, conditional search spaces require special handling. Define-by-run semantics typically do
not provide enough information for us to recognize hierarchical search spaces. For instance, it is dif-
ficult to distinguish between oneof([oneof([1, 2]), 1]) and oneof([1, 2]) + oneof([3,
4]). In PyGlove, we solve this problem by using a lambda function with zero-argument which
returns the candidate: oneof([lambda:oneof([1, 2]), 1]). In this case, the outer oneof will
instantiate the inner oneof, making it possible to capture the hierarchy of the hyper value structure.

While eagerly evaluation of hyper values seems to override the mechanism of symbolic manipulation,
it is not so for PyGlove: Under eager mode, PyGlove runs the user program once to collect the
symbolic objects (like the hyper values) along the program flow, so we can access these objects,
manipulate them and inject them back into the program for future runs. As a result, eagerly evaluation
can be regarded as an interface for PyGlove to inspect and manipulate the implicit symbolic objects
created during program execution.

B.5 Example: Neural Architecture Search on MNIST

This section shows a complete example of dropping PyGlove into an existing ML program as to
enable NAS. Added code is highlighted with a light-yellow background.

""" NAS on MNIST.

This is a basic working ML program which does NAS on MNIST.
The code is modified from the tf.keras tutorial here:
https :// www.tensorflow.org/tutorials/keras/classification

(The tutorial uses Fashion -MNIST ,
but we just use "regular" MNIST for these tutorials .)

"""

from absl import app
from absl import flags
import numpy as np
import pyglove as pg
import tensorflow as tf

flags.DEFINE_integer(
’max_trials ’, 10, ’Number of max trials for tuning.’)

flags.DEFINE_integer(
’num_epochs ’, 10, ’Number of epochs to train for each trail.’)

FLAGS = flags.FLAGS

def download_and_prep_data ():
""" Download dataset and scale to [0, 1].

Returns:
tr_x: Training data.
tr_y: Training labels.
te_x: Testing data.
te_y: Testing labels.

"""
mnist_dataset = tf.keras.datasets.mnist
(tr_x , tr_y), (te_x , te_y) = mnist_dataset.load_data ()
tr_x = tr_x / 255.0
te_x = te_x / 255.0

8

return tr_x , tr_y , te_x , te_y

Create symbolized Keras layers classes .}
Conv2D = pg.symbolize(tf.keras.layers.Conv2D)

Dense = pg.symbolize(tf.keras.layers.Dense)

Sequential = pg.symbolize(tf.keras.Sequential)

def model_builder ():
""" Model search space."""
return Sequential(pg.oneof([

Model family 1: only dense layers.
[

tf.keras.layers.Flatten() ,

Dense(pg.oneof([64, 128]), pg.oneof([’relu’, ’sigmoid’]))

] ,
Model family 2: conv net.
[

tf.keras.layers.Lambda(lambda x: tf.reshape(x, (-1, 28, 28, 1))) ,

Conv2D(pg.oneof([64, 128]), pg.oneof([(3, 3), (5, 5)]) ,

activation=pg.oneof([’relu’, ’sigmoid’])) ,

tf.keras.layers.Flatten()

]]) + [tf.keras.layers.Dense(10, activation=’softmax’)])

def train_and_eval(model , input_data , num_epochs =10):
""" Returns model accuracy after train and evaluation.

Args:
model: A Keras model.
input_data: A tuple of (training features , training_labels ,

test features , test labels) as input data.
num_epochs: Number of epochs to train model.

Returns:
Accuracy on test split.

"""
tr_x , tr_y , te_x , te_y = input_data
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy ’,
metrics =[’accuracy ’])

model.fit(tr_x , tr_y , epochs=num_epochs)
_, test_acc = model.evaluate(te_x , te_y , verbose =2)
return test_acc

def search(max_trials , num_epochs):
""" Search MNIST model via PPO.

Args:
max_trials: Max trials to search.
num_epochs: Number of epochs to train individual trial.

"""
results = []
input_data = download_and_prep_data ()
for i, (model, feedback) in enumerate(pg.sample(

model_builder(), pg.generators.PPO(), max_trials)):

9

test_acc = train_and_eval(model, input_data, num_epochs)

results.append((i, test_acc))

feedback(test_acc)

Print best results.
top_results = sorted(results, key=lambda x: x[2], reverse=True)

for i, (trial_id, test_acc) in enumerate(top_results[:10]):

print(’{0:2d} - trial {1:2d} ({2:.3f})’.format(i + 1, trial_id, test_acc))

def main(argv):
""" Program entrypoint."""
if len(argv) > 1:

raise app.UsageError(’Too many command -line arguments.’)
search(FLAGS.max_trials, FLAGS.num_epochs)

if __name__ == ’__main__ ’:
app.run(main)

10

C More on case studies

This section describes the experiment details for our case studies in the paper.

C.1 Search spaces and search algorithms exploration

C.1.1 Experiment setup

Table 3: Hyper-parameters for training MobileNetV2 and searched models.

Name Value
Image size 224 * 224

Pre-processing ResNet preprocessing

Training epochs 360
Batch size 4096
Optimizer RMSProp: momentum 0.9, decay 0.9, epsilon 1.0

Learning schedule Cosine decay with peak learning rate 2.64,
with 5 epochs linear warmup at the beginning.

L2 2e-5

Dropout rate 0.15
Batch normalization momentum 0.99, epsilon 0.001

Table 4: Definition of search spaces for exploration.
Search space Hyper-parameters

S1 Search the kernel sizes with candidates [(3, 3), (5, 5), (7, 7)]
and expansion ratios with candidates [3, 6] for the inverted bottleneck units

in MobileNetV2; can remove layers from each block.

S2 Search output filters of MobileNetV2
with multipliers [0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0]

S3 Combine S1 and S2

Table 5: Search algorithm setup. We uses TuNAS absolute reward function with exponent=-0.1.

Search algorithm Configuration
Random Search [4] 100 trials, each trial trains for 90 epochs,

rejection threshold for MAdds: ± 6M

Bayesian Optimization [5] 100 trials, each trial trains for 90 epochs
rejection threshold for MAdds: ± 30M

(We use a larger rejection ratio for Bayesian
to limit the rejection rate, since our infra
will take the rewards from rejected trials)

TuNAS [6]
Search for 90 epochs, with RL learning rate set to 0 for first 1/4 of training.

The search cost for S1 and S2 is about 4x of static model training,
and the cost for S3 about 8x of static model training.

11

C.1.2 Creating search spaces

In the Result section, we demonstrated 3 search spaces created from MobileNetV2 [7]. Figure 8-10
show the code for converting the static model into search spaces S1, S2 and S3.

import pyglove as pg

Get the first inverted bottleneck.
r = model.query(lambda x: isinstance(x, InvertedBottleneck))
r = next(iter(r.values ()))

def hyper_inverted_bottleneck(
kernel_size_list , expansion_ratio_list , add_zeros=False):

return pg.oneof([
r.clone (). rebind(kernel_size=k, expansion_ratio=e)
for k in kernel_size_list
for e in expansion_ratio_list

] + ([Zeros ()] if add_zeros else []))

def relax_ops(k, v, p):
if not k or k.key != ’op’:

return v
Check if the layer of current operation is the
first layer of current block.
if k.parent.key == 0:

if k == ’blocks [0]. layers [0].op’:
return hyper_inverted_bottleneck(

[(3, 3), (5, 5), (7, 7)], [1])
else:

return hyper_inverted_bottleneck(
[(3, 3), (5, 5), (7, 7)], [3, 6])

else:
return hyper_inverted_bottleneck(

[(3, 3), (5, 5), (7, 7)], [3, 6], True)

mobile_s2 = mobilenet_v2.clone (). rebind(relax_ops)

Figure 8: Added code for converting MobileNetV2 into a search space (S1) that tunes the
kernel size and expansion ratio in all inverted bottleneck units.

def relax_filters(k, v, p):
if isinstance(p, InvertedBottleNeck) and k == ’filters ’:

scaled_values = sorted(set([
layers.scale_filters(v, x)()
for x in [0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0]]))

if len(scaled_values) == 1:
return scaled_values [0]

return pg.oneof(scaled_values)
return v

mobile_s1 = mobilenet_v2.clone (). rebind(relax_filters)

Figure 9: Added code for converting MobileNetV2 into a search space (S2) that tunes the
channel size in all inverted bottleneck units.

mobile_s3 = mobilenet_v2.clone (). rebind ([relax_filters ,
relax_ops])

Figure 10: Applying transform functions from S1 and S2 to create S3.

12

C.2 Search flow exploration

In the case study, we explored 3 search flows for optimizing NAS-Bench-101. Here we include
the code for the factorized and hybrid search since the standard search is already discussed in
Section B.3.2.

C.2.1 Factorized search

For the factorized search, we optimize the nodes in the outer loop and the edges in the inner loop.
Each example in the outer loop is a search space of edges with a fixed node setting. Each example in
the inner loop is a fixed model architecture. The reward for the outer loop is computed as the average
of top 5 rewards from the inner loop.

def factorized_search(search_space):
Optimize the ops in the outer loop.
Each example in the outer loop is an edge sub -space with fixed
ops. ‘partition_fn ‘ is used to create a sub -space by selecting
op hyper values only.
best_example , best_reward = None , None
for edge_space , ops_feedback in pg.sample(

search_space , RegularizedEvolution (),
trials =300, partition_fn=lambda v: v.hints == OP_HINT):

Optimize the edges in the inner loop.
Each reward computed in the inner loop
is for an edge setting relative to
the node setting decided in the outer loop.
rewards = []
for example , edges_feedback in pg.sample(

edge_space , RegularizedEvolution (), trials =20):
reward = nasbench.get_reward(example)
edges_feedback(reward)
rewards.append(reward)
if best_reward is None or best_reward < reward:

best_example , best_reward = example , reward
ops_feedback(top5_average(rewards))

return best_example

Figure 11: A factorized search that optimizes the nodes in the outer loop and the edges in the inner
loop.

13

C.2.2 Hybrid search

For the hybrid search, we use the first half of the budget to optimize the nodes using the same search
flow illustrated in Section C.2.1 , then we use the other half of the budget to further optimize the
edges with the best nodes found in the prior phase.

def hybrid_search(search_space):
Phase 1: search for the best ops with sampled edges.
Each example in the outer loop is an edge sub -space with fixed
ops. ‘partition_fn ‘ is used to create a sub -space by selecting
op hyper values only.
ops_attempts = []
for edge_space , ops_feedback in pg.sample(

search_space , RegularizedEvolution (),
trials =150, partition_fn=lambda v: v.hints == OP_HINT):

rewards = []
algo = RegularizedEvolution ()
for example , edges_feedback in pg.sample(edge_space ,

algo , trials =20):
reward = nasbench.get_reward(example)
edges_feedback(reward)
rewards.append(reward)

ops_reward = top5_average(rewards)
ops_attempts.append ((edge_space , ops_reward , algo))
ops_feedback(ops_reward)

Phase 2: Continue search the best edge sub -space
with best ops found.
edge_space , _, edge_algo = sorted(

ops_attempts , key=lambda x: x[1], reverse=True)[0]

best_example , best_reward = None , None
for example , edges_feedback in pg.sample(edge_space ,

edge_algo , 150 * 20):
reward = nasbench.get_reward(example)
edges_feedback(reward)
if best_reward is None or best_reward < reward:

best_example , best_example = example , reward
return best_example

Figure 12: A hybrid search that optimizes the nodes with a factorized search in the first phase, and
optimize the edges based on the best nodes found in the second phase.

14

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In The {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[2] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. In AAAI Conference on Artificial Intelligence (AAAI), pages 4780–4789, 2019.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[4] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal of
Machine Learning Research (JMLR), 13(Feb):281–305, 2012.

[5] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley. Google
vizier: A service for black-box optimization. In The SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1487–1495, 2017.

[6] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, and Quoc Le.
Can weight sharing outperform random architecture search? an investigation with TuNAS. In The IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

15

	More on Symbolic Programming for AutoML
	Formal definition of a symbolic program
	Symbolic types
	Operations on symbolic types
	Materializing a child program from an abstract child program
	Sampling child programs from a search space

	More on PyGlove
	Symbolize a child program
	Symbolize classes
	Symbolize functions

	Operating symbolic values
	Using PyGlove for search
	Creating search spaces
	Search: putting things together

	More on materialization of hyper values
	Example: Neural Architecture Search on MNIST

	More on case studies
	Search spaces and search algorithms exploration
	Experiment setup
	Creating search spaces

	Search flow exploration
	Factorized search
	Hybrid search

