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I. SUPPLEMENTARY CODE

Code associated with this paper may be found at
https://github.com/williamgilpin/fnn

II. CALCULATION OF THE
FALSE-NEAREST-NEIGHBOR REGULARIZER

Our loss function LFNN represents a variational formu-
lation of the false-nearest-neighbors method, a popular
heuristic for determining the appropriate embedding di-
mension dE when using the method of lags [1]. The
intuition behind the technique is that a d-dimensional
embedding with too few dimensions will have many over-
lapping points, which will undergo large separation when
the embedding is lifted to d+ 1. These points correspond
to false neighbors, which only co-localize in d dimensions
due to having overlapping projections (Figure S1). The
traditional false-nearest-neighbors technique asserts that
the true embedding dimension dE occurs when the frac-
tion of false nearest neighbors first approaches zero as d
increases.

Let h ∈ RB×L denote activations of a latent layer with
L units, generated when the network is given an input
batch of size B. For the embedding problem studied here,
h corresponds to a partial embedding ∼ Ŷ generated
from an input comprising B length-T rows randomly
sampled from the full Hankel measurement matrix X.
However, here we use general notation to emphasize that
this regularizer can be applied to hidden layers in an
arbitrary network.

We define the dimension-indexed, pairwise Euclidean
distance D ∈ RB×B×L among all points in the batch,

D2
abm =

m∑
i=1

(hai − hbi)2.

This tensor describes the Euclidean distance between
samples a and b when only the first m latent dimensions
are considered. Calculation of this quantity therefore
breaks ordering invariance among the latent dimensions.

We now define two related quantities: D̃abm ∈ RB×B×L
corresponds to Dabm sorted columnwise, while D̃′abm ∈
RB×B×(L−1) contains each column of Dabm ordered by
the sort order of the previous column. We calculate
these quantities first by calculating the index tensor g ∈
RB×B×L, where each column ga,:,m contains the indices
of all members of the batch sorted in ascending order
of their relative distance from a when only the first m
dimensions are considered. We then use g to define

D̃abm =

B∑
β=1

δβ,gabm
Daβm, D̃′abm =

B∑
β=1

δβ,gab,m−1
Daβm.

These quantities allow computation of the normalized
change in distance to a given neighbor as m increases,
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labelled by its relative distance, Sabm = (D̃′2abm −
D̃2
abm)/D̃2

abm, where m ≥ 2.
A false neighbor is an m− 1 dimensional near-neighbor

that undergoes a jump greater than Rtol when lifted to m
dimensions. We therefore define a binary tensor describing
whether each point a undergoes a jump of this magnitude
in its mth dimension,

Rabm =

{
1 Sabm ≥ Rtol

0 Sabm < Rtol
.

The threshold Rtol can be chosen arbitrarily; in practice
we find that it has little effect on our results, and so we
set it to a constant value Rtol = 10 (a standard value) for
all experiments [1].

In regions of the attractor where the dynamics proceeds
relatively quickly, the uniformly-spaced time series com-
prising Ŷ undersamples the attractor. This can lead to
points undergoing large shifts in position relative to the
scale of the attractor as m increases, leading to an addi-
tional criterion for whether a given point is considered
a false neighbor. We define the characteristic size of the
attractor in the first m latent coordinates,

R2
m =

1

mB

B∑
b=1

m∑
i=1

(hbi − h̄i)2,

where h̄i = (1/B)
∑B
b=1 hbi. This quantity defines a sec-

ond criterion,

Aakm =

{
1 D̃abm ≥ AtolRm
0 D̃abm < AtolRm

.

The behavior of the regularizer does not strongly vary
with Atol, as long as this hyperparameter is set to a
sufficiently large value. We therefore set Atol = 2.0, a
standard value in the literature, and keep it constant for
all experiments.

We define the elementwise false neighbor matrix, which
indicates points that satisfy either or both of these criteria,

Fabm = Θ(Rabm +Aabm)

where Θ denotes the left-continuous Heaviside step func-
tion, Θ(x) = 1, x > 0, Θ(x) = 0, x ≤ 0. We next contract
dimensionality by averaging this quantity Fabm across
both the batch and the set of K nearest neighbors to a,

F̄m =
1

KB

K∑
k=1

B∑
b=1

Fkbm.

The hyperparameter K determines how many neighbors
are considered close enough to be informative about the
topology of the attractor. Because varying this hyper-
parameter has a similar effect to changing B, we set
K = max(1, d0.01Be) and otherwise leave this parame-
ter constant; as with the original false-nearest-neighbors

x y

zy

x

Figure S1. A set of near neighbors in a two-dimensional
projection of three-dimensional point cloud (circled blue and
red points). False neighbors (red) separate when the system
is lifted to a higher dimension.

method, our approach performs well even when K = 1
[1]. Having obtained the dimension-wise fractional false
neighbor count F̄m, we now calculate the false neighbor
loss,

LFNN =

L∑
m=2

(1− F̄m)h̄2m.

where F̄m, h̄m and thus LFNN implicitly depend on the
batch activations h. Overall, LFNN has the form of an
activity regularizer acting on the latent coordinates. The
overall loss function for the autoencoder is therefore

L(X, X̂, Ŷ ) = ‖X − X̂‖2 + λLFNN(Ŷ )

where ‖.‖2 denotes the mean square error averaged across
the batch, and λ is a hyperparameter controlling the
relative strength of the regularizer.

III. DESCRIPTION OF REFERENCE
DATASETS

Lorenz attractor. The Lorenz equations are given
by

ẋ = σ(y − x) (A1)

ẏ = x(ρ− z)− y (A2)

ż = xy − βz (A3)

We use parameter values σ = 10, ρ = 28, β = 2.667. The
system is simulated for 500 timesteps, with a stepsize
∆t = 0.004. The system is then downsampled by a factor
of 10. We fit the model using x(t), which we divide into
separate train, validation, and test datasets comprising
5000 timepoints sampled from three trajectories with dif-
ferent initial conditions. To avoid transients, for each par-
tition we select the last 5000 timepoints from a 125000 step
trajectory. For stochastic simulations of this system, an
uncorrelated white noise term ξ(t), 〈ξ(t)ξ(t′)〉 = ξ20δ(t−t′)
is appended to each dynamical variable before integration,
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the integration timestep is decreased to ∆t = 0.0004, and
the integration output is downsampled by a factor of 100.

Rössler attractor. The Rössler attractor is given by

ẋ = −y − z (A4)

ẏ = x+ ay (A5)

ż = b+ z(x− c) (A6)

We use parameter values a = 0.2, b = 0.2, c = 5.7, which
produces a chaotic attractor with the shape of a Möbius
strip. The system is simulated for 2500 timesteps, with
a stepsize ∆t = 0.125. The system is then downsampled
by a factor of 10. We fit the model using x(t), which we
divide into separate train, validation, and test datasets
corresponding to different initial conditions.

Ecological resource competition model. We use
a standard resource competition model, a variant of the
Lotka-Volterra model that is commonly used to describe
scenarios in which n distinct species compete for a pool of
k distinct nutrients. We let Ni(t) denote the abundance
of species i, and Rj(t) denote the availability of resource
j.

Ṅi = Ni

(
µi(R1, ..., Rk)−mi

)
(A7)

Ṙj = D(Sj −Rj)−
n∑
i=1

cji µi(R1, ..., Rk)Ni (A8)

where the species-specific growth rate is given by

µi(R1, ..., Rk) = min

(
riR1

K1i +R1
, ...,

riRk
Kki +Rk

)
.

This model is strongly chaotic for a range of parameter
values, and it was recently used to argue that chaotic
dynamics may account for the surprising stability in long-
term population abundances of competing phytoplankton
species in the ocean [2]. We use parameter values from
this study, which corresponds to n = 5 species and k = 5
resources. The full parameter values are: D = 0.25,
ri = r = 1, mi = m = 0.25, S = [6, 10, 14, 4, 9], K =

0.39 0.34 0.3 0.24 0.23
0.22 0.39 0.34 0.3 0.27
0.27 0.22 0.39 0.34 0.3
0.3 0.24 0.22 0.39 0.34
0.34 0.3 0.22 0.2 0.39

 ,

c =


0.04 0.04 0.07 0.04 0.04
0.08 0.08 0.08 0.1 0.08
0.1 0.1 0.1 0.1 0.14
0.05 0.03 0.03 0.03 0.03
0.07 0.09 0.07 0.07 0.07

 .
We simulate this system for 200000 units of time, with

timestep ∆t = 0.1. We discard the first 100000 timepoints
to eliminate any transients, and then downsample the
time series by a factor of 10. We fit the model using R1(t),
which we divide into separate train, validation, and test
datasets corresponding to different initial conditions.

Three-dimensional torus. We parametrize a torus
as a continuous-time, quasiperiodic dynamical system

ẋ = −an sin(nt)cos(t)− (r + a cos(nt)) sin(t) (A9)

ẏ = −an sin(nt) sin(t) + (r + a cos(nt)) cos(t)(A10)

ż = an cos(nt) (A11)

where we use the parameters r = 1 (the outer radius),
a = 1/2 (the cross-sectional radius), n = 15.3 (the winding
number). Because n is not an integer, trajectories of
this system are non-recurring and quasiperiodic. The
system is simulated for 2000 timesteps, with a stepsize
∆t = 0.02. The time series is then downsampled by
a factor of 8. We fit the model using x(t), which we
divide into separate train, validation, and test datasets
corresponding to different initial conditions.
Double pendulum experimental dataset. We use

an existing experimental dataset comprising a 400 fps
video of a double pendulum experiment, recorded on a
high-speed Phantom Miro EX2 camera [3]. The video
was segmented by the original authors, and the centroid
positions were recorded for the pivot attachment to the
wall, the joint between the first and second pendula, and
the tip of the second pendulum. We convert this dataset
into new time series corresponding to the angles that
the first and second pendulum make with the vertical
direction, (θ1, θ2). These time series are then numer-
ically differentiated, in order to produce a time series
of the angular velocities (θ̇1, θ̇2). For an ideal double

pendulum, the four coordinates (θ̇1, θ̇2, θ1, θ2) canonically
parametrize the Hamiltonian of the system, and so these
four coordinates are used as the definition of the attractor.
However, we note that, for the experimental dataset, the

time-averaged kinetic energy T ∝ θ̇1
2

+ θ̇2
2

gradually
decreases throughout the course of the experiment. This
additional coordinate was not included in the reference
description of the attractor, due to its slow dynamics
and non-stationarity, and so it constitutes an external,
non-autonomous source of variation for which the model
must compensate.

We downsample the raw time series by a factor of 3
and us θ̇1(t) as the input to the model. For training
and validation, we use the first and second sequences of
5000 timepoints from the first experimental dataset. For
testing, we use the first 5000 timepoints from the second
experimental dataset.

IV. DESCRIPTION OF EXPLORATORY
DATASETS

Electrocardiogram. We use recordings from the Phy-
sioNet QT database, which comprises fifteen-minute, two-
lead ECG recordings from multiple individuals [4, 5].
Measurements are spaced 0.004 seconds apart. To remove
high-frequency components, datasets were smoothed with
a third-order Savitzky-Golay filter with a window size of
15 timepoints. The datasets are then downsampled by



4

a factor of 10. For the analysis presented here, we use
10000 datapoints (post-subsampling) from the dataset
sel102.dat as training data, and for testing data we use
10000 datapoints from the dataset sel103.dat (which
corresponds to a different patient).

Electricity usage. We use a dataset from the UCI
machine learning database [6, 7], comprising residential
power consumption by 321 Portuguese households be-
tween 2012 and 2014. Raw data is measured in units
of kilowatts times the fifteen minute sampling increment.
We create a consolidated dataset by taking the mean of all
residences at each timepoint, adjusting the sample size as
necessary at each timepoint to account for missing values
for some households. We use the first, second, and last
10000 timepoints training, validation, and testing data.

Geyser temperature measurements. We use tem-
perature recordings from the GeyserTimes database
(https://geysertimes.org/), which consist of tempera-
ture readings from the main runoff pool of the Old Faithful
geyser, located in Yellowstone National Park. Tempera-
ture measurements start on April 13, 2015 and occur in
one-minute increments. The dataset was detrended by
subtracting out a version of the data smoothed with a
moving average over a one-day window, which effectively
removes gradual effects like seasonal variation from the
attractor. For the analysis presented in the main text,
we use the first, second, and last 10000 datapoints from
the Old Faithful dataset as training, validation, and test
datasets, respectively, corresponding to ≈ 400 eruptions
of the geyser.

Neural spiking. We use a dataset from a recent
study characterizing the intrinsic attractor manifold
of neuron firings in freely-moving mice [8]. The raw
spike count data is available from the CRCNS database
(http://crcns.org/data-sets/thalamus/th-1), and
we process this data using the authors’ included code
and instructions, in order to generate time series corre-
sponding to spiking rates for single neurons. We use the
first, second, and last 10000 timepoints training, valida-
tion, and testing data.

V. MODELS

We apply eigen-time-delay (ETD) embedding as in
previous studies [9], using principal component analysis
as implemented in scikit-learn [10]. We apply time-
structure independent component analysis (tICA) as im-
plemented in the MSMBuilder software suite [11]. For nu-
merical integration of chaotic systems, we use the LSODA
method as implemented in scipy [12].

Autoencoders are implemented using TensorFlow
[13]. The LSTM autoencoder has architecture:
[Input-GN-LSTM(10)-BN]-[GN-LSTM(10)-BN-ELU-
Output]. The multilayer perceptron has architecture:
[Input-GN-FC(10)-BN-ELU-FC(10)-BN-ELU-FC(10)-
BN]–[GN-FC(10)-BN-ELU-FC(10)-BN-ELU-FC(10)-
BN-ELU-Output]. ELU denotes an exponential linear

unit with default scale parameter 1.0, BN denotes
a BatchNorm layer, GN denotes a Gaussian noise
regularization layer (active only during training) with
default standard deviation 0.5, and FC denotes a
fully-connected layer. 10 hidden units are used in all
cells, including for the latent space L = 10, and network
architecture or structural hyperparameters are kept the
same across experiments. For both architectures, no
activation is applied to the layer just before the latent
layer, because the shape of the activation function is
observed to constrain the range of values in latent space,
consistent with prior studies [14].

VI. EXTENDED DESCRIPTION OF
SIMILARITY METRICS

Evaluation metrics. We introduce several methods
for comparing the original system Y with its reconstruc-
tion Ŷ . We emphasize that this comparison does not
occur during training (the autoencoder only sees one co-
ordinate); rather, we use these metrics to assess how well
our models can reconstruct known systems.
1. Dimension accuracy. A basic, informative prop-

erty of a dynamical system ẏ(t) is its dimensionality,
d = dim(y), the minimum number of distinct variables
necessary to fully specify the dynamics. Embeddings
with dE < d discard essential information by collapsing
independent coordinates, while embeddings with dE > d
contain redundancy. We thus introduce a measure of
embedding parsimony based on the effective number of
latent coordinates present in the learned embedding.

We equate the activity of a given latent dimension
with its dimension-wise variance Var(ŷ), calculated across
the ensemble of model inputs {xi}N1 . We compare the

distribution of activity in the reconstruction Ŷ to the
original attractor Y , padding the dimensionality of the
original attractor with zeros as needed:

Sdim = 1− ||SORT(Var(y))− SORT(Var(ŷ))||
||Var(y)||

. (A12)

This quantity is maximized when the number of active
latent dimensions, and their relative activity, matches that
found in the original attractor. We further discuss this
score, and general properties of the embedding dimension
dE , in the next section.
2. Procrustes distance. Because a univariate measure-

ment cannot contain information about the symmetry
group or chirality of the full attractor, when comput-
ing pointwise similarity between the true and embedded
attractors, we first align the two datasets using the Pro-
crustes transform,

P = arg min
P̃
‖P̃ Ŷ − Y ‖F s.t. P̃>P̃ = I,

where I is the identity matrix. This transformation lin-
early registers the embedded attractor to the original
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attractor via translation, rotation, reflection, but not
shear. For example, after this transformation, mirror
images of a spiral would become congruent, whereas a
sphere and ellipsoid would not. After calculating this
transform, we compute the standard Euclidean distance,
which we normalize to produce a similarity metric,

Sproc = 1− ||PŶ − Y ||
||Y − Ȳ ||

where the mean square error ||.||2 is averaged across the

batch, and Ȳk =
∑N
b=1 Ykb. This metric corresponds

to a weighted variant of a classical attractor similarity
measure [15]. In addition to the mean-squared error, we
also calculate the dynamic time warping (DTW) distance

between PŶ and Y , which yields similar results as Sproc.
3. Persistent Homology. The persistence diagram for

a point cloud measures the appearance or disappearance
of essential topological features as a function of length
scale. A length scale ε is fixed, and then all points are
replaced by ε-radius balls, the union of which defines a
surface. Key topological features (e.g., holes, voids, and
extrema) are then measured, the parameter ε is increased,
and the process is repeated. This process produces a
birth-death diagram for topological features parametrized
by different length scales. We refer to a recent review [16]
for further details of the technique. Here, we build upon
recent results showing that the Wasserstein distance be-
tween two persistence diagrams can be used as a measure
of topological similarity between two dynamical attrac-
tors [17, 18]. We express this quantity as a normalized
similarity measure

Shomol(PY ,PŶ ) = 1−
db(PY ,PŶ )

db(PY , 0)

where PY ,PŶ denote the persistence diagrams associated

with the point clouds Y and Ŷ , and the denominator
denotes distance to a “null” diagram with no salient
topological features. Two attractors will have a high
Wasserstein similarity if they share essential topological
features (such as holes, voids, and extrema). We compute
birth-death persistence diagrams using the Ripser soft-
ware package [19], and we compute Wasserstein distances
between diagrams using the persim software package [20].
4. Local neighbor accuracy. We seek to quantify

whether points on Ŷ are embedded in the same neigh-
borhood as they are on Y , using simplex cross-mapping
[21, 22]. We summarize this technique here: We pick a

single datapoint ŷi from the attractor Ŷ , and then find
the set {j}k1 comprising its k nearest neighbors on Ŷ . Fol-
lowing standard practice, we use the minimum number
of neighbors to form a bounding simplex, k = dE + 1
[21]. We then select the corresponding {j}k1 points from
the attractor Y , producing the set {yj}k1 . The centroid
of {yj}k1 is used to generate an estimate ỹj for the po-
sition of point yj . The procedure is repeated for all
values of i, and the difference between ỹj and yj aver-
aged across all points is used as the distance measure

between Ŷ and Y . In order to generate a time-delayed
prediction, a factor τ is added to the indices of all points
in {j}k1 . Following previous work, we convert this dis-
tance into a similarity metric Ssimp by normalizing by the
dimensionwise-summed variance of the positions of all
points in Y , and then subtracting the resulting quantity
from one [23]. Generally Ssimp decreases smoothly with
τ , and so we report results for several values of τ .
5. Global neighbor coverage. For the ith point of the

N embedded points in Ŷ , we define κi(k) as the number
k nearest neighbors that correspond to true neighbors
in the original dataset Y . For example, if the indices of
the three closest neighbors to point 1 in Y are 11, 14, 29
in order of relative distance, whereas its three closest
neighbors are 11, 29, 15 in Ŷ , then κ1(1) = 1, κ1(2) =
1, κ1(3) = 2. We average this quantity across all points

in Ŷ , κ̄(k) =
∑B
b=1 κb(k). We note that, for a random

shuffling of neighbors, κ(k) is given by the hypergeometric
distribution describing a random sample of k objects from
a collection of N distinct objects without replacement,
κ(k) ∼ f(N,N, k), κ̄(k) = k2/N ; in contrast, a set of
perfectly matching neighbors will exhibit κ̄(k) = k. We
use these bounds to define the neighbor similarity as the
area under the curve between the observed κ̄(k) and the
random case, normalized by the best-case-scenario

Snn =
1

N

N−1∑
k=1

κ̄(k)− k2/N
k − k2/N

Similar to an ROC AUC, this metric depends on the
fraction of correct neighbors within the closest k neighbors,
as the parameter k is swept. We illustrate calculation of
this quantity diagrammatically in Figure S2.
6. Fractal dimension. As an example of a physically-

informative quantity that can be computed for an attrac-
tor, but not a raw time series, we compare the correlation
dimension (a type of fractal dimension) of the original at-
tractor cY and its reconstruction cŶ using the symmetric
mean absolute percent error

Scorr(cY , cŶ ) = 1−
∣∣cY − cŶ ∣∣
|cY | −

∣∣cŶ ∣∣ .
We use the correlation dimension instead of related
physical properties (such as the Lyapunov exponent, or
Kolmogorov-Sinai entropy) because, unlike other proper-
ties, the correlation dimension can be robustly measured
in a parameter-free manner, without random subsampling
of points [24].

VII. ADDITIONAL EXPERIMENTS

A. Application to time series clustering

Outside of physics, a significant application of attractor
reconstruction lies in improving the representation and
featurization of time series datasets [6, 25, 26]. We apply
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Figure S2. Calculation of the nearest-neighbor coverage metric,
Snn. (Left) the number of matching k nearest neighbors as
a function of k for two identical point clouds, an empirical
reconstruction of a point cloud, and a cloud of random points
(for which the fraction of matching nearest neighbors is given
by the hypergeometric distribution). (Right) the cumulative
sum of the quantities on the left, scaled to lie in the interval
between the two values.

our technique to four time series classification tasks from
different application domains: (1) a synthetic dataset
consisting of the x coordinate of simulations of the Lorenz
equations with different initial conditions, labelled by the
exact values of the parameters defining the equations, (2)
the first principle component of the body shape of crawl-
ing C. elegans worms, labelled by the genetic mutant; (3)
electrocardiogram recordings of patients undergoing either
standing, walking, or jumping; (4) electroencephalogram
measurements of patients imagining one of two possible
movements [5, 27, 28]. We do not tune hyperparameters,
and instead use the same default hyperparameters used
to train the Lorenz attractor in the previous experiments.
We use a 1-nearest-neighbor classifier with dynamic time
warping (a standard baseline for time series classification)
[29], and summarize our results in Table S1. Across a
variety of data sources and numbers of classes, classi-
fiers using attractors obtained from our method achieve
higher balanced accuracy than classifiers trained on the
bare time series, or that use alternative embedding tech-
niques. We obtain these results with no hyperparameter
tuning, demonstrating that our method can generically
extract meaningful features at each point in a time series—
suggesting potential application of our approach as an
initial featurization stage for general time series analysis
techniques.

B. Consistency and repeatability

We evaluate the repeatability and consistency of the
learned representations by training an ensemble of models
on the Lorenz dataset. All hyperparameters are held con-
stant, and the only difference across replicates is the ran-
dom weight initialization. As a baseline, we also trained

Table S1. The balanced classification accuracy for different
time series. The number of classes in each dataset is indicated
in parentheses.

Dataset Raw tICA ETD LSTM LSTM-fnn

Lorenz (8) 0.18 0.22 0.18 0.21 0.23
Worm (5) 0.52 0.45 0.39 0.60 0.61
ECG (3) 0.40 0.20 0.47 0.40 0.47
EEG(3) 0.46 0.43 0.43 0.44 0.51

a set of models with no false-neighbors regularization.
Example embeddings of the test data for models with and
without regularization are shown in Figure S3. Before
plotting, the Procrustes transform was used to remove
random rotations.

The figure demonstrates the regularizer produces sig-
nificantly more consistent embeddings across replications,
implying that the regularizer successfully constrains the
space of latent representations. We quantify this effect
by computing the pairwise topological similarity Shomol

among all replicates (Table S2), and we observe that the
median topological similarity is larger for the regularized
models.
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Figure S3. An ensemble of reconstructed attractors for the
Lorenz dataset, generated by models with different initial ran-
dom weight initializations but identical hyperparameters. Up-
per portion of the plot shows models with no regularizer, and
lower portion shows models with the false-nearest-neighbors
regularizer. Before plotting, attractors were aligned using the
Procrustes transform in order to remove random rotations.

C. Effect of regularizer on alternate models

We repeat the experiment (described in the main text)
in which the regularizer strength λ is varied, and show sim-
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Table S2. The median and standard error of the median across
20 replicate models.

LSTM LSTM-fnn

〈Shomol〉 0.09± 0.05 0.21± 0.07

ilar results for both the LSTM and the MLP autoencoders
in Figure S6.
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Figure S4. (A) The distribution of normalized latent variances
as a function of regularizer strength from λ = 0 (blue) to
λ = 0.1 (red), with the normalized variance for the full solution
(solid black line) and for the final best-performing model
(dashed black line). (B) The dimensionality error 1− Sdim as
a function of λ. Error ranges correspond to 5 replicates.

D. Dimension error versus regularizer strength for
pendulum dataset

In Figure S5, we repeat the experiment (described in
the main text) in which we vary the regularizer strength
(λ), and we observe that the final dimensionality error
Sdim exhibits a similar nonlinear dependence on λ for
both the double pendulum and Lorenz datasets.
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Figure S5. The final dimensionality error versus regularizer
strength for the Lorenz dataset (A) and the double pendulum
dataset (B). Error ranges correspond to 5 replicates.

E. Comparison to a vanilla activity regularizer

We also compare the false-neighbor regularizer to a
standard L1 activity regularizer (across a variety of differ-
ent regularizer strengths), and find that the false-neighbor
regularizer shows improvement across the different metrics
used in the main text.

Regularizer Strength   λ
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Figure S6. Reconstruction accuracies for an LSTM model on
the Lorenz dataset, using the false-nearest-neighbors regular-
izer (red) and a standard L1 activity regularizer (blue) on the
latent units. While the regularizer strength is varied, all other
hyperparameters are held constant at the values used in other
experiments.
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F. Dependence on the number of latent units

In order to determine whether the hyperparameter L in-
fluences the learned representations, we trained replicate
autoencoders with the false-nearest-neighbor regularizer
for L = 10, 20, 30, 40, 50 latent units (Figure S7). For all
experiments, we used the Lorenz dataset with the same
hyperparameters as were used in the main text. The figure
shows that the relative activity of each latent unit after
training is independent of L, implying that the network
successfully learns to ignore excess latent dimensionality.
Therefore, we argue that autoencoders trained with the
false-nearest-neighbor regularizer will learn consistent rep-
resentations that are determined primarily by the dataset,
and by the relative strength of the regularizer λ.
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Figure S7. (A) Activity patterns of the first 10 latent units
for autoencoders trained with L = 10, 20, 30, 40, 50 units in
the latent space (blue to red). (B) The dimension accuracy
score vs L

G. Forecasting comparison to previous
autoencoders

Previous work has proposed using a one-layer autoen-
coder with tanh activation in order to embed strange
attractors, with the reconstruction loss serving as the
sole loss function [30]. This prior work primarily focused
on a forecasting task similar to our “noisy forecasting”
experiments—the main difference being that we study
simulations of stochastic differential equations (i.e. deter-
ministic systems with added stochastic forcing), while the
earlier work focuses on noisy measurements of a determin-
istic system. We re-implemented this earlier architecture
and loss function, and compared it to our experiments
with the stochastic Lorenz dataset (Figure S8, yellow
traces). We find that the prior model performs slightly
worse than our baseline unregularized LSTM, further un-
derscoring the importance of the false-nearest-neighbors
regularizer in generating consistent, predictive represen-
tations.
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ETD

tICA
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Forecast horizon  τ0 50

0.2
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-0.2

Figure S8. (A) The cross-mapping forecast accuracy as a
function of noise strength ξ0 (with constant τ = 20). (B) The
cross-mapping forecast accuracy versus forecasting horizon τ
(with constant ξ0 = 0.5). Ranges correspond to standard error
across 5 random initializations.

VIII. ALL ATTRACTOR COMPARISON
RESULTS

Table S3 shows the full results of attractor comparison
experiments with all datasets, models, and metrics.
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Table S3. Results for five datasets with known attractors. Errors correspond to standard errors over 5 replicates with random
initial weights.

Metric ICA tICA ETD MLP LSTM MLP-fnn LSTM-fnn

Lorenz

Ssimp 0.42 0.74 0.82 0.79± 0.03 0.82± 0.02 0.81± 0.03 0.93± 0.02
Scorr 0.992 0.985 0.978 0.91± 0.01 0.87± 0.02 0.953± 0.009 0.98± 0.02
Shomol 0.049 0.123 0.668 0.01± 0.01 0.04± 0.03 0.47± 0.05 0.3± 0.1
Sproc -0.015 0.037 0.212 0.09± 0.05 0.20± 0.03 0.23± 0.08 0.37± 0.02
Sdtw 0.237 0.21 0.27 0.25± 0.04 0.31± 0.03 0.39± 0.09 0.47± 0.03
Snn 0.277 0.296 0.384 0.25± 0.06 0.25± 0.06 0.40± 0.02 0.40± 0.02
Sdim 0.171 0.394 0.628 -0.4± 0.1 -0.06± 0.08 0.88± 0.02 0.66± 0.01

Double Pendulum

Ssimp -0.24 -0.06 0.30 0.35± 0.03 0.36± 0.02 0.39± 0.02 0.41± 0.01
Scorr 0.985 0.861 0.822 0.96± 0.01 0.966± 0.006 0.951± 0.003 0.986± 0.008
Shomol 0.191 0.202 0.176 0.18± 0.03 0.19± 0.02 0.26± 0.03 0.25± 0.02
Sproc 0.002 0.001 0.003 0.013± 0.004 0.008± 0.005 0.013± 0.003 0.016± 0.006
Sdtw 0.026 0.069 0.108 0.11± 0.02 0.11± 0.01 0.136± 0.009 0.132± 0.008
Snn 0.019 0.031 0.055 0.041± 0.003 0.042± 0.002 0.05± 0.001 0.060± 0.001
Sdim -1.772 -1.914 0.927 -0.6± 0.2 -0.8± 0.3 0.801± 0.006 0.97± 0.01

Ecosystem

Ssimp 0.527 0.532 0.525 0.89± 0.02 0.92± 0.03 0.95± 0.02 0.93± 0.03
Scorr 0.856 0.890 0.820 0.876± 0.004 0.877± 0.004 0.904± 0.009 0.888± 0.003
Shomol 0.185 0.066 0.256 0.17± 0.03 0.09± 0.04 0.36± 0.03 0.33± 0.03
Sproc 0.055 0.024 0.025 -0.01± 0.03 -0.1± 0.05 0.04± 0.03 0.08± 0.05
Sdtw 0.111 0.115 0.051 0.11± 0.02 0.05± 0.03 0.12± 0.02 0.15± 0.03
Snn 0.133 0.133 0.146 0.304± 0.005 0.304± 0.004 0.30± 0.03 0.313± 0.005
Sdim -0.882 0.60 0.664 0.38± 0.08 0.51± 0.05 0.90± 0.02 0.92± 0.02

Torus

Ssimp 0.984 0.996 0.994 0.998± 0.001 0.999± 0.001 0.999± 0.001 0.998± 0.002
Scorr 0.994 0.952 0.993 0.982± 0.006 0.87± 0.03 0.994± 0.004 0.99± 0.01
Shomol 0.001 -1.442 -0.827 -0.6± 0.06 -0.4± 0.2 -0.3± 0.2 0.33± 0.09
Sproc 0.157 -0.102 -0.008 0.1± 0.1 -0.07± 0.08 0.4± 0.1 0.4± 0.1
Sdtw 0.403 0.292 0.586 0.24± 0.07 0.19± 0.07 0.60± 0.08 0.50± 0.09
Snn 0.269 0.194 0.444 0.28± 0.03 0.28± 0.01 0.42± 0.01 0.45± 0.02
Sdim -0.619 -0.652 0.722 0.1± 0.1 -0.3± 0.3 0.96± 0.04 0.71± 0.01

Rössler

Ssimp 0.988 0.997 0.997 0.999± 0.001 0.997± 0.001 0.999± 0.001 0.999± 0.001
Scorr 0.771 0.994 0.999 0.94± 0.02 0.87± 0.03 0.985± 0.003 0.997± 0.003
Shomol 0.001 0.06 0.501 0.08± 0.04 0.08± 0.07 0.27± 0.04 0.55± 0.07
Sproc 0.123 -0.002 0.027 0.01± 0.09 0.33± 0.04 0.3± 0.1 0.25± 0.06
Sdtw 0.351 0.547 0.527 0.23± 0.07 0.43± 0.05 0.52± 0.09 0.62± 0.05
Snn 0.332 0.742 0.762 0.43± 0.03 0.42± 0.03 0.64± 0.01 0.75± 0.06
Sdim -0.48 0.423 0.727 0.64± 0.04 0.5± 0.1 0.694± 0.05 0.753± 0.08
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