
We thank all the reviewers for their time in reading our paper and providing thoughtful comments.1

Reviewer 1.2

• Thank you for pointing out the typo. We will fix this.3

Reviewer 2.4

• Regarding the adversary: we may assume that an online adaptive adversary where the adversary is allowed to5

see the algorithm’s coin flips but only after the algorithm has played its random set. This is because our analysis6

never makes use of the fact that the functions are fixed by the adversary ahead of time (and similarly for online7

dual averaging since it is a deterministic algorithm). We note that we obtain a guarantee in expectation.8

• Regarding KL divergence: The KL divergence can be defined more generally for x, y ∈ Rn
>0 as dKL(x, y) =9 ∑n

i=1 xi ln(xi/yi)−xi+yi. It is not possible for any coordinate yi to be 0 as there is no point in the dual space10

that may get mapped to a point with a non-positive component. One can also verify that the KL projection11

does not cause any coordinate to become non-positive as well. We will add the details in the revised version.12

• Regarding first-order regret bound: First-order regret bounds are a type of data-dependent bounds which often13

depend on the magnitude of the costs. There are also "second-order" regret bounds which look at the “variance”14

in the sequence of cost vectors.15

Reviewer 3.16

• Thanks for pointing out the typo in the definition of curvature. We will fix this.17

• Regarding the regret bounds in [9, 10]: The previous work [9, 10] studies online continuous DR-submodular18

maximization. Both regret bounds in [9, 10] involve the term GD
√
T , where G is the upper bound of `2-norm19

of the gradients of objective functions and D is the `2-diameter of the feasible set. When applying their20

algorithm to our setting (i.e., the objective functions are the multilinear extension and the feasible set is matroid21

polytope), both G and D can be Ω(
√
n), where n is the size of the ground set. Hence, their bounds yields22

Ω(n
√
T ), whereas our bound is O(

√
kT log(n/k)). Even if we replace online gradient descent with mirror23

descent in their algorithm, the regret bound is still (at least) O(k
√
T log(n/k)). The improvement of factor24 √

k in our algorithm comes from the use of the first order regret bound in OLO, which is the main contribution25

of our paper. We will add the detailed comparison in the revised version.26

• Regarding intuition for Equation 4.1: In the offline case, the proof of double greedy considers a potential27

function of the form 2f(Oi) + f(Xi) + f(Yi) where Oi is OPT intersected with Yi. The change in potential28

at step i of double greedy can be lower bounded by29
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In offline double greedy, one chooses pi = (p+i , p
−
i ) so that the above expression is non-negative, i.e. so that30

the potential is non-decreasing. Equation 4.1 is the online equivalent of this change in potential (albeit with a31

sign change).32

• Sample complexity and time complexity:33

– Monotone and matroid setting: we assume that the matroid is given by the rank oracle. Our algorithm34

(Algorithm 6) makes O(n4

ε3 log(n3T
ε )) calls to the evaluation oracle of the objective function ft and solves35

O(n3

ε ) submodular function minimization in each round t. Note that submodular function minimization36

is used for the Bregman projection step.37

– Nonmonotone and unconstrained setting: Our algorithm (Algorithm 2) makes O(n) calls to the evaluation38

oracle of the objective function ft and makes O(n) overheads in each round t. Note that our USM-balance39

subproblem algorithm runs in constant time since the underlying convex optimization is of constant40

dimension.41

• On softmax extension: The softmax extension can be efficiently computed for specific submodular functions42

arising from determinant point processes, but it is unknown how to compute it for general submodular functions43

faster than multilinear extension. Since our paper assumes the value oracle model, we did not use the softmax44

extension. Note that the the sampling for evaluating the multilinear extension does not affect the regret bound.45

Reviewer 4.46

• On applications: Applications of online submodular maximization include learning blog rankings, online ad47

display, online resource allocation. See [9, 10, 16, 29, 30] and references therein.48

• On time complexity: please see the answer to Reviewer 3.49


