
A Discussion on Hyper-parameter Tuning

The key hyper-parameters of SRLD are 1. α, which balance the confining gradient and repulsive
gradient; 2. M the number of particles used; 3. σ the bandwidth of kernel; 4. η the stepsize; 5. cη
the thinning factor. Among which, α, M and σ are the hyper-parameter introduced by the proposed
repulsive gradient and thus we mainly discuss these three hyper-parameter. The number of particles
M and bandwidth of kennel σ are introduced by the use the repulsive term in SVGD [Liu and Wang,
2016]. In practice, we find using a similar setting for tuning M and σ as that in SVGD [Liu and
Wang, 2016] gives good performance. In specific, in order to obtain good performance, M does not
needs be very large, and similar to SVGD, M = 10 already gives good enough particle approxima-
tion. A good choice of bandwidth σ is also important for the kernel. In SVGD, instead of tuning
σ, they propose an adaptive way to adjust σ during the running of the dynamics. Specifically, they
choose σ = med2/ log(M), where med is the median of the pairwise distance between the particles
θik, i ∈ [M ]. In this way, the bandwidth ensures that

∑M
j=1K(θik,θ

j
k) ≈ 1. This adaptive way of

choosing σ is also widely used in current approximation inference area, e.g., Liu et al. [2017b], Han
and Liu [2017], Wang et al. [2019b,a]. We also find that applying this adaptive bandwidth is able to
give good empirical performance and thus we also use this method in the implementation. Now we
discuss how choose α. Notice that α serves to balance the confining gradient and repulsive gradient
and based on this motivation, we recommend readers to find a proper α using the samples at burn-in
phase by setting

α ≈
∑Mcη
k=1 ‖∇V (θk)‖∑Mcη
k=1

∥∥∥g(θk, δ̃Mk )
∥∥∥ .

In this way, α balances the two kind of gradients. And then we may further tune α by searching
around this value. An empirical good choice of α is 10 for the data sets we tested and we use α = 10
for all the experiments.

The step size is important for gradient based MCMC, as too large step size gives too large discretiza-
tion error while a too small step size will cause the dynamics converges very slowly. In this paper,
we mainly use validation set to tune the step size. The thinning factor is also a common parameter
is MCMC methods and usually MCMC methods are not sensitive to this parameter. SRLD is not
sensitive to this parameter and we simply set cη = 100 for all experiments.

B Additional Experiment Result on Synthetic Data

In this section, we show additional experiment on synthetic data. To further visualize the role of the
proposed stein repulsive gradient, we also apply our method to sample a 2D mixture of Gaussian
distribution (see section B.1). To further study how different α influences sampling high dimension
distribution, we apply SRLD to sample high dimensional Gaussian (section B.2) and high dimen-
sional mixture of Gaussian (section B.3).

B.1 Synthetic 2D Mixture of Gaussian Experiment
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Figure 4: Sample quality and autocorrelation of the mixture distribution. The auto-correlation is the
averaged auto-correlation of the two dimensions.

We aim to show how the repulsive gradient helps the particle escape from the local high density
region by sampling the 2D mixture of Gaussian distribution using SRLD and Langevin dynamics.
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Figure 5: Sampling trajectory of the mixture of Gaussian.
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Figure 6: Sample quality and autocorrelation of the higher dimensional Gaussian distribution. The
auto-correlation is the averaged auto-correlation of all dimensions.

The target density is set to be

ρ∗(θ) ∝ 0.5 exp
(
−‖θ − 1‖2 /2

)
+ 0.5 exp

(
−‖θ + 1‖2 /2

)
,

where θ = [θ1, θ2]> and 1 = [1, 1]>. This target distribution have two mode at −1 and 1, and
vanilla Langevin dynamics can stuck in one mode while keeps the another mode under-explored (as
the gradient of energy function can dominate the update of samples). We use the same evaluation
method, step sizes, initialization and Gaussian noise as the previous experiment. We collect one
sample every 100 iterations and the experiment is repeated for 20 times. Figure 4 shows that SRLD
consistently outperforms the Langevin dynamics on all of the evaluation metrics.

To provide more evidence on the effectiveness of SRLD on escaping from local high density region,
we plot the sampling trajectory of SRLD and vanilla Langevin dynamics on the mixture of Gaussian
mentioned in Section 6.1. We can find that, when both of the methods obtain 200 samples, SRLD
have started to explore the second mode, while vanilla Langevin dynamics still stuck in the original
mode. When both of the methods have 250 examples, the vanilla Langevin dynamics just start to
explore the second mode, while our SRLD have already obtained several samples from the second
mode, which shows our methods effectiveness on escaping the local mode.

B.2 Synthetic higher dimensional Gaussian Experiment

To show the performance of SRLD in higher dimensional case with different value of α, we addition-
ally considering the problem on sampling from Gaussian distribution with d = 100 and covariance
Σ = 0.5I. We run SRLD with α = 100, 50, 20, 10, 0 and the case α = 0 reduces to Langevin. We
collect 1 sample every 10 iterations. The other experiment setting is the same as the toy examples
in the main text. The results are summarized at Figure 6. In this experiment, we set one SRLD with
an inappropriate α = 100. For this chain, the repulsive gradient gives strong repulsive force and
thus has the largest ESS and the fastest decay of autocorrelation. While the inappropriate value α
induces too much extra approximation error and thus its performance is not as good as these with
smaller α (see MMD and Wasserstein distance). This phenomenon matches our theoretical finding.
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Figure 7: Sample quality and autocorrelation of the higher dimensional mixture distribution. The
auto-correlation is the averaged auto-correlation of all dimensions.

B.3 Synthetic higher dimensional Mixture of Gaussian Experiment

We also consider sampling from the mixture of Gaussian with d = 20. The target density is set to
be

ρ∗(θ) ∝ 1

2
exp

(
−0.5

∥∥∥θ −√2/d1
∥∥∥2
)

+
1

2
exp

(
−0.5

∥∥∥θ +
√

2/d1
∥∥∥2
)
,

where θ = [θ1, ..., θ20]> and 1 = [1, ..., 1]>. And thus the mean of the two mixture component
is with distance 2

√
2. We run SRLD with α = 20, 10, 5, 0 (and when α = 0, it reduces to LD).

The other experiment setting is the same as the low dimensional mixture Gaussian case. Figure [7]
summarizes the result. As shown in the figure, when α becomes larger, the repulsive forces helps
the sampler better explore the density region.

C BNN on UCI Datasets: Experiment Settings and Additional Results

We first give detailed experiment settings. We set a Γ(1, 0.1) prior for the inverse output variance.
We set the mini-batch size to be 100. We run 50000 iterations for each methods, and for LD and
SRLD, the first 40000 iteration is discarded as burn-in. We use a thinning factor of cη = c/η = 100
and in total we collect 100 samples from the posterior distribution. For each dataset, we generate 3
extra data splits for tuning the step size for each method. the number of past samples M to be 10. In
all experiments, we use RBF kernel with bandwidth set by the median trick as suggested in Liu and
Wang [2016]. We use α = 10 for all the data sets. For SVGD, we use the original implementation
with 20 particles by Liu and Wang [2016].

We show some additional experiment result on posterior inference on UCI datasets. As mentioned
in Section 6.2, the comparison between SVGD and SRLD is not direct as SVGD is a multiple-chain
method with fewer particles and SRLD is a single chain method with more samples. To show more
detailed comparison, we compare the SVGD with SRLD using the first 20, 40, 60, 80 and 100
samples, denoted as SRLD-n where n is the number of samples used. Table 3 shows the result of
averaged test RMSE and table 4 shows the result of averaged test loglikelihood. For SRLD with
different number of samples, the value is set to be boldface if it has better average performance than
SVGD. If it is statistical significant with significant level 0.05 using a matched pair t-test, we add an
underline on it.

Figure 8 and 9 give some visualized result on the comparison with Langevin dynamics and SRLD.
To rule out the variance of different splitting on the dataset, the errorbar is calculated based on the
difference between RMSE of SRLD and RMSE of Langevin dynamcis in 20 repeats (And similarily
for test log-likelihood). And we only applied the error bar on Langevin dynamics.
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Dataset Ave Test RMSE
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD

Boston 3.236± 0.174 3.173± 0.176 3.130± 0.173 3.101± 0.179 3.086± 0.181 3.300± 0.142
Concrete 4.959± 0.109 4.921± 0.111 4.906± 0.109 4.891± 0.108 4.886± 0.108 4.994± 0.171
Energy 0.422± 0.016 0.409± 0.016 0.405± 0.016 0.399± 0.016 0.395± 0.016 0.428± 0.016
Naval 0.005± 0.001 0.004± 0.000 0.003± 0.000 0.003± 0.000 0.003± 0.000 0.006± 0.000

WineRed 0.654± 0.009 0.647± 0.009 0.644± 0.009 0.641± 0.009 0.639± 0.009 0.655± 0.008
WineWhite 0.695± 0.003 0.692± 0.003 0.690± 0.003 0.689± 0.002 0.688± 0.003 0.655± 0.008

Yacht 0.616± 0.055 0.608± 0.052 0.597± 0.051 0.587± 0.054 0.578± 0.054 0.593± 0.071

Table 3: Comparing SRLD with different number of samples with SVGD on test RMSE. The results
are computed over 20 trials. For SRLD, the value is set to be boldface if it has better average
performance than SVGD. The value if with underline if it is significantly better than SVGD with
significant level 0.05 using a matched pair t-test.

Dataset Ave Test LL
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD

Boston −2.642± .088 −2.582± 0.084 −2.527± 0.612 −2.516± 0.062 −2.500± 0.054 −4.276± 0.217
Concrete −3.084± 0.036 −3.061± 0.034 −3.050± 0.033 −3.040± 0.031 −3.034± 0.031 −5.500± 0.398
Energy −0.580± 0.053 −0.536± 0.048 −0.522± 0.046 −0.504± 0.044 −0.476± 0.036 −0.781± 0.094
Naval 4.033± 0.230 4.100± 0.171 4.140± 0.015 4.167± 0.014 4.186± 0.015 3.056± 0.034

WineRed −1.008± 0.019 −0.990± 0.017 −0.982± 0.016 −0.974± 0.016 −0.970± 0.016 −1.040± 0.018
WineWhite −1.053± 0.004 −1.049± 0.004 −1.047± 0.004 −1.044± 0.004 −1.043± 0.004 −1.040± 0.019

Yacht −1.160± 0.256 −0.650± 0.173 −0.556± 0.096 −0.465± 0.037 −0.458± 0.036 −1.281± 0.279

Table 4: Comparing SRLD with different number of samples with SVGD on test log-likelihood.
The results are computed over 20 trials. For SRLD, the value is set to be boldface if it has better
average performance than SVGD. The value if with underline if it is significantly better than SVGD
with significant level 0.05 using a matched pair t-test.

D Contextual Bandit: Experiment Settings and More Background

Contextual bandit is a class of online learning problems that can be viewed as a simple reinforcement
learning problem without transition. For a completely understanding of contextual bandit problems,
we refer the readers to the Chapter 4 of [Bubeck et al., 2012]. Here we include the main idea for
completeness. In contextual bandit problems, the agent needs to find out the best action given some
observed context (a.k.a the optimal policy in reinforcement learning). Formally, we define S as
the context set and K as the number of action. Then we can concretely describe the contextual
bandit problems as follows: for each time-step t = 1, 2, · · · , N , where N is some pre-defined time
horizon (and can be given to the agent), the environment provides a context st ∈ S to the agent,
then the agent should choose one action at ∈ {1, 2, · · · ,K} based on context st. The environment
will return a (stochastic) reward r(st, at) to the agent based on the context st and the action at that
similar to the reinforcement learning setting. And notice that, the agent can adjust the strategy at
each time-step, so that this kinds of problems are called “online” learning problem.

Solving the contextual bandit problems is equivalent to find some algorithms that can minimize the
pseudo-regret [Bubeck et al., 2012], which is defined as:

R
S
N = max

π:S→{1,2,··· ,K}
E

[
N∑
t=1

r(st, g(st))−
N∑
t=1

r(st, at)

]
. (7)

where π denotes the deterministic mapping from the context set S to actions {1, 2, · · · ,K} (read-
ers can view π as a deterministic policy in reinforcement learning). Intuitively, this pseudo-regret
measures the difference of cumulative reward between the action sequence at and the best action
sequence π(st). Thus, an algorithm that can minimize the pseudo-regret (7) can also find the best π.

Posterior sampling [a.k.a. Thompson sampling; Thompson, 1933] is one of the classical yet success-
ful algorithms that can achieve the state-of-the-art performance in practice [Chapelle and Li, 2011].
It works by first placing an user-specified prior µ0

s,a on the reward r(s, a), and each turn make deci-
sion based on the posterior distribution and update it, i.e. update the posterior distribution µts,a with
the observation r(st−1, at−1) at time t − 1 where at−1 is selected with the posterior distribution:
each time, the action is selected with the following way:

at = arg max
a∈{1,2,··· ,K}

r̂(st, a), r̂(st, a) ∼ µts,a.
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Figure 8: Comparison between SRLD and Langevin dynamics on test RMSE. The results are com-
puted based on 20 repeats. The error bar is calculated based on RMSE of SRLD - RMSE of Langevin
dynamics in 20 repeats to rule out the variance of different data splitting

i.e., greedy select the action based on the sampled reward from the posterior, thus called “Posterior
Sampling”. Algorithm 1 summarizes the whole procedure of Posterior Sampling.

Algorithm 1 Posterior sampling for contextual bandits

Input: Prior distribution µ0
s,a, time horizon N

for time t = 1, 2, · · · , N do
observe a new context st ∈ S,
sample the reward of each action r̂(st, a) ∼ µts,a, a ∈ {1, 2, · · · ,K},
select action at = arg maxa∈{1,2,··· ,K} r̂(st, a) and get the reward r(st, at),
update the posterior µt+1

st,at with r(st, at).
end for

Notice that all of the reinforcement learning problems face the exploration-exploitation dilemma, so
as the contextual bandit problem. Posterior sampling trade off the exploration and exploitation with
the uncertainty provided by the posterior distribution. So if the posterior uncertainty is not estimated
properly, posterior sampling will perform poorly. To see this, if we over-estimate the uncertainty,
we can explore too-much sub-optimal actions, while if we under-estimate the uncertainty, we can
fail to find the optimal actions. Thus, it is a good benchmark for evaluating the uncertainty provided
by different inference methods.

Though in principle all of the MCMC methods return the samples follow the true posterior if we can
run infinite MCMC steps, in practice we can only obtain finite samples as we only have finite time
to run the MCMC sampler. In this case, the auto-correlation issue can lead to the under-estimate
the uncertainty, which will cause the failure on all of the reinforcement learning problems that need
exploration.

Here, we test the uncertainty provided by vanilla Langevin dynamics and Self-repulsive Langevin
dynamics on two of the benchmark contextual bandit problems suggested by [Riquelme et al., 2018],
called mushroom and wheel. One can read [Riquelme et al., 2018] to find the detail introduction of
this two contextual bandit problems. For completeness, we include it as follows:

Mushroom Mushroom bandit utilizes the data from Mushroom dataset [Schlimmer, 1981], which
includes different kinds of poisonous mushroom and safe mushroom with 22 attributes that can
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Figure 9: Comparison between SRLD and Langevin dynamics on test log-likelihood. The results
are computed based on 20 repeats. The error bar is calculated based on log-likelihood of SRLD -
log-likelihood of Langevin dynamics in 20 repeats to rule out the variance of data splitting.

indicate whether the mushroom is poisonous or not. Blundell et al. [2015] first introduced the
mushroom bandit by designing the following reward function: eating a safe mushroom will give
a +5 reward, while eating a poisonous mushroom will return a reward +5 and −35 with equal
chances. The agent can also choose not to eat the mushroom, which always yield a 0 reward. Same
to [Riquelme et al., 2018], we use 50000 instances in this problem.

Wheel To highlight the need for exploration, [Riquelme et al., 2018] designs the wheel bandit, that
can control the need of exploration with some “exploration parameter” δ ∈ (0, 1). The context set S
is the unit circle ‖s‖2 ≤ 1 in R2, and each turn the context st is uniformly sampled from S. K = 5
possible actions are provided: the first action yields a constant reward r ∼ N (µ1, σ

2); the reward
corresponding to other actions is determined by the provided context s:

• For s ∈ S s.t. ‖s‖2 ≤ δ, all of the four other actions return a suboptimal reward sampled
from N (µ2, σ

2) for µ2 < µ1.

• For s ∈ S s.t. ‖s‖2 > δ, according to the quarter the context s is in, one of the four
actions becomes optimal. This optimal action gives a reward of N (µ3, σ

2) for µ3 � µ1,
and another three actions still yield the suboptimal reward N (µ2, σ

2).

Following the setting from [Riquelme et al., 2018], we set µ1 = 1.2, µ2 = 1.0, and µ3 = 50.

When δ approaches 1, the inner circle ‖s‖2 ≤ δ will dominate the unit circle and the first action
becomes the optimal for most of the context. Thus, inference methods with poorly estimated uncer-
tainty will continuously choose the suboptimal action a1 for all of the contexts without exploration.
This phenomenon have been confirmed in [Riquelme et al., 2018]. In our experiments, as we want
to evaluate the quality of uncertainty provided by different methods, we set δ = 0.95, which is pretty
hard for existing inference methods as shown in [Riquelme et al., 2018], and use 50000 contexts for
evaluation.

Experiment Setup Following [Riquelme et al., 2018], we use a feed-forward network with two
hidden layer of 100 units and ReLU activation. We use the same step-size and thinning factor
c/η = 100 for vanilla Langevin dynamics and SRLD, and set M = 20, α = 10 on both of the
mushroom and wheel bandits. The update schedule is similar to [Riquelme et al., 2018], and we just
change the optimization step in stochastic variational inference methods into MCMC sampler step
and replace the warm-up of stochastic variational inference methods in Riquelme et al. [2018] with
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Figure 10: Visualization of the wheel bandit (δ = 0.95), taken from [Riquelme et al., 2018].

the burn-in phase of the sampling. Similar to other methods in [Riquelme et al., 2018], we keep the
initial learning rate as 10−1 for fast burn-in and the step-size for sampling is tuned on the mushroom
bandit and keep the same for both the mushroom and wheel bandit. As this is an online posterior
inference problem, we only use the last 20 samples to give the prediction. Notice that, in the original
implementation of Riquelme et al. [2018], the authors only update a few steps with new observation
after observing enough data, as the posterior will gradually converge to the true reward distribution
and little update is needed after observing sufficient data. Similar to their implementation, after
observing enough data, we only collect one new sample with the new observation each time. For
SVGD, we use 20 particles to make the comparison fair, and also tune the step-size on the mushroom
bandit.
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E The Detailed analysis of SRLD

E.1 Some additional notation

We use ‖ · ‖∞ to denote the `∞ vector norm and define the L∞ norm of a function f : Rd → R1

as ‖f‖L∞ . DTV denote the Total Variation distance between distribution ρ1, ρ2 respectively. Also,
as K is Rd × Rd → R1, we denote ‖K‖L∞,L∞ = supθ1,θ2

K(θ1,θ2). For simplicity, we may
use ‖K‖∞,∞ as ‖K‖L∞,L∞ . In the appendix, we also use φ[ρ](θ) := g(θ; ρ), where g(θ; ρ) is
defined in the main text. For the clearance, we define πM,c/η ∗ ρk := ρMk , πM,c/η ∗ ρ̃k := ρ̃Mk and
πM,c ∗ ρ̄t := ρ̄Mt , where ρMk , ρ̃Mk and ρ̄Mt are defined in main text.

E.2 Geometric Ergodicity of SRLD

Before we start the proof of main theorems, we give the following theorem on the geometric er-
godicity of SRLD. It is noticeable that under this assumption, the practical dynamics follows an
(Mc/η + 1)-order nonlinear autoregressive model when k ≥Mc/η:

θk+1 = ψ
(
θk, ...,θk−Mc/η

)
+
√

2ηek,

where

ψ
(
θk, ...,θk−Mc/η

)
= θk + η

−∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk)

 .

Further, if we stack the parameter by Θk =
[
θk, ...,θk−Mc/η

]>
and define Ψ (Θk) =[

ψ> (Θk) ,Θ>k
]>

, we have
Θk+1 = Ψ (Θk) +

√
2ηEk,

where Ek =
[
e>k ,0

>, ...,0>
]>
. In this way, we formulate Θk as a time homogeneous Markov

Chain. In the following analysis, we only analyze the second phase of SRLD given some initial
stacked particles ΘMc/η−1.
Theorem E.1 (Geometric Ergodicity). Under Assumption 4.1 and Assumption 4.2, suppose we
choose η and α such that

max

(
1− 2ηa1 + η2b1 +

2αη

σ
b1,

2αη

σ
(b1 + 1)

)
< 1,

then the Markov Chain of Θk is stationary, geometrically ergodic, i.e., for any Θ′0 = ΘMc/η−1, we
have

DTV

[
P k (·,Θ0) ,Π (·)

]
≤ Q (Θ0) e−rk,

where r = O(η) is some positive constant, Q(Θ0) is constant related to Θ0, P k is the k-step
Markov transition kernel and Π is the stationary distribution.

We defer the proof to Appendix E.5.1.

E.3 Moment Bound

Theorem E.2 (Moment Bound). Under Assumption 4.2, suppose that we have Eθ∼ρ0 ‖θ‖
2
< ∞;

and a2 − α ‖K‖∞
(
2b1 + 4

σ

)
> 0, we have

sup
k

Eθ∼ρk ‖θ‖
2 ∨ sup

k
Eθ∼ρ̃k ‖θ‖

2 ∨ sup
t

Eθ∼ρ̄t ‖θ‖
2

≤Eθ∼ρ0 ‖θ‖
2

+
b1 + 1 + η

a2 − ‖K‖L∞,L∞
2α
σ − α ‖K‖L∞,L∞

(
2b1 + 2

σ

) .
And by Lemma E.1, we thus have

sup
k

Eθ∼ρk ‖∇V (θ)‖2 ∨ sup
k

Eθ∼ρ̃k ‖∇V (θ)‖2 ∨ sup
t

Eθ∼ρ̄t ‖∇V (θ)‖2

≤b1Eθ∼ρ0 ‖θ‖
2

+
b1(b1 + 1 + η)

a2 − ‖K‖L∞,L∞
2α
σ − α ‖K‖L∞,L∞

(
2b1 + 2

σ

) + 1

The proof can be found at Appendix E.5.2.
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E.4 Technical Lemma

Definition E.1 (α-mixing). For any two σ-algebras A and B, the α-mixing coefficient is defined by

α(A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)| .

Let (Xk, k ≥ 1) be a sequence of real random variable defined on (Ω,A,P). This sequence is
α-mixing if

α(n) := sup
k≥1

α (Mk,Gk+n)→ 0, as n→∞,

whereMj := σ (Xi, i ≤ j) and Gj := σ (Xi, i ≥ j) for j ≥ 1. Alternatively, as shown by Theorem
4.4 of Bradley [2007]

α(n) :=
1

4
sup

{
Cov (f, g)

‖f‖L∞ ‖g‖L∞
; f ∈ L∞ (Mk) , g ∈ L∞ (Gk+n)

}
.

Definition E.2 (β-mixing). For any two σ-algebras A and B, the α-mixing coefficient is defined by

β (A,B) := sup
1

2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)| ,

where the supremum is taken over all pairs of finite partitions {A1, ..., AI} and {B1, ..., BJ} of Ω
such that Ai ∈ A and Bj ∈ B for each i, j. Let (Xk, k ≥ 1) be a sequence of real random variable
defined on (Ω,A,P). This sequence is β-mixing if

β(n) := sup
k≥1

β (Mk,Gk+n)→ 0, as n→∞.

Proposition E.1 (β-mixing implies α-mixing)). For any two σ-algebras A and B,

α (A,B) ≤ 1

2
β (A,B) .

This proposition can be found in Equation 1.11 of Bradley [2005].

Proposition E.2. A (strictly) stationary Markov Chain is geometric ergodicity if and only if β(n)→
0 at least exponentially fast as n→∞.

This proposition is Theorem 3.7 of Bradley [2005].

Lemma E.1 (Regularity Conditions). By Assumption 4.2, we have ‖∇V (θ)‖ ≤ b1 (‖θ1‖+ 1) and
‖θ − η∇V (θ)‖ ≤

(
1− 2ηa1 + η2b1

)
‖θ‖2 + η2b1 + 2ηb1.

Lemma E.2 (Properties of RBF Kernel). For RBF kernel with bandwidth σ, we have ‖K‖∞,∞ ≤ 1
and

‖K(θ′,θ1)−K(θ′,θ2)‖ ≤
∥∥∥e−(·)2/σ

∥∥∥
Lip
‖θ1 − θ2‖2

‖∇θ′K(θ′,θ1)−∇θ′K(θ′,θ2)‖ ≤
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .

Lemma E.3 (Properties of Stein Operator). For any distribution ρ such that Eθ∼ρ ‖∇V (θ)‖ <∞,
we have

‖φ[ρ](·)‖Lip ≤
∥∥∥e−(·)2/σ

∥∥∥
Lip

Eθ∼ρ ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

,

‖φ[ρ](θ)‖ ≤ ‖K‖∞ Eθ′∼ρ

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θ‖)

]
≤ ‖K‖∞ b1 + Eθ′∼ρ

[(
2

σ
+ b1

)
‖θ′‖

]
+ ‖θ‖ .
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Lemma E.4 (Bounded Lipschitz of Stein Operator). Given θ′, define φ̄θ′(θ) := φ[δθ′ ](θ) =
K(θ′,θ)∇V (θ′) +∇1K(θ′,θ). We also denote φ̄θ′(θ) = [φ̄θ′,1(θ), ..., φ̄θ′,d(θ)]>. We have

d∑
i=1

∥∥φ̄θ′,i(θ)
∥∥2

Lip
≤ 2 ‖∇V (θ′)‖2

∥∥∥e−‖·‖2/σ∥∥∥2

Lip
+ 2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

Lip

d∑
i=d

∥∥φ̄θ′,i(θ)
∥∥2

L∞
≤ 2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2 .

E.5 Proof of Main Theorems

E.5.1 Proof of Theorem E.1

The proof of this theorem is by verifying the condition of Theorem 3.2 of An and Huang [1996].
Suppose Θ = [θ1, ...,θMC+1], where C = c/η, we have

‖ψ (Θ)‖ =

∥∥∥∥∥∥θ1 + η

−∇V (θ1) + αφ[
1

M

M∑
j=1

δθ1+jC
](θk)


∥∥∥∥∥∥

=

∥∥∥∥∥∥θ1 − η∇V (θ1) +
ηα

M

M∑
j=1

[
e−‖θ1+jC−θ1‖2/σ 2

σ
(θ1 − θ1+jC)− e−‖θ1+jC−θ1‖2/σ∇V (θ1+jC)

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥θ1 − η∇V (θ1) +
2

σ

ηα

M

M∑
j=1

e−‖θ1+jC−θ1‖2/σθ1

∥∥∥∥∥∥
+

∥∥∥∥∥∥ηαM
M∑
j=1

e−‖θ1+jC−θ1‖2/σ 2

σ
(−∇V (θ1+jC)− θ1+jC)

∥∥∥∥∥∥
≤ ‖θ1 − η∇V (θ1)‖+

2αη

σ
‖K‖∞,∞ b1(1 + ‖θ1‖)

+
2αη

Mσ

M∑
j=1

‖K‖∞,∞ b1

(
1 + (1 +

1

b1
) ‖θ1+jC‖

)
(1)

≤ b1(1 +
4αη

σ
‖K‖∞,∞) + η2b1 + 2ηb1

+

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1

)
‖θ1‖+

2αη

σ
‖K‖∞,∞ (b1 + 1) max

i∈[MC+1]−{1}
‖θ1+jC‖

≤ b1(1 +
4αη

σ
‖K‖∞,∞) + η2b1 + 2ηb1

+ max

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1,

2αη

σ
‖K‖∞,∞ (b1 + 1)

)
max

i∈[MC+1]
‖θ1+jC‖ ,

where (1) is by Lemma E.1. Thus, given the step size η, if we choose η, α such that

max

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1,

2αη

σ
‖K‖∞,∞ (b1 + 1)

)
< 1,

then our dynamics is geometric ergodic.

E.5.2 Proof of Theorem E.2

Continuous-Time Mean Field Dynamics (5) Notice that as our dynamics has two phases and the
first phase can be viewed as an special case of the second phase by setting α = 0, here we only

analysis the second phase. Define Ut = sup
s≤t

√
E
∥∥θ̄s∥∥2

, and thus

∂

∂t
U2
t ≤ E

〈
θ̄t,−V (θ̄) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
∨ 0.
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Now we bound E
〈
θ̄t,−V (θ̄) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
:

E
〈
θ̄t,−V (θ̄t) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
≤b1 − a2E

∥∥θ̄t∥∥2
+ αE

∥∥θ̄t∥∥∥∥φ[πM,c ∗ ρ̄t](θ̄t)
∥∥

(1)

≤b1 − a2E
∥∥θ̄t∥∥2

+ α ‖K‖∞ E
∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θt‖)

]
≤b1 − a2E

∥∥θ̄t∥∥2
+ α ‖K‖∞ E

∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

[
b1 (‖θ′‖+ 1) +

2

σ
(‖θ′‖+ ‖θt‖)

]
=b1 −

(
a2 − ‖K‖∞

2α

σ

)
E
∥∥θ̄t∥∥2

+ α ‖K‖∞ E
∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

((
b1 +

2

σ

)
‖θ′‖+ b1

)
≤b1 −

(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞ E

∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

((
b1 +

2

σ

)
‖θ′‖+ b1

)
≤b1 −

(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞

(
b1 +

2

σ

)
1

M

M∑
j=1

UtUt−jc + α ‖K‖∞ b1Ut

≤b1 −
(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞

(
b1 +

2

σ

)
U2
t + α ‖K‖∞ b1(U2

t + 1)

≤ (b1 + 1)−
(
a2 − ‖K‖∞

2α

σ
− α ‖K‖∞

(
2b1 +

2

σ

))
U2
t ,

where (1) is by E.3. By the assumption that λ := a2 − ‖K‖∞
2α
σ − α ‖K‖∞

(
2b1 + 2

σ

)
> 0, we

have
∂

∂t
U2
t ≤

[
(b1 + 1)− λU2

t

]
∨ 0.

By Gronwall’s inequality, we have U2
t ≤ U2

0 + b1+1
λ . (If ∂

∂tU
2
t = 0, then Ut fix and this bound still

holds.) Notice that in the first phase, as α = 0, we have λ < a2 and thus this inequality also holds.

Discrete-Time Mean Field Dynamics (4) Similarly to the analysis of the continuous-time mean

field dynamics (5), we only give proof of the second phase. Define Uk = sup
s≤k

√
E
∥∥∥θ̃s∥∥∥2

, and thus

U2
k − U2

k−1 ≤
[
2ηE

〈
θ̃k−1,−∇V (θ̃k) + αφ[πM,c/η ∗ ρ̃k](θ̃k)

〉
+ 2η2

]
∨ 0.

By a similarly analysis, we have bound

E
〈
θ̃k−1,−∇V (θ̃k) + αφ[πM,c/η ∗ ρ̃k](θ̃k)

〉
≤ (b1 + 1)− λU2

t ,

where λ = a2 − ‖K‖∞,∞
2α
σ − α ‖K‖∞,∞

(
2b1 + 2

σ

)
> 0. And thus we have

U2
k − U2

k−1 ≤
[
2η
[
(b1 + 1)− λU2

k−1

]
+ 2η2

]
∨ 0.

It gives that

U2
k ≤

b1 + 1 + η

λ
+ U2

0 .

Practical Dynamics (3) The analysis of Practical Dynamics (3) is almost identical to that of the
discrete-time mean field dynamics (4) and thus is omitted here.

E.5.3 Proof of Theorem 4.1 and 5.1

Notice that the dynamics in Theorem 4.1 is special case of that in Theorem 5.1 and thus we only
prove Theorem 5.1 here. After some algebra, we can show that the continuity equation of dynamics
(6) is

∂tρt = ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[πM,c ∗ ρt](θt)] ρt + (D(θ) +Q(θ))∇ρt) .
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Notice that the limiting distribution satisfies

0
a.e.
= ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[πM,c ∗ ρ∞](θt)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

= ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[ρ∞](θt)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

= ∇ · ([− (D(θ) +Q(θ))∇V (θ)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

+ α∇ · (K ∗ (∇ρ∞ −∇V (θ)ρ∞) ρ∞) .

which implies that ρ∞ ∝ exp(−V (θ)) is the stationary distribution.

E.5.4 Proof of Theorem 4.2

In the later proof we use cd to represent the quantity√
Eθ∼ρ0 ‖θ‖

2
+

b1 + 1 + η

a2 − ‖K‖∞,∞
2α
σ − α ‖K‖∞,∞

(
2b1 + 2

σ

) .
Recall that there are two dynamics: the continuous-time mean field dynamics (5) and the discretized
version discrete-time mean field Dynamics (4). Notice that here we couple the discrete-time mean
field dynamics with the continuous-time mean field system using the same initialization. Given
any T = ηN , for any 0 ≤ t ≤ T , define t = b tη cη. We introduce an another continuous-time
interpolation dynamics:

θ̂t =

{
−∇V (θ̂t) + dBt, t ∈ [0,Mc)

−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t) + dBt, t ≥Mc,

ρ̂t = Law(θ̂t),

θ̂0 = θ̄0 ∼ ρ̄0,

Notice that here we couples this interpolation dynamics with the same Brownian motion as that of
the dynamics of θ̄t. By the definition of θ̂t, at any tk := kη for some integrate k ∈ [N ], θ̂tk and
θ̃k has the same distribution. Define ρ̄θ0

t = Law(θ̄t) conditioning on θ̄0 = θ0 and ρ̂θ0
t = Law(θ̂t)

conditioning on θ̂0 = θ0. Followed by the argument of proving Lemma 2 in Dalalyan [2017], if
k ≥ Mc

η , we have

DKL

[
ρ̄θ0
tk
‖ρ̂θ0
tk

]
=

1

4

∫ tk

0

E
∥∥∥−∇V (θ̂s) + αφ[πM,c ∗ ρ̂s](θ̂s) +∇V (θ̂s)− αφ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

=
1

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥−∇V (θ̂tj ) + αφ[πM,c ∗ ρ̂tj ](θ̂tj ) +∇V (θ̂s)− αφ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

≤3

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥∇V (θ̂tj )−∇V (θ̂s)

∥∥∥2

ds

+
3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

ds

≤3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̄s](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

=I1 + I2 + I3.

We bound I1, I2 and I3 separately.

Bounding I1 and I3 By the smoothness of∇V , we have∥∥∥∇V (θ̂tj )−∇V (θ̂s)
∥∥∥2

≤ b21
∥∥∥θ̂tj − θ̂s∥∥∥2

.
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And by Lemma E.3 (Lipschitz of Stein Operator), we know that

‖φ[πM,c ∗ ρ̄s](θ1)− φ[πM,c ∗ ρ̄s](θ2)‖

≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼πM,c∗ρ̄s ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
‖θ1 − θ2‖2 .

And by the Assumption 4.2 and that ρ̄s as finite second moment, we have

‖φ[πM,c ∗ ρ̄s](θ1)− φ[πM,c ∗ ρ̄s](θ2)‖
≤Ccd ‖θ1 − θ2‖2 .

Combine the two bounds, we have

I1 + I3 ≤
3Cc2d

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds.

Notice that θ̂t = θ̂t+
[
−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t)

]
(t− t)+

∫ t
t
dBs. By Itô’s lemma, it implies

that

I1 + I3 ≤
3Cc2d

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds

≤ 3Cc2d
4

∫ tj+1

tj

[
E
∥∥∥−∇V (θ̂s) + αφ[πM,c ∗ ρ̂s](θ̂s)

∥∥∥2

(s− tj)2 + 2d(s− tj)
]
ds

= Cc2dη
3
k−1∑
j=0

E
∥∥∥−∇V (θ̂tj ) + αφ[πM,c ∗ ρ̂tj ](θ̂tj )

∥∥∥2

+ Cc2ddkh
2.

By the assumption that E
∥∥∥θ̃tj∥∥∥ is finite and θ̃tj

d
= θ̂tj , E

∥∥∥θ̂tj∥∥∥2

is also finite, we have

E
∥∥∥−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t)

∥∥∥2

≤2E
∥∥∥∇V (θ̂t)

∥∥∥2

+ 2α2E
∥∥∥φ[πM,c ∗ ρ̂t](θ̂t)

∥∥∥2

≤4b21 + 4b21E
∥∥∥θ̂t∥∥∥2

+ 2α2E
((

2

σ
+ b1

)
Eθ′∼πM,c∗ρ̂t ‖θ′‖+ ‖θ‖

)2

≤c2dC.

Thus we conclude that

I1 + I3 ≤ Cc2d
(
c2dkη

3 + dkη2
)
.

Bounding I2
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E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

=E

∥∥∥∥∥ 1

M

M∑
l=1

[
φ[ρ̂tj−cl](θ̂tj )− φ[ρ̄s−cl](θ̂tj )

]∥∥∥∥∥
2

≤ 1

M

M∑
l=1

E
∥∥∥φ[ρ̂tj−cl](θ̂tj )− φ[ρ̄s−cl](θ̂tj )

∥∥∥2

=
1

M

M∑
l=1

E
∥∥∥Eθ∼ρ̂tj−cl φ̄θ̂tj

(θ)− Eθ∼ρ̄s−cl φ̄θ̂tj
(θ)
∥∥∥2

=
1

M

M∑
l=1

Eθ̂tj

d∑
i=1

∣∣∣Eθ∼ρ̂tj−cl φ̄θ̂tj ,i
(θ)− Eθ∼ρ̄s−cl φ̄θ̂tj ,i

(θ)
∣∣∣2

≤ 1

M

M∑
l=1

Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥L∞ ∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥Lip

)2

D2
BL

[
ρ̂tj−cl, ρ̄s−cl

]
By Lemma E.4 and the Assumption 4.4 that V is at most quadratic growth and that ρ̂t has finite
second moment, we have

Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥L∞ ∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥Lip

)2

=Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥2

L∞
∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥2

Lip

)

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθ̂tj

∥∥∥∇V (θ̂tj )
∥∥∥2
]

≤C(d+ c2d).

Plug in the above estimation, we have

I2 =
3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

ds

≤ α2C(d+ c2d)

k−1∑
j=0

∫ tj+1

tj

1

M

M∑
l=1

D2
BL

[
ρ̂tj−cl, ρ̄s−cl

]
ds

≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ tj+1

tj

DKL

[
ρ̂tj−cl, ρ̄s−cl

]
ds,

where the last inequality is due to the relation that D2
BL

definition
≤ D2

TV

Pinsker′s
≤ DKL.

Overall Bound Combine all the estimation, we have

DKL

[
ρ̄θ0
tk
‖ρ̂θ0
tk

]
≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ tj+1

tj

DKL

[
ρ̂tj−cl, ρ̄s−cl

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)

= α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ η

0

DKL

[
ρ̂t

( jη−clη )
, ρ̄t

( jη−clη )
+s

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)
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Similar, if k ≤ Mc
η − 1, we have

DKL

[
ρ̄θ0
tk
‖ρ̂θ0
tk

]
=

1

4

∫ tk

0

E
∥∥∥∇V (θ̂s)−∇V (θ̂s)

∥∥∥2

ds

≤b
2
1

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds

≤b
2
1η

3

12

k−1∑
j=0

E
∥∥∥∇V (θ̂tj )

∥∥∥2

+
dkb21η

2

4

≤b
2
1η

3kc2d
12

+
dkb21η

2

4
.

Define
uk = sup

s∈[tk,tk+1]

DKL

[
ρ̄θ0
s ‖ρ̂θ0

s

]
,

and Uk = max
l∈{0,...,k}

ul. We conclude that for k ≥ Mc
η , for any k′ ≤ k,

uk′ ≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ h

0

DKL

[
ρ̂t

( jη−clη )
, ρ̄t

( jη−clη )
+s

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)

≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

ηu( jη−clη ) + Cc2d
(
c2dkη

3 + dkη2
)

≤ α2C(d+ c2d)η

k−1∑
j=0

Uj + Cc2d
(
c2dkη

3 + dkη2
)
.

For k < Mc
η , which is a simpler case, we have

Uk ≤ C
(
η3kc2d + dkη2

)
< CMc

(
ηc2d + d

)
η.

We bound the case when k ≥ Mc
η ,

Uk ≤ α2C(d+ c2d)η

k−1∑
j=0

Uj + Cc2d
(
c2dkη

3 + dkη2
)
.

If we take η sufficiently small, such that c2dkη
3 ≤ dkη2, we have

Uk ≤ α2C(d+ c2d)η

k−1∑
j=0

Uj + 2Cc2ddkη
2

≤ α2C(d+ c2d)η

k−1∑
j=0

(Uj + η) .

Define η′ = α2C(d + c2d)η and we can choose η small enough such that η′ < 1/2 and η < 1/2.
Without loss of generality, we also assume η′ ≥ η and thus we have

Uk ≤ η′
k−1∑
j=0

(Uj + η′) .

Also we assume Uk ≥ η′, otherwise we conclude that Uk < η′. We thus have Uk ≤ q
∑k−1
j=0 Uj ,

where q = 2η′. Suppose that UMc
η −1 = x ≤ CMc

(
ηc2d + d

)
η and some algebra (which reduces to

Pascal’s triangle) shows that
Uk ≤ xq(1 + q)k−

Mc
η .
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We conclude that Uk ≤ xq(1 + q)k−1. Notice that q = 2α2C(d+ c2d)η. Thus for any k ≥Mc/η,

Uk ≤ xq(1 + q)k−
Mc
η

= xq(1 + q)(kη−Mc)/η

= xq(1 + q)2α2C(d+c2d)(kη−Mc)/q

≤ x2α2C(d+ c2d)e
2α2C(d+c2d)(kη−Mc)η

≤ CMcα2
(
ηc2d + d

)
(d+ c2d)e

2α2C(d+c2d)(kη−Mc)η2,

for sufficiently small η. Combine the above two estimations, we have

Uk ≤

{
C
(
η3kc2d + dkη2 + η

)
k ≤Mc/η − 1

CMcα2
(
ηc2d + d

)
(d+ c2d)e

2α2C(d+c2d)(kη−Mc)η2 + Cη k ≥Mc/η
.

Notice that now we have Uk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL

[
ρ̄θ0

lη+s‖ρ̃
θ0

lη

]
, which is a function of θ0. We

then bound Ūk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL [ρ̄lη+s‖ρ̃lη]. Notice that the KL divergence has the following

variational representation:

DKL[ρ1‖ρ2] = sup
f

[
Eρ1f − Eρ2ef

]
,

where the f is chosen in the set that Eρ1f and Eρ2ef exist. And thus we have

DKL[ρ̄lη+s‖ρ̃lη] = sup
f

[
Eθ0∼ρ0

(
E
ρ̄
θ0
lη+s

f − E
ρ̃
θ0
lη

ef
)]

≤ Eθ0∼ρ0 sup
f

[(
E
ρ̄
θ0
lη+s

f − E
ρ̃
θ0
lη

ef
)]
.

And thus Ūk ≤ Uk. Also the inequality that

Ūk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL [ρ̄lη+s‖ρ̃lη] ≥ max
l∈{0,...,k}

DKL [ρ̄lη‖ρ̃lη]

holds naturally by definition. We complete the proof.

E.5.5 Proof of Theorem 4.3

The constant h1 is defined as

h1 =

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

∨
∥∥∥e−‖·‖2/σ∥∥∥2

BL
∨
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

Now we start the proof. We couple the process of θk and θ̃k by the same gaussian noise ek in every

iteration and same initialization θ̃0 = θ0. For k ≤Mc/η−1, E
∥∥∥θk − θ̃k∥∥∥2

= 0 and for k ≥Mc/η

we have the following inequality,

E
∥∥∥θk+1 − θ̃k+1

∥∥∥2

− E
∥∥∥θk − θ̃k∥∥∥2

=2ηE
〈
θk − θ̃k,−∇V (θk) +∇V (θ̃k)

〉
+2ηαE

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉

+η2E

∥∥∥∥∥∥−∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk) +∇V (θ̃k)− αφ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥∥∥∥
2

.
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By the log-concavity, we have

E
〈
θk − θ̃k,−∇V (θk) +∇V (θ̃k)

〉
≤− LE

∥∥∥θk − θ̃k∥∥∥2

,

for some positive constant L. And also, as η is small, the last term on the right side of the equation
is small term. Thus our main target is to bound the second term. We decompose the second term on
the left side of the equation by

E

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc ](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉

=E

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

〉

+E
〈
θk − θ̃k, φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

〉
+E

〈
θk − θ̃k, φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉
=I1 + I2 + I3.

We bound I1, I2 and I3 independently.

Bounding I1
By Holder’s inequality,

I1 ≤ E

∥∥∥θk − θ̃k∥∥∥
∥∥∥∥∥∥φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥


≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√√√√√E

∥∥∥∥∥∥φ[
1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥
2

.

We bound the second term on the right side of the inequality. Define

a2 = sup
k

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥2

sup
‖θ‖≤B

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc/η ](θ)− φ[πM,c/η ∗ ρk](θ)

∥∥∥2

and by the regularity assumption we know that a2 < ∞. Define φ[ 1
M

∑M
j=1 δθk−jc/η ](θ) −

φ[πM,c/η ∗ ρk](θ) = φ∗[ 1
M

∑M
j=1 δθk−jc/η ] and since the stein operator is linear functional of the

distribution, we have

Eφ∗[
1

M

M∑
j=1

δθk−jc/η ](θ) = 0,

given any θ. By Theorem E.1 that Θk is geometric ergodicity and thus is β-mixing with exponen-
tially fast decay rate by Proposition E.2. And by Proposition E.1, we know that Θk is also α-mixing
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with exponentially fast decay rate. We have the following estimation

E

∥∥∥∥∥∥φ[
1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥
2

≤a2 sup
‖θ‖≤B

E

∥∥∥∥∥∥φ∗[ 1

M

M∑
j=1

δθk−jc/η ](θ)

∥∥∥∥∥∥
2

≤ a2

M2
sup
‖θ‖≤B

E
M∑
k=1

∥∥φ∗[δθt−kc/η ](θ)
∥∥2

+
a2

M2
sup
‖θ‖≤B

E
∑
k 6=j

〈
φ∗[δθt−kc/η ](θ), φ∗[δθt−jc/η ](θ)

〉
≤Ca2

M

[
e−rc

(
1− e−rMc

)
1− erc

+ 1

]
,

for some positive constant r that characterize the decay rate of α mixing. Notice that here η is
canceled because the decay rate of mixing isO(η) (on the power of exponential) and c/η = O(η−1).
Combine this two estimations, we have

I1 ≤
√

E
∥∥∥θk − θ̃k∥∥∥2

√
a2C

M

[
e−rc (1− e−rMc)

1− erc
+ 1

]
.

Bounding I2 By Holder’s inequality, we have

I2 ≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√
E
∥∥φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

∥∥2
.

We bound the second term in the right side of the inequality.

E
∥∥φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

∥∥2

=E

∥∥∥∥∥∥ 1

M

M∑
j=1

[
φ[ρk−jc/η](θk)− φ[ρ̃k−jc/η](θk)

]∥∥∥∥∥∥
2

≤ 1

M

M∑
j=1

E
∥∥φ[ρk−jc/η](θk)− φ[ρ̃k−jc/η](θk)

∥∥2

=
1

M

M∑
j=1

Eθk

∥∥Eθ∼ρk−jc/η φ̄θk(θ)− Eθ∼ρ̃k−jc/η φ̄θk(θ)
∥∥2

=
1

M

M∑
j=1

Eθk

d∑
i=1

∣∣Eθ∼ρk−jc/η φ̄θk,i(θ)− Eθ∼ρ̃k−jc/η φ̄θk,i(θ)
∣∣2

≤ 1

M

M∑
j=1

Eθk

d∑
i=1

(∥∥φ̄θk,i(·)∥∥L∞ ∨ ∥∥φ̄θk,i(·)∥∥Lip

)2

D2
BL

[
ρk−jc/η, ρ̃k−jc/η

]
.

By Lemma E.4, we have
d∑
i=1

(∥∥φ̄θk,i(·)∥∥L∞ ∨ ∥∥φ̄θk,i(·)∥∥Lip

)2

=

d∑
i=1

(∥∥φ̄θk,i(·)∥∥2

L∞
∨
∥∥φ̄θk,i(·)∥∥2

Lip

)
≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
‖∇V (θk)‖2

]
.
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Plug in the above estimation and by the relation that DBL ≤W1 ≤W2, we have

E ‖φ[πM,c ∗ ρk](θk)− φ[πM,c ∗ ρ̃k](θk)‖2

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθk ‖∇V (θk)‖2

]
1

M

M∑
j=1

D2
BL [ρk−cj , ˜ρk−cj ]

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθk ‖∇V (θk)‖2

]
1

M

M∑
j=1

W2
2 [ρk−cj , ˜ρk−cj ] .

And combined all the estimation and by the definition of Wasserstein-distance, we conclude that

I2 ≤

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
Eθk ‖∇V (θk)‖2

√√√√ 1

M

M∑
j=1

W2
2 [ρk−cj , ρ̃k−cj ]

≤

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
Eθk ‖∇V (θk)‖2

√√√√ 1

M

M∑
j=1

E
∥∥∥θk−cj − θ̃k−cj∥∥∥2

.

Bounding I3
By Holder’s inequality,

I3 ≤
√

E
∥∥∥θk − θ̃k∥∥∥2

√
E
∥∥∥φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥2

.

We bound the last term on the right side of the inequality. By assumption and Lemma E.3, we have

E
∥∥∥φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥2

≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]2

E
∥∥∥θk − θ̃k∥∥∥2

.

And combine the estimation, we have

I3 ≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
E
∥∥∥θk − θ̃k∥∥∥2

.

Overall Bound Combine all the results, we have the following bound: for k ≥Mc,

E
∥∥∥θk+1 − θ̃k+1

∥∥∥2

− E
∥∥∥θk − θ̃k∥∥∥2

≤− 2ηLE
∥∥∥θk − θ̃k∥∥∥2

+2ηα

√
E
∥∥∥θk − θ̃k∥∥∥2 c1√

M

+2ηαc2

√√√√ 1

M

M∑
j=1

E
∥∥∥θk−jc/η − θ̃k−jc/η∥∥∥2

E
∥∥∥θk − θ̃k∥∥∥2

+2ηαc3E
∥∥∥θk − θ̃k∥∥∥2

+η2c4,

where

c1 =

√
a2C

[
e−rc (1− e−rMc)

1− erc
+ 1

]
,
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c2 =

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
sup
k

Eθk ‖∇V (θk)‖2,

c3 =

[∥∥∥e−(·)2/σ
∥∥∥

Lip
sup
k

Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
,

and

c4 = sup
k≥Mc/η

E

∥∥∥∥∥∥∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk)−∇V (θ̃k)− αφ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥∥∥∥
2

.

Define uk =

√
E
∥∥∥θk − θ̃k∥∥∥2

and Uk = sup
l∈[k]

ul, we have

U2
k+1 ≤ qU2

k +
2ηαc1√
M

Uk + η2c4,

where q = (1 − 2η(L − αc2 − αc3)). By the assumption that α ≤ L/(c2 + c3), q < 1. Now we

prove the bound of Uk by induction. We take the hypothesis that U2
k ≤

(
2ηαc1√
M

+(1−q)η(c4+ 1
1−q )

)2

(1−q)2

and notice that the hypothesis holds for U0 = 0. By the hypothesis, we have

U2
k+1 ≤ q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 +
2ηαc1√
M

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))
(1− q)

+ η2

(
c4 +

1

1− q

)

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 +
1

1− q

(
2ηαc1√
M

)2

+
2ηαc1√
M

η

(
c4 +

1

1− q

)
+ η2

(
c4 +

1

1− q

)

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

+
1− q

(1− q)2

[(
2ηαc1√
M

)2

+ (1− q)2ηαc1√
M

η

(
c4 +

1

1− q

)
+ (1− q)η2

(
c4 +

1

1− q

)]

≤ q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

+
1− q

(1− q)2

[(
2ηαc1√
M

)2

+ (1− q)2ηαc1√
M

η

(
c4 +

1

1− q

)
+ (1− q)2η2

(
c4 +

1

1− q

)2
]

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 + (1− q)

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

=

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 ,
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where the last second inequality holds by (1− q)
(
c4 + 1

1−q

)
≥ 1. Thus we complete the argument

of induction and we have, for any k,

U2
k ≤

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

≤ 2

4η2α2c21
M + 2(1− q)2η2

(
c4 + 1

1−q

)2

(1− q)2

=
2α2c21

(L− αc2 − αc3)2

1

M
+ 4η2 (c4 + 2η(L− αc2 − αc3))

2
.

And it implies that W2
2[ρk, ρ̃k] ≤ uk ≤ Uk ≤ 2α2c21

(L−αc2−αc3)2
1
M + 4η2 (c4 + 2η(L− αc2 − αc3))

2
.

E.6 Proof of Technical Lemmas

E.6.1 Proof of Lemma E.1

For the first part:

‖∇V (θ)‖
≤‖∇V (θ)−∇V (0)‖+ ‖∇V (0)‖
≤b1 (‖θ1‖+ 1) .

For the second part:

‖θ − η∇V (θ)‖
= 〈θ − η∇V (θ),θ − η∇V (θ)〉
= ‖θ‖2 + 2η 〈θ,−∇V (θ)〉+ η2 ‖∇V (θ)‖2

≤‖θ‖2 + 2η
(
−a1 ‖θ‖2 + b1

)
+ η2b1(1 + ‖θ‖2)

=
(
1− 2ηa1 + η2b1

)
‖θ‖2 + η2b1 + 2ηb1.

E.6.2 Proof of Lemma E.2

It is obvious that ‖K‖∞,∞ ≤ 1.

‖K(θ′,θ1)−K(θ′,θ2)‖∥∥∥e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

∥∥∥
≤
∥∥∥e−(·)2/σ

∥∥∥
Lip
‖θ1 − θ2‖2 .

And

‖∇θ′K(θ′,θ1)−∇θ′K(θ′,θ2)‖

=

∥∥∥∥ 2

σ
e−‖θ

′−θ1‖2/σ (θ′ − θ1)− 2

σ
e−‖θ

′−θ2‖2/σ (θ′ − θ2)

∥∥∥∥
≤
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .
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E.6.3 Proof of Lemma E.3

For any distribution ρ such that
∫
‖∇θV (θ)‖ ρ(θ)dθ <∞,

‖φ[ρ](θ1)− φ[ρ](θ2)‖
= ‖Eθ∼ρ {− [K(θ,θ1)−K(θ,θ2)]∇V (θ) +∇1K(θ,θ1)−∇1K(θ,θ2)}‖

≤
∥∥∥e−(·)2/σ

∥∥∥
Lip

Eθ∼ρ ‖∇V (θ)‖ ‖θ1 − θ2‖2

+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .

For proving the second result, we notice that
‖φ[ρ](θ)‖ = Eθ′∼ρ [K(θ′,θ)∇V (θ′) +∇1K(θ′,θ)]

≤ ‖K‖∞ Eθ′∼ρ

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θ‖)

]
≤ ‖K‖∞ b1 + Eθ′∼ρ

[(
2

σ
+ b1

)
‖θ′‖+ ‖θ‖

]
.

E.6.4 Proof of Lemma E.4

Given any θ′,

d∑
i=1

∥∥φ̄θ′,i(θ)
∥∥2

Lip

=

d∑
i=1

[
sup

θ1 6=θ2

∣∣φ̄θ′,i(θ1)− φ̄θ′,i(θ2)
∣∣

‖θ1 − θ2‖2

]2

=

d∑
i=1

sup
θ1 6=θ2

∣∣φ̄θ′,i(θ1)− φ̄θ′,i(θ2)
∣∣2

‖θ1 − θ2‖22

≤2

d∑
i=1

sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)
∂
∂θ′i

V (θ′)
∣∣∣2

‖θ1 − θ2‖22

+2

d∑
i=1

sup
θ1 6=θ2

∣∣∣ 2
σ e
−‖θ′−θ1‖2/σ(θ1,i − θ′i)− 2

σ e
−‖θ′−θ2‖2/σ(θ2,i − θ′i)

∣∣∣2
‖θ1 − θ2‖22

.

For the first term on the right side of the inequality,

d∑
i=1

sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)
∂
∂θ′i
V (θ′)

∣∣∣2
‖θ1 − θ2‖22

=

d∑
i=1

∣∣∣∣ ∂∂θiV (θ′)

∣∣∣∣2 sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)∣∣∣2
‖θ1 − θ2‖22

= ‖∇V (θ′)‖2
∥∥∥e−‖·‖2/σ∥∥∥2

Lip
.

To bound the second term, by the symmetry of each coordinates, we have

d∑
i=1

sup
θ1 6=θ2

∣∣∣ 2
σ e
−‖θ′−θ1‖2/σ(θ1,i − θ′i)− 2

σ e
−‖θ′−θ2‖2/σ(θ1,i − θ′i)

∣∣∣2
‖θ1 − θ2‖22

=d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

Lip

.
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This finishes the first part of the lemma.

d∑
i=d

∥∥φ̄θ′,i(θ)
∥∥2

L∞

=

d∑
i=d

∥∥∥∥e−‖θ′−θ‖2/σ ( 2

σ
θi −

2

σ
θ′i −

∂

∂θ′i
V (θ′)

)∥∥∥∥2

L∞

≤
d∑
i=d

2

∥∥∥∥ 2

σ
e−‖θ

′−θ‖2/σ (θi − θ′i)
∥∥∥∥2

L∞
+

d∑
i=d

2

∥∥∥∥e−‖θ′−θ‖2/σ ∂

∂θ′i
V (θ′)

∥∥∥∥2

L∞

≤
d∑
i=d

2

∥∥∥∥ 2

σ
e−‖θ

′−θ‖2/σ (θi − θ′i)
∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2

≤2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2 .
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