
A Standard facts

Fact A.1. ex ≤ 1 + x+ x2 for all x ∈ (−∞, 1].

Claim A.2. Suppose that x satisfies

x2 − αx− β ≤ 0,

where α, β ≥ 0 are constants. Then

x ≤ α+
√
α2 + 4β

2
.

Claim A.3. Let f be a non-negative submodular function on [n] that is bounded above by 1. Let
X0, . . . , Xs be a monotone sequence of sets, i.e. either X0 ⊆ . . . ⊆ Xs ⊆ [n] or [n] ⊇ X0 ⊇ . . . ⊇
Xs. Then for any I ⊆ [s], ∑

i∈I
f(Xi)− f(Xi−1) ≤ 1.

Proof. First, suppose that Xi are monotone increasing. Construct a sequence X ′i as follows. Set
X ′0 = X0. If i /∈ I then set X ′i = X ′i−1. If i ∈ I then set X ′i = X ′i−1 ∪ (Xi \Xi−1). In this case,∑
i∈I

f(Xi)− f(Xi−1) ≤
∑
i∈I

f(X ′i)− f(X ′i−1) =

s∑
i=1

f(X ′i)− f(X ′i−1) = f(X ′s)− f(X ′0) ≤ 1.

For the monotone decreasing case, consider the submodular function g(X) = f([n]−X) and set
Yi = [n]−Xi. Observe that Yi are monotone increasing sets. Then∑

i∈I
f(Xi)− f(Xi−1) =

∑
i∈I

g([n]−Xi)− g([n]−Xi−1) =
∑
i∈I

g(Yi)− g(Yi−1) ≤ 1,

where the last inequality is by the monotone increasing case.

Fact A.4. Suppose that p ∈ [0, 1]n satisfies
∑
i pi = k. Let q = k

n1. Then DKL (p, q) ≤ k ln(n/k).

Proof. We have DKL (p, q) =
∑
i pi ln pi

k/n =
∑
i pi ln(n/k) +

∑
i pi log pi ≤ k ln(n/k), where in

the last inequality we used
∑
i pi ln pi ≤ 0.

Fact A.5. Let π = ΠΦ
X∩D(y). Then DΦ(x, π) ≤ DΦ(x, y) for all x ∈ X ∩ D.

Proposition A.6. Let u > 0 and a1, . . . , aT ∈ [0, u]. Then

T∑
t=1

at√
u+

∑
i<t ai

≤ 2

√√√√ T∑
t=1

at.

Proof. This follows from [2, Lemma 3.5].

B Online Dual Averaging

Both of our algorithms make use of the online dual averaging algorithm, which we will briefly
describe here (see Bubeck [4, Chapter 4] for a more detailed exposition). Let D ⊆ Rn be an open
convex set and Φ: D → R be a strictly convex and differentiable function on D. The function Φ is
called the mirror map. We further require that ∇Φ(D) = Rn and that limx→∂D‖∇Φ(x)‖ = +∞.
Let X denote the feasible region, which is assumed to be closed and convex. Moreover, X ⊆ D and
X ∩ D 6= ∅. Finally, DΦ(x, y) := Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉 is the Bregman divergence of Φ.
We use the notation ΠΦ

X∩D(y) = argminx∈X∩DDΦ(x, y) to denote the Bregman projection of y
onto X with Φ as the mirror map.

The gradient of the mirror map ∇Φ : D → Rn and the gradient of its conjugate ∇Φ∗ : Rn → D are
mutually inverse bijections between the primal space D and the dual space Rn. We will adopt the
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following notational convention. Any vector in the primal space will be written without a hat, such as
x ∈ D. The same letter with a hat, namely x̂, will denote the corresponding dual vector:

x̂ := ∇Φ(x) and x := ∇Φ∗(x̂) for all letters x.

In our applications, we take D = Rn>0 and Φ(x) =
∑
i xi lnxi. In Section 3, we take X to be the

matroid base polytope while in Section 4 we take X to be the unit Euclidean ball intersected with the
positive orthant. In this case,

∇Φ(x)i = ln(xi) + 1 and ∇Φ∗(x̂)i = exp(x̂i − 1) (B.1)

and the Bregman divergence is the generalized KL divergence, i.e.

DΦ(x, y) = DKL (x, y) =

n∑
i=1

xi ln
xi
yi
− xi + yi.

We note that the assumptions required above on D,Φ,X are satisfied with these choices. Algorithm
4 describes the online dual averaging algorithm. In the entirety of this section, we will always assume
that ft denote convex functions and that ‖ft‖∞ ≤ 1 for all t.

Algorithm 4 Online Dual Averaging
Input: Initial point x1 ∈ X ∩ D, mirror map Φ, and learning rate η : N→ R>0.

1: x̂1 ← ∇Φ(x1)
2: for t = 1, 2, . . . , do
3: Play xt, incur cost ft(xt), and receive subgradient ĝt ∈ ∂ft(xt).
4: ŷt+1 ← x̂1 − ηt+1

∑
i≤t ĝi

5: yt+1 ← ∇Φ∗(ŷt+1)
6: xt+1 ← ΠΦ

X∩D(yt+1)

The following is a standard, but quite general, analysis of the online dual averaging algorithm.

Theorem B.1. Assume that ηt ≥ ηt+1 > 0 for all t ≥ 1. Let {xt}t≥1 be the sequence of iterates
generated by Algorithm 4. Let vt = ∇Φ∗(x̂t − ηtĝt). Then for any mirror map Φ, any sequence of
convex functions {ft}t≥1 with each ft : X → R, and any z ∈ X ,

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

DΦ(xt, vt)

ηt
+

supu∈X DΦ(u, x1)

ηT+1
∀T > 0. (B.2)

If the cost functions are linear, say ft(x) = c>t x, and the mirror map is Φ(x) =
∑
i xi lnxi then we

have the following bound on the regret.

Corollary B.2. Assume that η1 ≤ 1 and ηt ≥ ηt+1 > 0 for all t ≥ 1. Assume that Φ(x) =∑
i xi lnxi. Let {xt}t≥1 be the sequence of iterates generated by Algorithm 4. Then for any

sequence of cost vectors ct ∈ [−1, 1]n and any z ∈ X ,

T∑
t=1

(
c>t xt − c>t z

)
≤

T∑
t=1

ηt|ct|>xt +
supu∈X DKL (u, x1)

ηT+1
∀T > 0.

Corollary B.3. In the setting of Corollary B.2, if we take ηt =
√

D
D+

∑
j<t |ct|>xt

, where D ≥
max{1, supu∈X DKL (u, x1)} then for any z ∈ X ,

T∑
t=1

(
c>t xt − c>t z

)
≤ 3
√
D

√√√√ T∑
t=1

|ct|>xt +D.

The proofs of the previous two corollaries are in Appendix C.
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C Proofs from Appendix B

Proof of Corollary B.2. Each term in the sum of (B.2) may be bounded as follows:

DKL (xt, vt)

ηt
=

1

ηt

n∑
i=1

(
xt,i ln

xt,i
vt,i
− xt,i + vt,i

)
=

1

ηt

n∑
i=1

xt,i
(
− ηtct,i − 1 + eηtct,i

)
≤ 1

ηt

n∑
i=1

xt,i
(
− ηtct,i − 1 + (1 + ηtct,i + η2

t c
2
t,i)
)

(by Fact A.1)

= ηt

n∑
i=1

xt,ic
2
t,i ≤ ηt

n∑
i=1

xt,i|ct,i| = ηt|ct|>xt.

In the first equality we used that ηtct,i ≤ 1 and in the last equality we used that ct,i ∈ [−1, 1].

Proof of Corollary B.3. Note first that ηt is a decreasing sequence and η1 ≤ 1. By Corollary B.2, we
bound

T∑
t=1

(
c>t xt − c>t z

)
≤

T∑
t=1

ηt|ct|>xt +
D

ηT+1
. (C.1)

Bouding the first term, we have
T∑
t=1

ηt|ct|>xt =

T∑
t=1

√
D · |ct|>xt√

D +
∑
j<t |ct|>xt

≤ 2
√
D ·

√√√√ T∑
t=1

|ct|>xt, (C.2)

using Proposition A.6 with at = |ct|>xt and u = D ≤ 1. Next,

D

ηT+1
=
√
D ·

√√√√D +

T∑
t=1

|ct|>xt

≤ D +
√
D ·

√√√√ T∑
t=1

|ct|>xt. (C.3)

Plugging Eq. (C.2) and Eq. (C.3) into Eq. (C.1) gives

T∑
t=1

(
c>t xt − c>t z

)
≤ 3
√
D

√√√√ T∑
t=1

|ct|>xt +D.

D Additional Proofs from Section 3

D.1 Proof of Lemma 3.2

Following [12], we define the function

Ψ(s) := es−1
T∑
t=1

Gt(xt(s)) +

T∑
t=1

`t(xt(s))

for s ∈ [0, 1] where Gt is the multilinear extension of gt.

We will need the following two lemmas.
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Lemma D.1 (Feldman [12, Lemma 3.2]).

dΨ(s)

ds
= es−1

T∑
t=1

Gt(xt(s)) +

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s).

Lemma D.2. For s ∈ [0, 1),

es−1
T∑
t=1

Gt(xt(s)) +

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s) ≥ es−1

T∑
t=1

gt(X
∗) +

T∑
t=1

`t(X
∗)− rs.

Proof. By the definition of the regret rs,

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>1X∗ −

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s) ≤ rs.

Using the properties of the multilinear extension,

T∑
t=1

[gt(S
∗)−Gt(xt(s))] ≤

T∑
t=1

[Gt(xt(s) ∨ 1S∗)−Gt(xt(s))]

(since gt(X∗) ≤ Gt(xt(s) ∨ 1X∗) by monotonicity)

≤
T∑
t=1

∇Gt(xt(s))>(xt(s) ∨ 1S∗ − xt(s))

(since Gt is concave along nonnegative directions)

≤
T∑
t=1

∇Gt(xt(s))>1S∗ .

(since xt(s) ∨ 1S∗ − xt(s) ≤ 1S∗ and∇Gt(xt(s)) ≥ 0)

Combining these two inequalities,

es−1
T∑
t=1

Gt(xt(s)) +

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s)

≥ es−1
T∑
t=1

Gt(xt(s)) +

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>1S∗ − rs

= es−1
T∑
t=1

[Gt(xt(s))−∇Gt(xt(s))>1S∗ ] +

T∑
t=1

`t(S
∗)− rs

≥ es−1
T∑
t=1

gt(S
∗) +

T∑
t=1

`t(S
∗)− rs.

Proof of Lemma 3.2. By Lemma D.1 and Lemma D.2, we have

dΨ(s)

ds
≥ es−1

T∑
t=1

gt(S
∗) +

T∑
t=1

`t(X
∗)− rs.

for s ∈ [0, 1]. Integrating this from 0 to 1,

Ψ(1)−Ψ(0) ≥ (1− 1/e)

T∑
t=1

gt(S
∗) +

T∑
t=1

`t(S
∗)−R,
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where R :=
∫ 1

0
rsds. Since Ψ(1)−Ψ(0) =

∑T
t=1Gt(xt) +

∑T
t=1 `t(xt), we obtain

(1− 1/e)

T∑
t=1

gt(S
∗) +

T∑
t=1

`t(S
∗)−

T∑
t=1

Gt(xt)−
T∑
t=1

`t(xt) ≤ R.

Now the desired approximation ratio follows from

(1− 1/e)

T∑
t=1

gt(S
∗) +

T∑
t=1

`t(S
∗)

= (1− 1/e)

T∑
t=1

ft(S
∗) + 1/e

T∑
t=1

`t(S
∗)

≥ (1− 1/e)

T∑
t=1

ft(S
∗) + (1− c)/e

T∑
t=1

ft(S
∗)

≥ (1− c/e)
T∑
t=1

ft(S
∗).

Finally, we apply an oblivious rounding to xt, we obtain

(1− c/e)
T∑
t=1

ft(S
∗)−E

[
T∑
t=1

ft(St)

]
≤ R,

as desired.

D.2 Proof of Claim 3.4

Proof. By Lemma D.1, we have

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s)

≤ es−1
T∑
t=1

Gt(xt(s)) +

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s)

=
dΨ(s)

ds
.

Thus,

ρ =

∫ 1

0

T∑
t=1

(es−1∇Gt(xt(s)) + `t)
>yt(s)

≤ Ψ(1)−Ψ(0)

≤
T∑
t=1

(Gt(xt(1)) + `t(xt(s)))

=

T∑
t=1

Ft(xt(1))

≤ T.

D.3 Bregman projection onto the matroid base polytope

In this section, we will denote a matroid byM = (E, I) where E is the groundset and I ⊆ 2E are
the independent sets. Algorithm 5 is a specialized form of the algorithm from [17]. Recall that the
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generalized KL divergence is defined as

DKL (x, y) =
∑
e∈E

xe ln
xe
ye
− xe + ye.

We will write ΠKL
P (y) := argminx∈P DKL (x, y) to be the projection of y onto P under KL diver-

gence.

Algorithm 5 Bregman Projection onto Matroid Base Polytope
Input: y ∈ RE>0, matroidM = (E, I)
Output: x∗ ∈ argminx∈B(M)DKL (x, y)

1: Initialize x(0) ← y
n‖y‖1 , N1 ← E, t← 0.

2: while Nt 6= ∅ do
3: Define z ∈ RE by

ze =

{
x

(t)
e e ∈ Nt

0 e /∈ Nt
.

4: δt+1 ← max{δ : x(t) + δz ∈ BM}.
5: x(t+1) ← x(t) + δt+1z.
6: Let Ft+1 ⊆ Nt be a maximal set such that x(t+1)(F1 ∪ . . . ∪ Ft+1) = rk(F1 ∪ . . . ∪ Ft+1).
7: Nt+1 ← Nt \ Ft+1.
8: t← t+ 1
9: return x(t)

Lemma D.3 (Gupta et al. [17, Theorem 3]). For all y ∈ RE>0, Algorithm 5 outputs ΠKL
B(M)(y).

Lemma D.3 is stated in more generality in [17]. To keep this paper as self-contained as possible, we
will prove Lemma D.3 in our special case (although the proof itself follows that in [17]). We will
require the following lemma which is a consequence of the fact that the greedy algorithm optimizes
linear functions over the matroid base polytope.

Lemma D.4. LetM = (E, I) be a matroid and letBM be the base polytope. Letw ∈ RE . Consider
the (unique) disjoint partitioning of E = ∪ki=1Fi satisfying:

1. F1, . . . , Fk 6= ∅;
2. if e, e′ ∈ Fi then we = we′ ;
3. if ei ∈ Fi, ej ∈ Fj and i < j then wi < wj; and

Then x∗ ∈ argminw∈B(M) w
>x if and only if

x∗(F1 ∪ . . . ∪ Fi) = rk(F1 ∪ . . . ∪ Fi)

for every i ∈ [k].

Proof of Lemma D.3. Let h(x) :=
∑
e∈E xe ln xe

ye
− xe + ye. Then x(t) ∈ argminx∈B(M) h(x) =

DKL (x, y) if and only if ∇h(x(t))>(x − x(t)) ≥ 0 for all x ∈ B(M). In other words, we require
that x(t) ∈ argminx∈B(M)∇h(x(t))>x. In the rest of the proof, we will verify that this inclusion
holds for the return point of Algorithm 5.

Suppose that Algorithm 5 terminates after t iterations. Let F1, . . . , Ft be the sets constructed in
Algorithm 5. By construction F1, . . . , Ft form a disjoint partition of E. Recall that ∇h(x(t))e =

ln
x(t)
e

ye
. By construction, if e ∈ Fi then

x(t)
e = cye(δ1 + . . .+ δi)

where c = 1
n‖y‖1 . Hence,

∇h(x(t))e = ln(c) + ln(δ1 + . . .+ δi) (D.1)
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for e ∈ Fi. Note that the RHS of Eq. (D.1) is strictly increasing in i and by construction, x(t)(F1 ∪
. . . ∪ Fi) = rk(F1 ∪ . . . ∪ Fi) for all i ∈ [t]. Lemma D.4 then implies that

x(t) ∈ argmin
x∈B(M)

∇(h(x(t)))>(x− x(t)),

which, as asserted above, implies that x(t) ∈ argminx∈B(M)DKL (x, y).

Theorem D.5. There is a polynomial-time algorithm for computing Bregman projection onto a
matroid base polytope.

Proof. Line 4 of Algorithm 5 can be implemented in polynomial-time (see e.g. [15, Theorem 2]).
Line 6 can be computed by finding the unique maximal minimizer of the submodular function
rk(·)− x(t+1)(·) [22, Theorem 3.1]. The correctness of the algorithm follows from Lemma D.3.

Remark D.6. It is possible to generalize Theorem D.5 for arbitrary mirror maps and general
polymatroids. The details can be found in [17].

E Discrete version of Algorithm 1

In this section, we describe a discrete version of Algorithm 1 and formally prove Theorem 3.1.

Algorithm 6 Discrete time algorithm
Input: accuracy ε > 0

1: Take the largest δ ∈ (0, ε/n2] such that 1/δ is a positive integer.
2: for s = 0, δ, 2δ, . . . , 1− δ do
3: Initialize online dual averaging algorithms As over matroid base polytope BM.
4: for t = 1, 2, . . . do
5: Set xt(0) = 0.
6: for s = 0, δ, 2δ, . . . , 1− δ do
7: Set xt(s+ δ) = xt(s) + δ · yt(s), where yt(s) ∈ PM is the prediction provided by As.
8: Apply swap rounding to xt := xt(1) and obtain St.
9: Play St and observe ft.

10: Compute the modular function `t for ft by (3.1) and let gt = ft − `t.
11: for s = 0, δ, 2δ, . . . , 1− δ do
12: Compute an estimator∇t(s) of∇Gt(xt(s)) by using O(n2ε−2 log(ntδ )) samples.
13: Feedback the reward vector ct = −(1 + δ)(s−1)/δ · ∇t(s)− `t to As.

For the analysis, let us fix T > 0. Let Mt = maxi∈V ft(i). Using a standard Chernoff bound
argument (see Feldman [12, Lemma A.3]) we see that, for all t,

Et := n ·max
s
‖∇t(s)−∇Gt(xt(s))‖∞ ≤ εMt (E.1)

holds with probability at least 1 − 1/nt2. Following [12], we define Ψ(s) =
∑T
t=1[(1 +

δ)(s−1)/δG(xt(s)) + `>t xt(s)]. Let us fix S∗ to be an arbitrary optimal solution. We will also
write M =

∑T
t=1Mt and E =

∑T
t=1Et.

The first lemma is adapted from the proof of Lemma A.5 in [12] but where we carry around the error
terms in Eq. (E.1).

Lemma E.1 (Feldman [12, Lemma A.5]).

Ψ(s+ δ)−Ψ(s)

δ

≥
T∑
t=1

(1 + δ)(s−1)/δG(xt(s)) + yt(s)
>
[
(1 + δ)(s−1)/δ∇t(s) + `t

]
− εM − E.

18



Lemma E.2. For each s,

T∑
t=1

yt(s)
>[(1 + δ)(s−1)/δ∇t(s) + `t

]
≥

T∑
t=1

(1 + δ)(s−1)/δ[gt(S
∗)−Gt(xt(s))] + `t(S

∗)− rs − E,

where rs is the regret of As.

Proof. By the definition of the regret rs, we have

T∑
t=1

yt(s)
>
[
(1 + δ)(s−1)/δ · ∇t(s) + `t

]
≥

T∑
t=1

1>S∗
[
(1 + δ)(s−1)/δ · ∇t(s) + `t

]
− rs

=

T∑
t=1

[
(1 + δ)(s−1)/δ · 1>S∗∇t(s) + `t(S

∗)
]
− rs

≥
T∑
t=1

[
(1 + δ)(s−1)/δ · 1>S∗∇Gt(xt(s))− Et + `t(S

∗)
]
− rs

≥
T∑
t=1

[
(1 + δ)(s−1)/δ · [gt(S∗)−Gt(xt(s))] + `t(S

∗)
]
− rs − E,

where we used the similar analysis as in the continuous case in the last inequality.

Combining these two lemmas, we have

Ψ(s+ δ)−Ψ(s)

δ
≥

T∑
t=1

(1 + δ)(s−1)/δgt(S
∗) + `t(S

∗)− rs − εM − 2E.

for each s. Summing up this for s, we obtain

Ψ(1)−Ψ(0) ≥
T∑
t=1

[C(δ)gt(S
∗) + `t(S

∗)]− δ
∑
s

rs − εM − 2E,

where C(δ) :=
∑
s δ(1 + δ)(s−1)/δ ≥ 1 − 1/e − ε/n, provided that δ ≤ ε/n2 (see [12, Proof of

Lemma A.8]). Since gt(S∗) ≤ nmaxi∈S∗ gt(i) ≤ nMt, we have

Ψ(1)−Ψ(0) ≥
T∑
t=1

[(1− 1/e)gt(S
∗) + `t(S

∗)]− δ
∑
s

rs − 2εM − 2E.

Thus, following the same argument as in the continuous case, we obtain

(1− c/e)
T∑
t=1

ft(S
∗)−

T∑
t=1

Ft(xt)− 2εM − 2E ≤ δ
∑
s

rs. (E.2)

Next, we will need a small claim bounding E[E].

Claim E.3. E[E] ≤ εM +O(1).

Proof. For any t, Et ≤ εMt with probability 1− 1/nt2. With the remaining 1/nt2 probability, we
have a trivial upper bound of Et ≤ n. Hence, E[Et] ≤ εMt + 1/t2. Summing up over t gives
E[Et] ≤ εM +O(1).
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Hence, taking expectations in Eq. (E.2) and using the property of swap rounding, we have

(1− c/e)
T∑
t=1

ft(S
∗)−

T∑
t=1

E[ft(St)]− 4εM −O(1) ≤ δ
∑
s

rs.

As M ≤
∑T
t=1 ft(S

∗), we thus have

(1− c/e− 4ε)

T∑
t=1

ft(S
∗)−

T∑
t=1

E[ft(St)]−O(1) ≤ δ
∑
s

rs =: R.

It remains to bound R. To that end, define

ρs :=

T∑
t=1

[
(1 + δ)(s−1)/δ∇t(s) + `t

]>
yt(s),

which is the reward received by algorithm As. As in the continuous case, suppose each As is an
instance of an online dual averaging algorithm (Algorithm 4) with initial point y1(s) = ΠKL

Φ

(
k
n1
)
.

Here Φ is the negative entropy mirror map. Fact A.4 and Fact A.5 imply that supu∈X DKL (u, x1) ≤
k ln(n/k). Hence, using Corollary B.3 (applied with ct = −es−1∇Gt(yt(s)) − `t ∈ Rn≤0 and
D = k ln(n/k)), we have

rs ≤ 3
√
k ln(n/k)

√
ρs + k ln(n/k). (E.3)

The following lemma bounds the regret.
Lemma E.4. Using an OLO algorithm that guarantees Eq. (E.3), we have

R ≤ O(
√
k ln(n/k)

√
T ).

Before we prove Lemma E.4, we will need a claim to bound δ
∑
s ρs.

Claim E.5. δ
∑
sE[ρs] ≤ O(T ).

The proof of Claim E.5 can be found below.

Proof of Lemma E.4. If T ≤ k ln(n/k) then we trivially bound rs ≤ T ≤
√
k ln(n/k)

√
T . Since

R = δ
∑
s rs, we have R ≤

√
k ln(n/k)

√
T if T ≤ k ln(n/k). Henceforth, we assume T ≥

k ln(n/k). Summing over s = 0, δ, . . . , 1− δ, we have

R = δ
∑
s

rs ≤ 3
√
k ln(n/k)

∑
s

δ
√
ρs + k ln(n/k)

≤ 3
√
k ln(n/k)

√∑
s

δρs + k ln(n/k) (Jensen’s Ienquality).

Taking expectations and applying Jensen’s Inequality, we get that

E[R] ≤ 3
√
k lnn(/k)E

√∑
s

δρs

+ k ln(n/k)

≤ 3
√
k ln(n/k)

√∑
s

δE[ρs] + k ln(n/k)

≤ O(
√
k ln(n/k)

√
T ),

where in the last inequality we used Claim E.5 and our assumption that T ≥ k ln(n/k).

Proof of Claim E.5. By Lemma E.1, we have δρs ≤ Ψ(s+ δ)−Ψ(s) + δεM + δE. Summing over
all s = 0, δ, . . . , 1− δ gives

δ
∑
s

ρs ≤ Ψ(1)−Ψ(0) + εM + E

≤
T∑
t=1

[G(xt(1)) + `>t xt(1)] + εM + E

≤ T + εM + E.
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Note that M ≤ T . Taking expectations and applying Claim E.3 to bound E[E] gives δ
∑
sE[ρs] ≤

(1 + 2ε)T +O(1) ≤ O(T ).

F Additional Proofs from Section 4

F.1 Proof of Theorem 4.1

If T ≤ n then we have a trivial regret bound of T ≤
√
nT . Henceforth, we assume that T ≥ n.

Recall that ri(T ) = max
{∑T

t=1 p
−
t,i∆

+
t,i,
∑T
t=1 p

+
t,i∆

−
t,i

}
− 1

2

∑T
t=1

(
p+
t,i∆

+
t,i + p−t,i∆

−
t,i

)
. Let

gi = max
{∑T

t=1 p
−
t,i|∆

+
t,i|,

∑T
t=1 p

+
t,i|∆

−
t,i|
}

. By Lemma 4.8 and Lemma 4.4,

ri(T ) ≤ O

(
√
gi +

√ ∑
t∈C+

i ∩[T ]

αt,i +
√ ∑
t∈C−i ∩[T ]

βt,i + 1

)
(F.1)

where C+
i , C

−
i , αt,i, βt,i are as defined in Lemma 4.4. The following two lemmas bounds each of

the terms in Eq. (F.1). We relegate the proofs to Appendix F.4.

Lemma F.1. The following two bounds hold:

1. E[
∑n
i=1

√∑
t∈C+

i ∩[T ] αt,i] ≤ O(
√
nT ); and

2. E[
∑n
i=1

√∑
t∈C−i ∩[T ] βt,i] ≤ O(

√
nT ).

Lemma F.2.
∑n
i=1 E

√
gi ≤ O(

√
nT ).

Proof of Theorem 4.1. By Lemma 4.3, it suffices to bound
∑n
i=1 E[ri(T )]. Using Eq. (F.1),

Lemma F.1, and Lemma F.2, we have
∑T
i=1 E[ri(T )] ≤ O(

√
nT ) + O(n) ≤ O(

√
nT ), where

the last inequality is because n ≤
√
nT .

F.2 Details of halfspace oracles for the Blackwell instances in Section 4

We describe how to construct an efficient halfspace oracle for the Blackwell instances corresponding
to USM balance subproblems in Section 4 via strong duality of LP. We use the same notation from
Section 4. Let us assume that a halfspace H is given by a linear inequality a>z ≤ β for some a ∈ R2

and β ∈ R. Since H contains R2
≤0, one can assume β = 0 without loss of generality. Then, p ∈ X

is a valid output of an half-space oracle if max∆∈Y a
>u(p,∆) ≤ 0. Therefore, to find such p, it

suffices to solve the min-max linear programming

min
p∈X

max
∆∈Y

a>u(p,∆).

Now, replacing the inner maximization with the dual problem, we have an equivalent LP

min
p,z

z1 + z2 − z3 − z4

subject to p ∈ X
− z0 + z1 − z3 = a+ · p− − p+

− z0 + z2 − z4 = a− · p+ − p−

z0, z1, z2, z3, z4 ≥ 0,

(F.2)

where we used a>u(p,∆) = (a+ · p− − p+, a− · p+ − p−)>∆. Since it is a constant dimensional
problem, one can solve it in O(1) time.
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F.3 Proof of Claim 4.9 and Lemma 4.10

Proof of Claim 4.9. If x ∈ B2(1) ∩ R≥0 then

DKL (x, x1) = x+ ln(
√

2x+) + x− ln(
√

2x−)− ‖x‖1 +
√

2

≤ x+ ln(x+) + x− ln(x−) +
√

2 ln(
√

2) +
√

2

≤
√

2 ln(
√

2) +
√

2 ≤ 2.

The second last inequality is because x+, x− ∈ [0, 1] so ln(x+), ln(x−) ≤ 0.

Proof of Lemma 4.10. First, we use the trivial upper bound |ct|>xt ≤ |c+t |+ |c−t |. We now bound
|c+t | and |c−t | separately. Suppose first that t ∈ C+. In this case |c+t | = c+t . Using the bound
−∆−t ≤ ∆+

t , we have

c+t ≤
1

2
(p+
t ·∆+

t + p−t ·∆−t ) + p+
t ·∆+

t .

On the other hand, if t /∈ C+ then |c+t | = −c+t . Using that −∆+
t ≤ ∆−t and −∆−t ≤ ∆+

t , we have

−c+t ≤ p+
t ∆−t +

1

2
(p+
t ∆−t + p−t ∆+

t ) ≤ 3

2
p+
t |∆−t |+

1

2
p−t |∆+

t |.

Hence,

|c+t | ≤
(

3

2
p+
t ·∆+

t +
1

2
p−t ·∆−t

)
1[t ∈ C+] +

(
3

2
p+
t |∆−t |+

1

2
p−t |∆+

t |
)
1[t /∈ C+]

≤
(

3

2
p+
t ·∆+

t +
1

2
p−t ·∆−t

)
1[t ∈ C+] +

(
3

2
p+
t |∆−t |+

1

2
p−t |∆+

t |
)
.

With nearly identical reasoning, we have

|c−t | ≤
(

1

2
p+
t ·∆+

t +
3

2
p−t ·∆−t

)
1[t ∈ C−] +

(
1

2
p+
t |∆−t |+

3

2
p−t |∆+

t |
)
.

We conclude that

|c+t |+ |c−t | ≤
(

3

2
p+
t ·∆+

t +
1

2
p−t ·∆−t

)
1[t ∈ C+] +

(
1

2
p+
t ·∆+

t +
3

2
p−t ·∆−t

)
1[t ∈ C−]

+ 2(p+
t |∆−t |+ p−t |∆+

t |).
Summing up the right hand side of the bound gives the claim.

F.4 Proof of Lemma F.1 and Lemma F.2

In this section, we let Ft,i denote the σ-algebra containing all randomness up to the ith iteration at
time t.7

Proof of Lemma F.1. We prove only the first inequality. The second inequality is nearly identical.
Now,

E

[
n∑
i=1

√ ∑
t∈C+

i ∩[T ]

αt,i

]
≤
√
n

√√√√√E

[
n∑
i=1

∑
t∈C+

i ∩[T ]

αt,i

]
(Cauchy-Schwarz)

=
√
n

√√√√√E

[
n∑
i=1

∑
t∈C+

i ∩[T ]

(
3

2
p+
t ∆+

t +
1

2
p−t ∆−t

)]

As asserted in Lemma 4.4, the event t ∈ C+
i depends only on pt,i,∆t,i both of which are Ft,i−1-

measurable. Hence, applying Claim F.3 gives E

[∑n
i=1

√∑
t∈C+

i ∩[T ] αt,i

]
≤ 2
√
nT .

7Without loss of generality, we assume f1, f2, . . . are deterministic (but unknown to the algorithm). If
f1, f2, . . . are random then we can condition on f1, . . . , ft for the argument.
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Claim F.3. Let St ⊆ [n] be a random set such that the event {i ∈ St} can be determined by knowing
∆t,i and pt,i. Then E[

∑
i∈St

p+
t,i∆

+
t,i] ≤ 1 and E[

∑
i∈St

p−t,i∆
−
t,i] ≤ 1.

Proof. We prove only the first inequality as the second inequality is similar. Recall that Ft,i is the
σ-algebra generated by all randomness up iteration i of the algorithm at time t. Then ∆t,i and pt,i
are Ft,i−1-measurable so {i ∈ St} is Ft,i−1-measurable. Thus

E[
∑
i∈St

p+
t,i∆

+
t,i] = E

[ n∑
i=1

p+
t,i∆

+
t,i1[i ∈ St]

]
= E

[ n∑
i=1

E[ft(Xt,i)− ft(Xt,i−1) | Ft,i−1]1[i ∈ St]
]

= E
[
E[

n∑
i=1

(ft(Xt,i)− ft(Xt,i−1))1[i ∈ St]
]

(1[i ∈ St] is Ft,i−1-measurable)

= E
[∑
i∈St

ft(Xt,i)− ft(Xt,i−1)
]

≤ 1,

where the last inequality is by Claim A.3.

We now turn to the proof of Lemma F.2. Define N+
i := {t ∈ [T ] : ∆+

t,i < 0} and N−i := {t ∈ [T ] :

∆−t,i < 0}. Recall that

gi = max

{
T∑
t=1

p−t,i|∆
+
t,i|,

T∑
t=1

p+
t,i|∆

−
t,i|

}
.

The following simple claim will prove to be useful.
Claim F.4.

max

{
T∑
t=1

p−t,i∆
+
t,i,

T∑
t=1

p+
t,i∆

−
t,i

}
≥ gi −

∑
t∈N+

i

2p−t,i ·∆
−
t,i −

∑
t∈N−i

2p+
t,i ·∆

+
t,i. (F.3)

The proof of Claim F.4 is straightforward manipulations and can be found below.

Proof of Lemma F.2. Recalling the definition of ri(T ) (from Eq. (4.1)) and applying Lemma 4.8 we
have

max

{
T∑
t=1

p−t,i∆
+
t,i,

T∑
t=1

p+
t,i∆

−
t,i

}
− 1

2

T∑
t=1

(p+
t,i∆

+
t,i − p

−
t,i∆

−
t,i) ≤ RegAi

(T ). (F.4)

Using Claim F.4 and Claim F.3 to lower bound the left-hand side of Eq. (F.4) gives
n∑
i=1

E[gi]− C · T ≤
n∑
i=1

E[RegAi
(T )],

for some constant C > 0. Hence, using Lemma 4.4 to bound RegAi
(T ) and applying Claim F.3 and

Lemma F.1, we have, for some (different) constant C > 0,

n∑
i=1

E[gi]− C · T ≤ C
n∑
i=1

√
E[gi] ≤ C

√
n

√√√√ n∑
i=1

E[gi],

where the second inequality is by Jensen’s Inequality and the last inequality is by Cauchy-Schwarz.
Let G =

√∑n
i=1 E[gi]. The bound becomes G2 − CT ≤ C

√
nG. By Claim A.2,

G ≤ C
√
T +
√
C2n

2
≤ O(

√
T ),
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where the last inequality is because n ≤ T . Finally, we have

n∑
i=1

E[
√
gi] ≤

√
n

√√√√ n∑
i=1

E[gi] =
√
nG ≤ O(

√
nT ),

which completes the proof of the lemma.

Proof of Claim F.4. Note that

T∑
t=1

p−t,i ·∆
+
t,i −

∑
t∈N+

i

2p−t,i ·∆
+
t,i =

T∑
t=1

p−t,i · |∆
+
t,i|.

Hence,

T∑
t=1

p−t,i ·∆
+
t,i =

T∑
t=1

p−t,i · |∆
+
t,i|+

∑
t∈N+

i

2p−t,i ·∆
+
t,i

≥
T∑
t=1

p−t,i · |∆
+
t,i| − 2

∑
t∈N+

i

p−t,i ·∆
−
t,i

where in the last inequality, we used the fact that ∆+
t,i + ∆−t,i ≥ 0, which implies that ∆+

t,i ≥ −∆−t,i.
Similarly, we have

T∑
t=1

p+
t,i ·∆

−
t,i =

T∑
t=1

p+
t,i · |∆

−
t,i|+

∑
t∈N+

i

2p+
t,i ·∆

−
t,i

≥
T∑
t=1

p+
t,i · |∆

−
t,i| −

∑
t∈N−i

2p+
t,i ·∆

+
t,i.

Hence,

max

{
T∑
t=1

p−t,i∆
+
t,i,

T∑
t=1

p+
t,i∆

−
t,i

}
≥

max


T∑
t=1

p−t,i · |∆
+
t,i| −

∑
t∈N+

i

2p−t,i ·∆
−
t,i,

T∑
t=1

p+
t,i · |∆

−
t,i| −

∑
t∈N−i

2p+
t,i ·∆

+
t,i

 .

Finally, to get the desired inequality, we use the simple fact that max{α1 − β1, α2 − β2} ≥
max{α1, α2} − β1 − β2 whenever β1, β2 ≥ 0.
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