- We thank all the reviewers for their time and valuable feedback. We will improve the draft based on your comments,
- and we hope you could raise your evaluation if we address your concerns.
- 3 Reviewer 2: (On benchmarks) We agree that including these baseline can be useful for the potential readers and
- 4 we will add them in next version. We also want to notify the reviewers that it has been well tested in [2] that SVGD
- 5 outperforms PBP so our baselines are actually stronger than PBP.
- 6 (On hyper-parameter tuning) We didn't tune the kernel bandwidth but simply apply the widely used median trick [2].
- 7 The thinning factor is common in MCMC and has been used for decades. We will add sensitive analysis on that. Our
- 8 ablation study on the repulsive term weighting (α) is included in Appendix B.2 (we will give pointer on that in next
- 9 version). Also, since that we propose a specific way to tune the α (as shown in appendix A) and its usefulness has been
- demonstrated as in all the experiment we use this criterion to select α , we believe the sensitive analysis of α is sufficient
- and the proposed criterion for selecting α is reliable in practice.
- (On the Presentation) Sorry for the appendix indexing issues. Appendix A.5 is Appendix C.1. \mathcal{B}_t denotes the Brownian
- motion and we will add definition. Our section 5 demonstrates that our Stein repulsive gradient can be applied to
- 14 general dynamics as the limiting system is able to produce correct targeted distribution. As the later discretization and
- large particle approximation is almost identical to that in SRLD, we omit the details. We will give more discussion on
- that. The reference in L.100 should be referred to equation between L.80 and L.81 and we will fix it as well as the other
- 17 clarity issue you mentioned.
- 8 Reviewer 3: (1, 2) We will add a related work section that collect the literature review in the current version, as well as
- a conclusion section in the next version.
- 20 (3, 4) Sorry for the index problem. Appendix A.4 should be Appendix C and Appendix A.5 should be Appendix C.1.
- 21 We will give contextual bandit an individual section in the next version.
- 22 (5, 6) Notice that our repulsive term can be applied to any SG-MCMC and thus we believe the current experiment using
- 23 the simple Langevin dynamics is able to show the usefulness of the repulsive term. We will test some more advanced
- 24 SG-MCMC method.
- 25 (7) We have a synthetic experiment on sampling multi-mode distribution (see Appendix B.1 and B.3).
- 26 (8) We agree that the name repulsive is a little bit not exact, but given that this term provides repulsive force in practice,
- we believe this name is intuitive.
- 28 (9) Our method allows us to adjust the α to increase the magnitude of repulsive gradient compared with Langevin term.
- 29 Please see line 440-443 for more details. The issue of kernel method in high dimension is a problem independent with
- 30 this work and existing technique to mitigate this issue (e.g. [1]) can also be applied to our method.
- 11 (10) The density evolution is not derived by the direct application of standard Fokker-Planck equation. The derivation is
- standard and mostly calculation (similar to the one in Appendix A.3 of [5]) and thus we omit it previously. We will give
- 33 details on the derivation in the next version.
- (11, 12) We don't need that strong condition and the current statement is correct. And yes, it is θ_t in equ (4), sorry for the typo.
- Reviewer 4: (W1) Thanks for the point! We agree it would be more complicate to conduct experiment on different
- advanced MCMC and we will add them in the next version. Due to the time limit, we are unable to give result on that
- currently. However, we also believe the current experiment design is sufficient and good. We believe the main focus on
- the experiment is to demonstrate the usefulness of the proposed Stein repulsive gradient and thus it is the best choice to
- 40 work on the simple Langevin dynamics, which has the least hyper-parameters to tune.
- 41 (W2) We agree that the experiment on UCI has large variance and thus we conduct statistical testing (based on matched
- pair t-test, see, e.g. caption of Table 1) for all the results we report. As most result are statistically significant, we
- believe our result on UCI dataset is convincing. Besides, as we use different setting and data split for UCI dataset, the
- results in other papers are not directly comparable to ours.
- We agree that it might be interesting to test the behavior of our method on large BNN model. However, due to the
- 46 computation resource constraint, we are not able to maintain, e.g., 20 checkpoints of large neural nets at the same
- 47 time and thus we currently are not able to do such experiment. Beside, we think the main focus of [3] and ours is
- 48 different, which makes their experiment design not suitable to us. [3] aims to use Bayesian-like ensemble to improve
- 49 the prediction accuracy rather than approximate the posterior (thus they only use very small number of particles that
- cannot approximate the posterior). Our aim is still on a better MCMC algorithm that has better posterior sample quality.
- 51 [1] Understanding and accelerating particle-based variational inference.
- 52 [2] Stein variational gradient descent: A general purpose bayesian inference algorithm.
- 53 [3] Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning.
- 54 [4] Dropout as a bayesian approximation: Representing model uncertainty in deep learning.
- [5] Stein Variational Gradient Descent as Gradient Flow.