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Abstract

Geometric embeddings have recently received attention for their natural ability
to represent transitive asymmetric relations via containment. Box embeddings,
where objects are represented by n-dimensional hyperrectangles, are a particularly
promising example of such an embedding as they are closed under intersection
and their volume can be calculated easily, allowing them to naturally represent
calibrated probability distributions. The benefits of geometric embeddings also
introduce a problem of local identifiability, however, where whole neighborhoods of
parameters result in equivalent loss which impedes learning. Prior work addressed
some of these issues by using an approximation to Gaussian convolution over the
box parameters, however this intersection operation also increases the sparsity
of the gradient. In this work we model the box parameters with min and max
Gumbel distributions, which were chosen such that the space is still closed under
the operation of intersection. The calculation of the expected intersection volume
involves all parameters, and we demonstrate experimentally that this drastically
improves the ability of such models to learn.

1 Introduction

Geometric embedding models have recently been explored for their ability to learn hierarchies,
transitive relations, and partial order structures. Rather than representing objects with vectors,
geometric representation models associate domain elements, such as knowledge base queries, images,
sentences, concepts, or graph nodes, with objects whose geometry is more suited to expressing
relationships in the domain.

Geometric embedding models have used Gaussian densities [25 [1]], convex cones, as in order
embeddings and entailment cones [24} [10} 5]], and axis-aligned hyperrectangles, as in box embeddings
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Figure 1: Settings of parameters which lack local identifiability. For example, any local perturbation
of [a] preserves zero joint probability. For [b]and [c| independent local translations of the boxes (for
example) preserve the joint probability. Prior work improves only the first case, and even then
only to a degree, as it still suffers a lack of local identifiability for settings such as@

(26| [13] and query2box [21]]. Recent work also explores extensions to non-Euclidean spaces such
as Poincaré embeddings [18]] and hyperbolic entailment cones [3)).

These representations can provide a much more natural basis for transitive relational data, where e.g.
entailment can be represented as inclusion among cones or boxes. Additionally, these methods allow
for intrinsic notions of an objects breadth of scope or marginal probability, as well as the ability to
accurately represent inherently multimodal or ambiguous concepts.

In this work, we focus on the probabilistic box embedding model, which represents the probabilities
of binary random variables in terms of volumes of axis-aligned hyperrectangles. While this model
flexibly allows for the expression of positively and negatively correlated random variables with
complex latent dependency structures, it can be difficult to train due to a lack of local identifiability
in the parameter space. That is, large neighborhoods of parameters can give equivalent probabilities
to the same events, which leads to gradient sparsity during training (see figure[I). Previous work
partially addresses some settings of parameters which lack local identifiability that arise when training
box embeddings using Gaussian convolutions [[13]], but many still remain, leading to a variety of
pathological parameter settings, impeding learning.

We generalize the probabilistic box embedding model to a random process model over parametric
families of box embeddings, which we term the Gumbel-box processes. Our approximation to the
marginal likelihood of this model has an intuitively pleasing closed form. The resulting model
replaces the sparse gradients of the base model’s volume calculations with effectively log-smoothed
approximations having support on the entire parameter space.

We apply our model to a variety of synthetic problems and demonstrate that the new objective
function correctly solves cases that are not solvable by any previous approaches to fitting box models.
In real-world data, we demonstrate improved performance on a WordNet completion task and a
MovieLens density estimation taskﬂ

2 Related Work

In addition to the related work discussed in the previous section, most directly relevant is previous
work on box embeddings [26}, 22} [13]], which represent variables as a lattice of axis-aligned hyperrect-
angles, used to solve problems in density estimation, textual entailment, and graph completion. Very
recently, the query2box model [21] has been used to solve problems in knowledge graph reasoning
by representing queries as boxes containing sets of answers in a latent space.

This work focuses on improving learning and inference for box models. This was explored in Li et al.
by convolving parts of the energy landscape with a Gaussian kernel, similar to approaches in
mollified optimization used in machine learning models such as diffusion-trained neural networks

2Source code and data for the experiments are available at https://github.com/iesl/
gumbel -box-embeddings|

A python package for box embeddings can be found at https://www.iesl.cs.umass.edu/
box-embeddings/
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[15] and mollifying networks [6]. Rather than taking an optimization-based approach, our work
introduces a latent random process model which effectively ensembles over a family of box models,
similar to various nonparametric random process models such as Gaussian [20] and Dirichlet [[16]]
processes, and Bayesian neural networks [[17,|11]. Unlike those models, we rely on latent variables
to provide improved credit attribution during training and solve identifiability issues, similar to
exploration in reinforcement learning and bandit algorithms [3]].

3 Background

3.1 Probabilistic Box Embeddings

Probabilistic box embeddings, introduced in Vilnis et al. [26]], are a learnable compact representation
of a joint probability distribution. Variables are associated with elements of the set of n-dimensional
axis-aligned hyperrectangles,

{z:2=[z),zY] x - x[2},z)] C R}, (1
called box embeddings. Given these box embeddings, a joint probability distribution over these binary

variables is defined by treating each box as the indicator of an event set.

Definition 1 (Indicator random variables). Given a probability space (2, £, P) and an event E € &,
an indicator random variable of E is a random variable 15 :  — {0, 1} that takes on the value 1
on the set £ and 0 otherwise, i.e. [, 1pdP(w) = P(E).

Representing each variable with such an indicator enables the model to learn complex interactions
between them, because they can overlap in the latent space.
Definition 2 (Box probability model). Let (Q2pox, £, Prox) be a probability space where Qpox C RY.

Let {Box(X;)}¥, be a set of boxes in Qp,. Each is parameterized by a pair of vectors

N Y € Qpoy CRY and Vj € {1,...,d}, m;/\ < x;v

In terms of these parameters, the boxes are defined as
d
A i
Box(X;) = H[x; P
=1

so that »” is a vector of coordinatewise minima for box 7 and %" are the coordinatewise maxima.
Further, define a set of indicator random variables { X; } for these box-shaped events,

X; : QBox — {07 ]-} = ]lBox(Xi,)
X71({1}) = Box(X,).

We call the set of random variables {X71, ..., X}, along with the associated probability space
(Box; £, Ppox), a box probability model.

If each X; = f(a) for some mapping f : S — (Qpox — {0,1}) from a finite set S to random
variables in the box probability model, we call this a probabilistic box embedding of S.

Remark 1. The above definition implies that joint probabilities over multiple variables can be
calculated by inclusion-exclusion with set intersection and complement over Box(X;), e.g.

P(Xl = ].,XQ = ].,Xg = 0) = PBOX(BOX(Xl) n BOX(XQ) N BOX(Xg)C).

The authors observe that, with the addition of the empty set, this set is closed under intersection, a
property our model also preserves. In addition, calculating the volume of such elements is trivial,
as the operation tensors over dimensions. This enables box embeddings to be learned via gradient
descent, and the authors demonstrate the efficacy of these box embeddings to represent graphs,
conditional probability distributions, and model entailment.



3.2 Local Identifiability

As mentioned previously, in order for the box space to be closed under intersections it is necessary
to include the empty set. This seemingly minor point actually belies a deeper issue with learning,
namely that the model exhibits a lack of local identifiability.

Definition 3 (Local Identifiability). A set of parameters (2 is locally identifiable if, for all 8 € (2,
there exists IV (), a neighborhood of 6, such that for all 8’ € N (), L(x|0") # L(z|9).

Probabilistic box embeddings are not locally identifiable, as many settings of their parameters result
in equivalent probability distributions. This property was observed in Vilnis et al. [26], where the
authors pointed out that large degrees of freedom in the parameter space exhibit this “slackness”. For
certain forms of structured representation this lack of local identifiability can be seen as a benefit,
however the authors also acknowledge that it quickly leads to difficulties with learning methods
which rely on local information in the parameter space.

3.3 Existing Mitigations

Current work addresses the specific case of pairwise marginals which are incorrectly represented as
disjoint. Vilnis et al. [26] introduce a surrogate function which serves to minimize the volume of the
smallest containing box. This approach was replaced with a more principled approach in Li et al.
[L3]], where the authors smoothed the hard indicator functions of boxes using Gaussian convolutions
and approximated the resulting integral using a softplus function.

Unfortunately, neither of these methods address the many other cases of nonidentifiability. For
example, when boxes contain one another (see figure[Ib) any small enough translation of the boxes
(independently) as well as any scaling of the containing box preserves the volume of the intersection.
Full containment is not required, intersections such as those depicted in figure [Ic|suffer a lack of
local identifiability also - consider scaling the red box horizontally and the blue one vertically, and/or
translating the boxes independently. Existing methods do not address these situations at all, and
furthermore do not even completely address the case of local identifiability for disjoint boxes. For
each, boxes which are aligned as depicted in figure [Td| will result in equal joint probability throughout
any small (indepdendent) vertical translation. Addressing these situations which occur frequently
during learning is the main goal of this work.

4 Method

In order to mitigate learning difficulties arising from model unidentifiability and the attendant large
flat regions of parameter space, we propose to generalize the box probability model to a random
process model which ensembles over an entire family of box models.

4.1 Gumbel-box process

Computing pairwise or higher-order marginals in the box model involves computing box intersections,
which reduces the number of parameters which have access to the gradient signal. An ensemble of
box models maintains uncertainty over this intersection, keeping both parameters involved in the
computation. Allowing all parameters to contribute to the likelihood of the data in an appropriate
way mitigates the aforementioned problems with learning and credit attribution.

A natural way to generalize to a family of box models is to model the parameters of each box as drawn
from a Gaussian distribution, which we term the Gaussian-box process. This follows Deﬁnition@] in
most of the technical details. Since this does not allow us to solve for the expected volume of a box
in closed form, we propose an approach using Gumbel random variables, and relegate the details of
the Gaussian-box process to Appendix [A]

Assume that {X ;A} and {X;V} are random variables taking on values in some probability space

(Box, &, PBOX),(representing the per-dimension min and max coordinates of a set of boxes, which
are indicator random variables { X*}. Under the uniform base measure on (g, the probability of a



set of variables T taking on the value 1 is
P(T=1)= Hmax( min X — max X;",0), )

and negated variables can be computed similarly using inclusion-exclusion.

In order to calculate the expected value of (2), it would be desirable to choose a distribution which is
min and max stable. Such distributions are known as Generalized Extreme Value distributions, an
example of which is the Gumbel Distribution

=

flaip, B) = %exp(*’“'g —e 7). 3)

This distribution is max stable, i.e. the max of two such variables also follow a similar distribution,
and thus we refer to this as MaxGumbel. By negating the arguments, we therefore obtain a min-
stable distribution, which we refer to as MinGumbel. Formally, we have the following:

Lemma 1. If X ~ MaxGumbel(p,, 5), Y ~ MaxGumbel(u,, 5), then

max(X,Y) ~ MaxGumbel(81n(e ¥ + e%),ﬁ),
and if X ~ MinGumbel(pz, 5), Y ~ MinGumbel(p, ), then

_ Kz Ey

min(X,Y) ~ MinGumbel(—F1n(e™ % +¢e” 7)), ).

This motivates the definition of a Gumbel-box process. For a probability space (Qpox, £, Ppox), With
Opox € R?, the Gumbel-box process is generated as

/B S R-‘m 'ui,v c QBox ﬂiﬂ/\ S QBox
X;’A ~ MaxGumbel(u;.’A75), X;’V ~ MinGumbel(u?’v, B)

d
Box(X') = [ [X;’A,X;’V} X = Tpouxn
j=1

o2t~ P(XY, X

The definition of the random variables X* implies that for a uniform base measure on R%, each X" is
distributed according to

d
X* ~ Bernoulli H XZV X”\ ),

and the joint distribution over multiple X* is given by

P(T'=1,F =0) = Paox(( ) Box(X")) N ( () Box(X/))),
XteT XfeF

where T is the subset of variables { X} taking on the value 1, F is the subset taking on the value 0,
and Ppoy is the base measure on Qpox C R used to integrate the volumes of boxes, which we take
to be the standard uniform measure in this work. Note that S¢ denotes the complement of the set S.

Remark 2. Note that the uniform measure can only be a valid probability measure Ppoy if the
base sample space Qpoy is bounded, and X" and X"V are appropriately constrained to remain
within Qgex. This means that the Gumbel distributions in the Gumbel-box process must be either
truncated or censored to Qpox for formal correctness. In this work we approximate the expected
volume calculation with unconstrained integrals in order to keep a closed form, and elide by abuse of
notation. We examine the effect of these approximations in Appendix[C]



The likelihood of an observed data case (1, ..., ,) is computed by integrating out the variables
X" and X*V in equation[2}
log P(a, ..., 2" [{u""}, {p""}, B) =
log B[P(z, ... o™ XPA XY o XN XY Yy, {u), B)).

In this instance, discarding the constraint that {2p,, be bounded, calculating the expected value of
is tractable under the uniform measure, and we find the following.

Proposition 1. The expected length of an interval [X,Y| where X ~ MaxGumbel(u,, 3) and
Y ~ MinGumbel(pu,, B) is given by

E[max(Y — X,0)] = 28K, (26— bt ) . )
where K is the modified Bessel function of second kind, order 0.

The proof of this statement is included in the Appendix

Given this formula, we can calculate the expected volume of a box. Since the X HA X5V are random
variables which are min and max stable, respectively, the intersection of boxes is also represented by
Gumbel random variables, and thus we can calculate the expected volume of intersection.

Let m(xz) = 28K (26_2%>. Explicitly, we have

E

d

Hmax min X" — max X'?’v,O
! xter 7 xter J
1=

d tA t,V
= Hm (—B LogSumExp (— “-}3 ) — B LogSumExp (”76 ))
i=1

XteT XteT

t,A t,V

where T is a set of variables taking the value 1, and p*” and p*" are the vectors of location
parameters for the minimum and maximum coordinates of a box Box(X?).

Because m(z) is a smooth upper bound of max(0, z) (see figure in appendix), and LogSumExp is
a smooth upper bound of max, this formula neatly reflects our intuition over what an ensembled,
smooth version of the box model should look like.

We would like to use this formula to compute expected probabilities however we cannot incorporate
the constraint that {2p., be bounded and still exactly solve the integral. In practice, we constrain the
location parameters of the Gumbel distributions to be within 2p,y, and most of the probability mass
lies inside the region of interest, meaning this gives a reasonable approximation. Further, we use the
model to compute conditional probabilities (ratios) instead of absolute probabilities, and thus the
unboundedness of the base measure space is less of a problem.

Computing conditional probabilities exactly requires the conditional expectation,
E[P(z%,27,Z)/P(x7, Z)] which is intractable since it is a quotient. Instead, we approxi-
mate it by its first-order Taylor expansion, which takes the form of a ratio of two simple expectations:

We analyze both of these approximations in Appendix [C| and come to two main qualitative con-
clusions. Firstly, the approximate integral with an unconstrained domain assigns greater expected
volume to boxes near the edges of the unit hypercube than occurs when using the exact integrals. It
is not clear what effect this has on modeling ability. Secondly, the first-order Taylor approximation
of the conditional probability consistently undershoots the true expected ratio, potentially making it
easier for the model to assign very small probabilities to events.

4.2 Softplus Approximation

We train the embeddings via gradient descent, using KL-divergence loss. The analytic calculation
of the expected volume in equation involves a modified Bessel function of the second kind,
Ky, which is differentiable, with derivative K. The function itself is essentially exponential as x
increases, and the volume function approaches a hinge function as 5 — 0. Our input to this function



is a negative exponential, however, which leads to numerical stability concerns. Inspecting the graph
of the exact volume m (see figure in Appendix [C)) , we note the extreme similarity to the softplus
function, and find

m(z) ~ Blog(1 + exp(z/B — 27)
to be a reasonable approximation.

For ease of understanding, we provide a concrete instantiation of our algorithm for learning from
pairwise conditional probabilities, incorporating all approximations, in Appendix

5 Results and Experiments

In this section we compare the proposed model (GumbelBox) to existing baselines, including Order
Embeddings [24], Hyperbolic Entailment Cones [5]], and the previous state-of-the-art model on these
tasks, SmoothBox [[13]]. In addition, we also compare against an alternative random process model
which we term GaussianBox. For GaussianBox, the objective is to minimize an upper bound cost
function IE[f(Z)] where the Z ~ N (u, X). Here, 4 is the parameter of the box embeddings and X
is the uncertainty of each box (a detailed description of the Gaussian-box process can be found in
Appendix [A)). We use a diagonal covariance matrix, and make use of the reparameterization trick for
backpropagation. For the GumbelBox model we use the approximate inference method described in
section[4.1] Both models are trained using KL-divergence loss (negative log-likelihood).

5.1 Ranking Task on Tree-Structured Data

Box embeddings have the representational capacity to naturally embed graphs data with very few
dimensions; tree-structured data can even be embedded in just 1 dimension. Despite having sufficient
representational capacity, however, existing models struggle to train in such a low-dimensional setting.
In this task, we compare the learning capability of our proposed embedding methods with SmoothBox
[L3] on three different tree structures: the mammal hierarchy of WordNet, a balanced tree of 40 nodes
with branching factor 3, and a random tree of 3000 nodes. We use the same training technique as
described in Li et al. [[13]], more details on the dataset for this task are provided in Appendix [F}

For each edge (p, ¢) from a parent p to a child c in the tree we target the conditional probability,
P(p|c) = 1. For the box models, this is computed as P(p|c) = Vol(Box(c) NBox(p))/ Vol(Box(c)).
Our learning objective is to minimize the cross entropy between the predicted conditional probability
and ground truth tree labels, thus child boxes should be contained inside their parents. We evaluate
the performance on parent and child prediction given tuples from the tree 7 by fixing one or the other
and ranking all nodes according to the model’s predicted conditional probability. We report the mean
reciprocal rank (MRR) in Table Further details are in Appendix

Table 1: Mean Reciprocal Rank (higher is better, with maximum value 1) in 1 and 2 dimensions for
all proposed and baseline box embedding methods on three different tree graphs.

SmoothBox GaussianBox  GumbelBox
1d 2d 1d 2d 1d 2d

Mammal Hierarchy 1182 0.851 0927 0.865 0.927 0934 0.981
Balanced Tree (small) 40 0.691 1.000 0.683 0.691 0971 1.000
Random Tree (large) 3000 0.015 0.084 0.010 0.104 0.058 0.270

Trees # Nodes

From Table[I] we observe that our GumbelBox method outperforms both GaussianBox and Smooth-
Box [[13] by a large margin on all three datasets. We empirically observe that the gap is larger in
1-dimension, where learning is even more difficult. In the case of a small 40 node balanced tree,
it is easily represented by both SmoothBox and GumbelBox, with both achieving an MRR of 1.0.
However, in one dimension SmoothBox could not exceed MRR of 0.691, whereas, GumbelBox
achieves MRR 0.971. This can be attributed to a lack of local idenfiability. For example, in order
for boxes to cross one another in 1-dimension they must, at some point, be entirely contained inside
one another, which is one of the settings mentioned previously which lacks local identifiability. As
demonstrated by the significant increase in MRR, GumbelBox helps to alleviate this to a large extent.

3We use Weights & Biases package [2] to manage our experiments.



The task for the 3000 node tree is much harder, as we train on only the transitive reduction and try to
predict edges in the transitive closure. The challenges of this problem were imposed to expose the
training difficulties encountered by SmoothBox. The GumbelBox embedding achieves 4 times better
performance in 1-d and more than 3 times better performance in the 2-d setting. This empirically
validates our claim of improving the local identifiability issue to a large extent.

5.2 Example of Local Identifiability Problems

In this section we present an example with 2-dimensional box embeddings where the embedding
parameters are initialized in a way which lacks local identifiability. In Figure 2] two boxes are
initialized such that they form a cross, and the training objective is to minimize their joint probability.
Note that this is problematic whenever any subset of dimensions exhibits containment, and would
therefore be very likely to occur when using higher dimensions (as is common). Note that any
neighborhood of this initialization contains translations of the boxes relative to one another which
represent the same joint probability. The SmoothBox model tries to minimize this intersection by
making both the boxes skinny. However, GumbelBox is able to avoid this local minimum. We
also observe that GaussianBox behaves similarly to SmoothBox. This is because the GaussianBox
depends on sampling to overcome the identifiability issue, and the most probable samples are in
a neighborhood of the existing parameters. GumbelBox handles this easily, since the analytic
calculation of the expectated intersection provides the model a more global perspective. We also
observe similiar improvments on training when one box contains another in Figure[3]

.
| ] |
(a) (b) (c)

Figure 2: (a) Two boxes are initialized as a cross. (b) Second and third pictures demonstrate how
GumbelBox is able to train with the objective of minimizing the intersection between the two boxes.
(c) Forth and fifth pictures demonstrate how SmoothBox fails to train with the same learning objective.

(a) (b) (c)

Figure 3: (a) Two boxes are initialized such that one box contains another. The objective here is to
make them disjoint. (b) Second and third pictures show how GumbelBox is able to train in a desired
way w.r.t. the objective. (c) Forth and fifth pictures show how SmoothBox fails to train with the same
learning objective.

5.3 WordNet

Most of the recent geometric embeddings methods [26, 13} 15,10, 18] use WordNet [[14] to demonstrate
the capability of their model to naturally represent real-world hierarchical data. In this section, we
demonstrate the performance of our proposed methods on the WordNet noun hierarchy, which consists
of 82, 114 entities and 84, 363 edges in its transitive reduction. Following Ganea et al. [5]], Patel et al.
[19]], we train our model on the transitive reduction edges and evaluate on edges in the transitive
closure. We report the F1 score on the test set of size 28, 838 edges using 1 : 10 negative edges.

Patel et al. [19] improved the performance of box embeddings on this task by penalizing the volume
of the embedding when it is greater than a certain threshold. We perform experiments both with



Table 2: Test prediction F1 scores (%) for different methods for WordNet’s noun hierarchy.

Models Without Regularization = With Regularization
Order Embedding 43.0 -

Poincaré Embedding 28.9 -
Hyperbolic Entailment Cones 32.2 -
SmoothBox 454 60.2
GaussianBox 433 58.6
GumbelBox 51.2 62.6

and without this regularization. We not only compare our method with SmoothBox [13]], but also
provide the results from other geometric embedding methods such as Order Embeddings [24],
Hyperbolic Entailment Cones [J5]], Poincaré Embeddings [18]. All models were optimized over equal
hyperparameter ranges, and full training details for all models are provided in Appendix [G|

We observe from Table [2| that the GumbelBox embedding achieves the best performance in both
settings. The boost in performance (~ 6 F1 score) over SmoothBox embeddings is higher when the
regularization is not applied. This reinforces our claim that SmoothBox may be encountering settings
which lack local identifiability while training, since adding 2 regularization on the side-lengths can
discourage these plateaus in the loss landscape for SmoothBox. We note that the GaussianBox also
performs slightly worse than the SmoothBox in this task as well as in the ranking task (refer Section

[3-1).

5.4 MovieLens

In this experiment, we predict the preference of a movie A for a user given that he/she has already
liked movie B. This dataset was created in the SmoothBox paper [13] by pruning the original
MovieLens dataset. We provide the details of the dataset in Appendix |Hl We compare all the models
based on KL divergence, as well as Spearman and Pearson correlation between ground-truth and
predicted probabilities. We compare GumbelBox with vanilla matrix factorization and complex
bilinear factorization methods [23]] as well as geometric embedding methods such as POE [10]], Box
[26] and SmoothBox [13].

Table 3: Performances of GumbelBox and several baselines on MovielLens.

KL Pearson R Spearman R

Matrix Factorization 0.0173 0.8549 0.8374
Complex Bilinear Factorization 0.0141 0.8771 0.8636
POE 0.0170 0.8548 0.8511
Box 0.0147 0.8775 0.8768
SmoothBox 0.0138 0.8985 0.8977
GumbelBox 0.0120 0.9019 0.9020

We observe from Table [3] that SmoothBox is already achieving a considerable performance boost
over the baseline methods. Our model outperforms SmoothBox, although not by a notable margin.
We conclude that there is a little scope for improvement over SmoothBox in this task.

6 Conclusion and Future work

We presented an approach to improving the parameter identifiability of probabilistic box embeddings,
using Gumbel random variables, with an eye towards improved optimization and learning. We
demonstrated that our approach fixes several learning pathologies in the naive box model, and advocate
it as the default method for training probabilistic box embeddings. Our work uses approximations
to the true integrals needed to compute expectations in the random process. Improvements to these
approximations present a promising avenue for future work.



Broader Impact
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