
We thank the four reviewers for their excitement about our work and detailed feedback! Overall, reviewers enjoyed1

the problem and approach: "potential to impact the wide array of applications" "appealingly simple," "novel ap-2

proach", "very extensive and promising" "better than existing techniques"; criticism centered around description3

of prior work, and clarity of problem formulation and details. We address these concerns here4

(a) Regularizer design and dE (R2, R1). We thank R2, and we hope that they will reconsider. We’ve revised the text5

in order to clarify the problem framing and fix notational ambiguities and some typos, which we believe clarify R2’s6

major concerns (and a related point about dE by R1). d is the number of independent dynamical variables (number of7

ODEs); dF ≤ d is attractor manifold dimension (non-integer for chaotic systems with fractal attractors; dF = 1 for8

limit cycles); dE is embedding dimension. The hyperparameter L sets the maximum dE expressible by the autoencoder9

(AE). However, the AE does not pick an integer dE ; rather, dE is estimated continuously post-training via the relative10

variance of each latent variable averaged across train data (similar to PCA weights). Dimensionality score thus compares11

explained variance (a function of latent index) between reconstruction and full dimensional system. Our experiments on12

systems with known d seek and find that dE ≈ d. Our regularizer takes a batch of latent activations, and estimates F̄m,13

the proportion of new false neighbors indexed by number of latent dimensions. Since F̄m is intensive, it only weakly14

depends on batch size (we have added new physics references related to this observation).15

(b) Dependence on L (R2, R1). We have added new experiments showing that L does not affect learned dE of latent16

embedding as long as L is larger than d (see Fig H1); thus for unknown systems any large L can be used.17

(c) Prior Work (R1, R3). We performed new experiments and extended the main text discussion of Ref. 35, which18

(to our knowledge) is the primary prior application of AE to attractor reconstruction. Ref. 35 embeds datasets via a19

one-layer AE with tanh activation and MSE loss, similar to our existing baseline unregularized MLP (see appendix).20

We performed a new set of experiments with a model exactly matching Ref. 35 (Fig H1), and find it is comparable to21

our other baselines for the noisy prediction task (same task as ref. 35). We have added these results to the paper.22

(d) Higher dimensions (R4) Thank you! We have clarified that the ecosystem results are 10D; pendulum is 4D. We’ve23

added discussion and references to physics papers about mathematical limitations of embedding in the high-d limit.24

(e) Existing work on state space modelling (R3): Thank you, and we hope that you will reconsider. Our paper25

doesn’t claim to be the first AE applied to embedding (see (c) above). Indeed, 30% of our submission is a literature26

review of state space modelling (SSM); there we demonstrate several clear areas of novelty: (1) Our paper focuses on a27

fully novel loss function and regularizer rooted in the classical theory of dynamical systems, and we shows that this28

regularizer strongly constrains and improves AE representations, in contrast to prior AEs used for SSM. (2) Our paper29

uses a variety of novel measures of attractor fidelity—e.g. topology, neighbor coverage, fractal dimension—which go30

beyond few-timestep RMSE forecasting errors (the primary metric in previous works). (3) We show strong results for31

embedding consistency across replicates, and robustness to Brownian stochasticity (a more complex noise source32

than the measurement errors studied in prior works), two desirable embedding properties not explored previously.33

R1 & R2 additional comments: Thank you so much for

New baseline (yellow)

Our model 
(magenta)

New baseline
 (yellow)

Our model (magenta)
Re

la
tiv

e 
va

ri
an

ce
 (a

ve
ra

ge
d 

ac
ro

ss
 tr

ai
n)

Fo
re

ca
st

 S
co

re

LSTM-FNN

LSTM

ETD

tICA

Ref 35

ICA

Forecast horizon  τ Latent Index   iNoise strength  ξ

-0.2

0.0 0 1

10

1

0
60

10501.0

0.6

0.2

0.6

-0.2

1

0

Latent space size  L

Lorenz

Pendulum

D
im

en
si

on
 s

im
ila

ri
ty

Figure H1: (A, B) Updated Fig 4 with ref. 35 baseline
(yellow). (C) Similar activity patterns in first 10 latent units
for fnn-AEs trained with L = 10, 20, 30, 40, 50 (blue to red).
(Inset) dimension accuracy vs L also shows no dependence.

34

detailed feedback; we’ve fixed all wording, framing, and35

added suggested references; we regret that space limits us36

to major concerns not covered above: R1 Misc: 8.1.2a,b37

We revised hyperparameter discussion to add nuance: we38

mean that our experiments achieve strong results only by39

varying learning rate and regularizer strength, and the for-40

mer is only tuned to ensure that train loss plateaus. Rather41

than pre-select embedding timescale, we favor fixing large42

T and batch size, and letting the AE learn how much to43

weigh different timepoints. 8.1.2c,d,e See (a) above. 8.344

We’ve moved details from appendix 5 into main text. There45

are few widely-used definitions of attractor similarity (many SSM papers from ML authors focus on prediction, not46

verisimilitude, and many physics papers are qualitative), and so we report multiple established and novel metrics in47

order to give a holistic view. We’ve added the caveat that FNN-AE is more expensive than ETD/tICA, especially on48

small datasets, but only marginally more expensive than unregularized AE. 8.5 We revised to clarify that time series are49

Fourier-resampled only to ensure consistency across datasets; preprocessing/filtering otherwise has little effect (hence50

noise results) 8.6 We re-ran experiments and confirmed with pendulum data; we will add this to the appendix.51

R2 Misc: 3.2, 8.8, 8.12, 8.14-16 See (a, b); we’ve also moved Appendix 5 details to main text to clarify scoring52

metrics. We always refer to size L latent space as embedding space: T time delays only serve as a featurization of input53

to the AE, which seeks (and we find achieves) dE ≈ d (not T ). dE ≤ L is computed post-hoc from relative latent54

activations by finding variance of the L latent variables across train set, giving continuous measure of dimensionality55

(thus unaffected by zero-padding). Thus dE is neither a hyperparameter nor a direct AE output. R2.8.2 The method56

and the code we’re releasing now works for multivariate time series; we will highlight this. R2.8.11 No leakage; when57

available, we use 2 different datasets or initial conditions; otherwise we use first N and last N points of a time series58

with length � 2N . R2.8.16 We scale lower bound to mean, not theoretical min (see Nassar et al ICLR 2019, Eq. 25).59


