
A Gaussian-box process

For a probability space (ΩBox, E , PBox), with ΩBox ⊆ Rd, the Gaussian-box process is generated as

µi ∈ ΩBox, σi ∈ Rd+, r ∈ Rd+
Ci ∼ N (µi, σi), Xi,∨ = Ci + ri, Xi,∧ = Ci − ri,

Box(Xi) =

d∏
j=1

[
Xi,∧
j , Xi,∨

j

]
, Xi = 1Box(Xi),

x1, . . . , xn ∼ P (X1, . . . , Xn)

The definition of the random variables Xi implies that for a uniform base measure on Rd, each Xi is
distributed according to

Xi ∼ Bernoulli(
d∏
j=1

(Xi,∨
j −Xi,∧

j)),

and the joint distribution over multiple Xi is given by

P (T = 1, F = 0) = PBox

((⋂
Xt∈T

Box(Xt)
)
∩
(⋂
Xf∈F

Box(Xf)c
))
,

where T is the subset of variables {Xi} taking on the value 1, F is the subset taking on the value 0,
and PBox is the base measure on ΩBox ⊂ Rd used to integrate the volumes of boxes, which we take
to be the standard uniform measure in this work. Note that Sc denotes the complement of the set S.

Remark 3. Note that the uniform measure can only be a valid probability measure PBox if the
base sample space ΩBox is bounded, and ri, Ci, Xi are appropriately constrained to remain within
ΩBox. This means that the Gaussian distributions in the Gaussian-box process are actually truncated
Gaussians appropriately constrained to ΩBox, which we elide by abuse of notation.

To approximately integrate out the latent Gaussian variables, we can backpropagate through sampling
using the reparameterization trick [9], which optimizes a lower bound on the log-likelihood of the
true model.

B Calculation of Expected Volume of a Box

All coordinates will be modeled by independent Gumbel distributions, and thus it is enough to
calculate the expected side-length of a box as the expected volume will simply be the product
of the expected side-lengths. Let X ∼ MaxGumbel(µx, β) be the min coordinate (of a single
dimension) and Y ∼ MinGumbel(µy, β) be the max coordinate. Let f∧ and F∧ be the pdf and cdf
for MinGumbel, and f∨ and F∨ be the pdf and cdf for MaxGumbel. The variance β is the same for
X and Y , and thus we omit the explicit dependence on β in the following calculations. The expected

12

volume is given by

E[max(Y −X, 0)] =

∫∫
{y>x}

(y − x)f∧(y;µy)f∨(x;µx) dxdy (5)

=

∫ ∞
−∞

∫ y

−∞
yf∧(y;µy)f∨(x;µx) dxdy−∫ ∞

−∞

∫ ∞
x

xf∧(y;µy)f∨(x;µx) dydx

(6)

=

∫ ∞
−∞

yf∧(y;µy)F∨(y;µx)dy−∫ ∞
−∞

xf∨(x;µx) (1− F∧(x;µy))dx

(7)

=

∫ ∞
−∞

yf∧(y;µy)F∨(y;µx)dy−∫ ∞
−∞

xf∨(x;µx)F∨(−x;−µy)dx

(8)

We note that this is equal to

EY [Y · F∨(Y ;µx)]− EX [X · F∨(−X;−µy)], (9)

however this calculation can be continued, combining the integrals, as

=

∫ ∞
−∞

zf∧(z;µy)F∨(z;µx)− zf∨(z;µx)F∨(−z;−µy) dz (10)

=

∫ ∞
−∞

z

β
(exp(

z−µy
β − e

z−µy
β − e−

z−µx
β)− exp(− z−µxβ − e−

z−µx
β − e

z−µy
β)) dz (11)

=

∫ ∞
−∞

z

β
(e

z−µy
β − e−

z−µx
β) exp(−e

z−µy
β − e−

z−µx
β) dz (12)

We integrate by parts, letting

u = z, dv = 1
β (e

z−µy
β − e−

z−µx
β) exp(−e

z−µy
β − e−

z−µx
β) dz, (13)

du = dz, v = − exp(−e
z−µy
β − e−

z−µx
β) (14)

where the dv portion made use of the substitution

w = e
z−µy
β + e−

z−µx
β , dw =

1

β
(e

z−µy
β − e−

z−µx
β) dz. (15)

We have, therefore, that (12) becomes

= −z exp(−e
z−µy
β − e−

z−µx
β)

∣∣∣∞
−∞

+

∫ ∞
−∞

exp(−e
z−µy
β − e−

z−µx
β) dz. (16)

The first term goes to 0. Setting u =
z−(µy+µx)/2

β the second term becomes

β

∫ ∞
−∞

exp(−e
µx−µy

2β (eu + e−u)) du = 2β

∫ ∞
0

exp(−2e
µx−µy

2β coshu) du. (17)

With z = 2e
µx−µy

2β , this is a known integral representation of the modified Bessel function of the
second kind of order zero, K0(z) [4, Eq. 10.32.9], which completes the proof of proposition 1.

C Analysis of Approximations

Domain of integration. We approximate the box domain ΩBox = [0, 1]d and the densities, which
should be restricted to the box domain, by simply restricting the location parameters of the Gumbel

13

random variables to lie within the box domain and doing an unconstrained integral. That is, we
integrate

E[max(Y −X, 0)] =

∫
R2

max(0, y − x)f∧(y;µy)f∨(x;µx) dxdy.

This is inexact because it allows the Gumbel distributions to take on support outside of the domain
[0, 1]. To properly restrict the Gumbel distributions to [0, 1], we can either form censored or trun-
cated distributions. The censored distribution puts point masses on the boundary points 0 and 1
corresponding to all of the mass that lies outside of the boundary in the uncensored distribution. This
is equivalent to integrating

E[max(Y −X, 0)] =

∫
R2

max(0, clamp(y)− clamp(x))f∧(y;µy)f∨(x;µx) dxdy,

where clamp(x) = min(1,max(0, x)). The truncated distribution, on the other hand, multiplies the
densities with the indicator function for [0, 1] and renormalizes them to integrate to 1. That is, we
integrate

E[max(Y −X, 0)] =

∫
[0,1]2

max(0, y − x)
f∧(y;µy)

zy

f∨(x;µx)

zx
dxdy,

where zx =
∫

[0,1]
f(x;µx) dx.

Figure 4: Expected side length of a Gumbel box with fixed distance between location parameters for
min and max, as a function of center position, under the three different integration strategies.

In Figure 4, we show the expected side length under the different integration strategies (computed by
numerical quadrature) as a function of center position. We can see that in the unbounded approach
that we use in practice, the expected volume of a box does not depend on its center, whereas when
properly restricting the Gumbel distributions to [0, 1], the effective volume of boxes towards the
edges of the interval becomes smaller. It is not clear what effect this approximation has on model
capacity, but it’s possible that usage of the exact domains here would allow the model to more easily
“pack in” many small probability events.

Ratio approximation. When computing conditional probabilities, we approximate the expected
ratios under the Gumbel noise distributions by the ratio of expectations. That is, we compute

P (X1 = 1|X2 = 1) =
E[PBox(Box(X1) ∩ Box(X2))]

E[PBox(Box(X2))]
,

instead of

P (X1 = 1|X2 = 1) = E[
PBox(Box(X1) ∩ Box(X2))

PBox(Box(X2))
].

The former is a first-order Taylor expansion (linear approximation) of the former. While an expression
for the former is not available in closed form and must be computed by Monte Carlo, we can examine

14

the effect of this approximation by looking at the second order Taylor expansion. The second order
Taylor expansion for an expected ratio of two random variables is known to be

E[
A

B
] ≈ E[A]

E[B]

(
1− Cov(A,B)

E[A]E[B]
+

Var(B)

E[B]2
)
.

In the case where one box’s location parameters are contained entirely within the other’s with a good
separation, we can view the numerator and denominator as independent, and we have

E[
A

B
] ≈ E[A]

E[B]

(
1 +

Var(B)

E[B]2
)
,

meaning that the first order approximation we use will undershoot the true expected ratio by an
amount proportional to the variance of the denominator. Even in the case of correlated numerator and
denominator, the quantity in parentheses is always at least equal to one, meaning that the first order
approximation consistently undershoots.

The higher the temperature of the boxes, the more the true integral will tend to provide larger
conditional probabilities. Monte Carlo experiments support this conclusion. This suggests that
the linear approximation might actually help our model by making it easier to assign very small
probabilities. However, this may not be true in the situation where the numerator box is not contained
within the denominator box by a large margin, and the numerator and denominator become highly
correlated.

Softplus approximation. We numerically calculate, using the Mathematica software package, the
error when approximating

2βK0

(
2e−

x
2β

)
≈ β log

(
1 + exp(xβ − 2γ)

)
(18)

(where γ is the Euler-Mascheroni constant) to be less than 0.0617013β on for x
β ∈ [−100, 100].

Initial explorations with the exact volume suggest that low β values perform better, and furthermore
suffered from numerical instability (which, given that K0 grows exponentially but our input shrinks
exponentially, is unsurprising).

(a) Volume Approximation
(b) Error from Volume Approximation

Figure 5: Graphs depicting error between the exact volume and the softplus approximation

More sophisticated approximations were considered, for example by using a piece-wise combination
of the series expansions for K0 at∞ and 0, we can obtain

2βK0

(
2e−

x
2β

)
≈

2β
√

π
4 exp

(
x
4β − 2e

−x
2β

)∑n
k=0

∏k−1
`=0 (2`+1)2

k!(−16)k
e
xk
2β for xβ ≤ α(n),

2β
∑n
k=0

(
ψ(k + 1) + x

2β

)
e
− xk
β

(k!)2 for xβ > α(n).
(19)

where α(n) is a transition point chosen to minimize the error.

In practice, however, we found the numerical stability and simplicity of the softplus function to be
sufficient for our needs, as demonstrated empirically. We note that, furthermore, this approximation
allows for SmoothBox to be viewed as a limiting case of GumbelBox, where the variance for the
intersection is taken to zero.

15

Algorithm 1 Learning from pairwise conditional probabilities

Input: temperature β
initialize box parameters θ = {µ∧,i, µ∨,i}
let m(x) = β log(1 + exp(x/β − 2γ) , where γ is Euler–Mascheroni constant.
repeat

let current parameters {µ∧,i, µ∨,i} = θt−1

receive training probability Ptrain(xi = 1|xj = 1)

compute µij,∧ = −β LogSumExp
(
−µ

i,∧
k

β ,−µ
j,∧
k

β

)
, µij,∨ = β LogSumExp

(
µi,∨k
β ,

µj,∨k
β

)
compute P (xi, xj = 1) =

∏d
k=1m

(
µij,∧k − µij,∨k

)
compute P (xj = 1) =

∏d
k=1m

(
µi,∧k − µ

i,∨
k

)
compute P (xi = 1|xj = 1) = P (xi,xj=1)

P (xj=1)

compute loss `(θt−1) = KL(Ptrain(xi|xj = 1)|P (xi|xj = 1))
update θt−1 with gradient∇`(θt−1)

until CONVERGED(θt,θt−1)

D Algorithm

For ease of understanding, we provide a concrete instantiation of our algorithm, Algorithm 1, for
learning from pairwise conditional probabilities, incorporating all approximations.

E Gumbel Box Visualizations

(a) Probability of a point x being contained inside
a Gumbel box for different values of β.

(b) Intersection of two Gumbel boxes, where the
inner green distribution represents the probability
of a point x being contained inside both.

Figure 6: Visualizations of Gumbel boxes

(a) SoftBox
(temp=1.0)

(b) GumbelBox
(variance=1.0)

(c) Mixed GumbelBox
(variance=0.3, temp=1.0)

Figure 7: Densities of overlap with a square of size ε

16

(a) SoftBox
(temp=1.0)

(b) GumbelBox
(variance=1.0)

(c) Mixed GumbelBox
(variance=0.3, temp=1.0)

Figure 8: Contour plots of overlap with a square of size ε

(a) SoftBox
(temp=1.0)

(b) GumbelBox
(variance=1.0)

(c) Mixed GumbelBox
(variance=0.3, temp=1.0)

Figure 9: Density plots of overlap with a square of size ε

17

F Further details on Experiment 5.1

F.1 Ranking Task

We describe the ranking task more formally in this section. For a tree T with set of nodes N , we
minimise the following objective function.

min
θ

∑
(p,c)∈s(T C)∪T C−

−y log Prob(p|c)− (1− y) log(1− Prob(p|c)), (20)

Where, s(T C) is a subset of the transitive closure(T C) of T and the negative samples are drawn
randomly from the set -

T C− = {(p′, c)|p′ ∈ N , (p′, c) /∈ T C} ∪ {(p, c′)|c′ ∈ N , (p, c′) /∈ T C}.

The label y takes the value 1 when (p, c) ∈ T C and 0 when (p, c) ∈ T C−1. Here θ is the set of
parameter for the box embeddings.

In case of child prediction, we calculate the prediction score (i.e., the conditional probability
Prob(·|child) for all the nodes in N given the fixed parent from the observed tuple (parent, child).
Then we find the rank of that tuple amongst all possible negative tuple of the form (parent, ·).
Similarly we calculate the rank for parent prediction by keeping the child fixed and ranking the
observed parent amongst all possible negative corresponding to the tuple (·, child).

F.2 Dataset

We use the following three tree-structured data for this experiment.

1. Balanced tree: The tree consists of 40 nodes with branching factor 3 and depth 4. The whole
transitive closure of 102 edges were used for training. The ranking task is performed on
whole transitive closure.

2. Mammal Hierarchy of WordNet: Number of entities are 1182. The whole transitive closure
of 6542 edges were used for training. MRR is calculated on a subset of size 3441 edges
which are sampled randomly from the transitive closure.

3. Random tree: This 3000 node tree was generated randomly using networkx. We train only
on the transitive reduction of 2999 edges. The MRR is calculated on a 4920 edges which
are randomly sampled from the whole transitive closure.

Hyperparameter range: For all the models, we use Bayesian hypermeter search with Hyperband
algorithm [12]. The hyperparameter ranges are β ∈ [0.001, 3], lr ∈ [0.0005, 1], batch size ∈
{8096, 2048, 1024, 512, 256}, number of negative samples ∈ {2, 5, 10, 20, 25, 40, 70}. The best
hyperparameters corresponding to each model including the baselines are provided in the configs
folder of the source code provided.

G Further details on Experiment 5.3

We use the same binary cross entropy based approach as described in Equation 20 in Section 5.1.
However, we use random negative sampling for this task. We keep the dimensions for all the non
box-embedding baselines to be 10. Box emebddings are parameterised as min and side length
vectors of 5 dimensions each. For the GaussianBox, the covariance matrix for the Gaussian noise is
considered to be diagonal matrix of same dimension as the min vector. The baseline results are as
reported in [19].

Hyperparameter range: For all the models, we use Bayesian hypermeter search with Hyperband
algorithm [12]. The hyperparameter ranges are β ∈ [0.001, 3], lr ∈ [0.0005, 1], batch size ∈
{1024, 512, 2048, 8096, 16192}, number of negative samples(integer) ∈ [2, 100], regularization
weight ∈ [0.00001, 0.005]. The best hyperparameters corresponding to each model including the
baselines can be found in the configs folder of the source code provided.

18

H Further details on Experiment 5.4

In this section we briefly describe the data curation process by [13] for this task. First, all user-
movie pairs with rating higher than 4 was collected and then the dataset is further pruned using the
popularity of the movie (it must have more than 100 rating). Here, the model would predict the
P (MovieA|MovieB) and the gold labels are generated by dividing the co-occurrence frequency
count of movie A and B by the frequency count of movie B. We use the exact same split of
100k/10k/10k provided by [13].

We follow the evaluation setting in [13] for all MovieLens experiments, where models are evaluated
every 50 iterations on the validation set, and optimization is stopped if the best development set score
fails to improve after 200 evaluations. The best model is then used to score the test set. We use
β = 0.01, softplus temperature = 1.0 with 50 dimensional boxes, batch size 128 and Adam optimizer
(learning rate 1e-3) for GumbelBox in our reported results.

I Flickr Experiment

We also evaluate GumbelBox on a sentence level entailment task using Flickr, which is an image
caption dataset of 45million images. We use the dataset split from [10] in order to perform fair
comparison between models. The models are trained to regress to the given ground-truth probabilities
calculated using frequency, using KL-divergence loss, following the same model architecture as [13].

We report KL divergence loss and Pearson correlation on the full test data, unseen pairs (caption
pairs which are never occur in training data) and unseen words(caption pairs which has at least one
word never occur in training data)). As shown in Table 10, we get comparable results compared to
SmoothBox and Box.

Table 10: Test KL & pearson correlation score between predicted probabilities and ground truth
probabilities for Flickr caption entailment task.

Model
Dataset Full test data Unseen pairs Unseen words

KL Pearson R KL Pearson R KL Pearson R

POE 0.031 0.949 0.048 0.920 0.127 0.696
Box 0.020 0.967 0.025 0.957 0.050 0.900
SmoothBox 0.018 0.969 0.024 0.957 0.036 0.917
GumbelBox 0.020 0.969 0.024 0.960 0.035 0.910

I.0.1 Experiments details

Model structure: Same as other geometric embedding such as [10, 26, 13], we encode each sentence
by a LSTM model [7], then pass the sentence embedding to two feed-forward neural networks to
encode minimum and maximum coordinates of the GumbelBox.

Model parameter: We use the same experiment setting as in Li et al. [13] for Flickr. The models
are evaluated every epoch for 5 epochs. The best model is saved for the lowest dev KL loss. We
then evaluate the best model on test data. The resulting best performing model has the following
parameters: β = 1e− 4, temperature = 1.0, learning rate = 5e− 5, batch size = 512, dropout= 0.5,
embedding size= 300, optimizer=Adam [8]

19

	Introduction
	Related Work
	Background
	Probabilistic Box Embeddings
	Local Identifiability
	Existing Mitigations

	Method
	Gumbel-box process
	Softplus Approximation

	Results and Experiments
	Ranking Task on Tree-Structured Data
	Example of Local Identifiability Problems
	WordNet
	MovieLens

	Conclusion and Future work
	Gaussian-box process
	Calculation of Expected Volume of a Box
	Analysis of Approximations
	Algorithm
	Gumbel Box Visualizations
	Further details on Experiment 5.1
	Ranking Task
	Dataset

	Further details on Experiment 5.3
	Further details on Experiment 5.4
	Flickr Experiment
	Experiments details

