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Abstract

Recently there has been a surge of interest in understanding implicit regu-
larization properties of iterative gradient-based optimization algorithms. In
this paper, we study the statistical guarantees on the excess risk achieved
by early-stopped unconstrained mirror descent algorithms applied to the
unregularized empirical risk with the squared loss for linear models and
kernel methods. By completing an inequality that characterizes convexity
for the squared loss, we identify an intrinsic link between offset Rademacher
complexities and potential-based convergence analysis of mirror descent
methods. Our observation immediately yields excess risk guarantees for the
path traced by the iterates of mirror descent in terms of offset complexities
of certain function classes depending only on the choice of the mirror map,
initialization point, step-size, and the number of iterations. We apply our
theory to recover, in a clean and elegant manner via rather short proofs,
some of the recent results in the implicit regularization literature, while also
showing how to improve upon them in some settings.1

1 Introduction

In a typical statistical learning setup, we observe a dataset Dn of n input-output pairs
(xi, yi) ∈ Rd × R sampled i.i.d. from some unknown distribution P . When learning with
respect to the quadratic loss, the goal is to output a function ĝ = ĝ(Dn) : Rd → R which
minimizes the risk R(ĝ) defined as follows, for any square-integrable function g:

R(g) = E(X,Y )∼P

[
(g(X)− Y )2

]
.

Among the most studied statistical estimators is the empirical risk minimization (ERM)
algorithm, which given a function class G outputs a function ĝG = ĝG(Dn) defined as

ĝG ∈ arg min
g∈G

Rn(g), where Rn(g) := 1
n

n∑
i=1

(g(xi)− yi)2, (1)

in some cases with a regularization penalty term added to the optimization objective Rn(g),
such as `p norm of the model parameters. We consider the non-realizable or agnostic setting,
i.e., the case in which there is no assumption that E[Y |X] is determined by a well-specified
model from a reference class of functions. In the agnostic case, a key performance measure
of an estimator ĝ is its excess risk with respect to some reference class of functions F :

E(ĝ,F) = R(ĝ)− inf
f∈F

R(f).

1For a full version of this paper see [39].
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(a) Explicit regularization.
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(b) Implicit regularization.

Figure 1: Consider a distribution P such that X ∼ N(0, Id) and Y |X = x ∼ 〈α′, x〉+N(0, 52)
for some parameter α′ ∈ Rd. Fix n = 200, d = 100 and let α′ be a 10-sparse vector with non-
zero entries equal to ±1. Due to the sparsity of α′, explicit regularization via `1 penalization
results in a class of models (αλ)λ≥0 that at its minimum achieves significantly lower risk than
the class of models generated via `2 penalization (cf. Figure 1a). Figure 1b demonstrates
a similar phenomenon from an implicit regularization point of view. Due to the sparsity
of α′, the choice of a hyperbolic entropy mirror map (cf. Section 4) yields an optimization
path that at its minimum achieves excess risk nearly an order of magnitude lower than the
path generated by the vanilla gradient descent updates. In the plot above, the solid lines
denote means over 100 runs whereas the shaded regions correspond to the 10th and the 90th

percentiles.

Traditionally, in learning theory, statistical and computational properties of ERM estimators
have been considered separately. From a statistical point of view, localized complexity
measures have become a default tool in statistical learning theory and empirical processes
theory for controlling the excess risk of ERM algorithms ĝG with respect to the function
class G itself, i.e., for controlling E(ĝG ,G) [7, 20]. A rich and general theory regarding these
complexity measures has been developed and used to provide excess risk bounds in both
classification and regression settings, yielding minimax-optimal results in several cases. Such
complexity measures depend on combinatorial or geometric parameters of interest, such as
the VC-dimension or eigenvalue decay of the kernel matrix and, in particular, they serve
as a guiding principle to choose a suitable explicit regularizer for a set of candidate models
(ĝGλ)λ∈Λ, where λ ∈ Λ is a hyper-parameter that controls the amount of regularization. In
practice, some λ? ∈ Λ is then chosen via some model selection procedure such as cross-
validation, aiming to select a model with the smallest risk. From a computational point
of view, computing the estimators (ĝGλ)λ∈Λ can be done by solving the corresponding
optimization problems defined in Equation (1), one for each λ ∈ Λ. An appealing aspect of
this approach is that the design and analysis of efficient optimization algorithms, exploiting
the geometry of Gλ that arises from the the structure of the model as well as the distribution
P , can be done independently of the statistical analysis of its performance.
Recent years have also witnessed an increased interest in directly studying the statistical
properties of models trained by gradient-based methods, particularly in relation to the notions
of implicit regularization and early stopping. For a family of functions G = {gα : α ∈ Rm}
parametrized by a vector α, such methods are fully characterized by the initialization point
α0 and an update rule, which given αt and the gradient of the empirical risk at αt, generates
the next iterate αt+1, yielding a set of candidate estimators (ĝαt)t≥0. Early stopping has an
effect akin to explicit regularization discussed above, and the stopping time t? can be chosen
in practice via cross-validation, just as in the case of choosing the explicit regularization
parameter λ? corresponding to the best model among (ĝGλ)λ∈Λ. In modern large-scale
machine learning applications, early stopping is often the preferred way to perform model
selection, since obtaining a new model is as cheap as performing a step of gradient descent,
as opposed to solving a new optimization problem with a different regularization parameter.
In Figure 1, we demonstrate that different choices of optimization algorithms applied to the
unregularized empirical risk Rn yield different statistical performance along the optimization
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path (ĝαt)t≥0, in a similar way that a choice of an explicit regularizer affect the statistical
performance along the corresponding regularization path.
It is by now well understood that changing the update rule that generates the sequence
(ĝαt)t≥0, e.g., by changing the optimization algorithm or parametrization of the model
class, can directly affect both the statistical properties of the iterates ĝαt , as well as
computational properties, such as an upper-bound on the optimal stopping time t?. However,
most of the literature has focused on the investigation of vanilla gradient descent updates:
αt+1 = αt − η∇αtRn(ĝαt) (cf. Section 2.1). The existing theory does not easily generalize to
other update rules corresponding to different problem geometries. A general theory that
connects the notion of early stopping for a more general class of update rules with the
well-established theory of localized complexities is still missing. More broadly, a general
“language” to reason about the statistical properties of trajectories traced by optimization
algorithms applied to the unregularized empirical risk is still lacking.
In this paper, we study a family of update rules given by the mirror descent algorithm [27, 9].
Mirror descent, which includes vanilla gradient descent as a special case, is increasingly
becoming the tool of choice in optimization and machine learning, applied well beyond
the traditional settings of convex optimization and online learning. Among the properties
that make mirror descent appealing are its ability to exploit non-Euclidean geometries via
properly designed mirror maps, the fact that the algorithm admits a general potential-based
convergence analysis in terms of Bregman divergences, and its ability to represent a large
class of algorithms in a unified and well-developed framework.
We consider a setting where conditionally on the observed data Dn there exists a matrix
Z ∈ Rn×m such that the parametric family of functions {gα : α ∈ Rm} satisfies gα(xi) = (Zα)i
for all i = 1, . . . , n. As special cases, our setup admits linear regression and kernel methods
(cf. Section 4), cornerstones of modern statistics and machine learning. Our work reveals an
inherent connection between the statistical properties of the mirror descent iterates (ĝαt)t≥0
and the notion of offset Rademacher complexity [23]. Consequently, our work unearths a
simple and elegant way to simultaneously analyze upper-bounds on the stopping time t?, as
well as the excess risk E(ĝαt ,F) for all t ≤ t? in terms of the mirror map, the initialization
point α0, the step-size, and the function class F . Through a simple one page analysis, we
are able to rederive (nearly identical) results from prior work connecting early stopping
and (optimal) statistical performance that previously involved several pages of low-level
arguments.2 Additionally, in the well-studied case of Euclidean gradient descent, our work
improves upon the prior results connecting early stopping to localized complexity measures
[32, 42] by providing upper-bounds on the expected excess risk without any distributional
assumptions on P other than boundedness (cf. Section 2.1).

1.1 Background

In this section, we describe offset Rademacher complexities, a form of localization based
on mathematical machinery that is more suitable for our setting than that used to develop
classical localized complexities [7, 20] (see [39] for an extended discussion). Then, we define
the mirror descent updates and outline a well-known potential-based proof of its convergence
In what follows, we let ‖g−f‖2n = 1

n

∑n
i=1(g(xi)−f(xi))2 and ‖g−f‖2P = E[(g(X)− f(X))2]

denote the empirical and population `2 distances between functions g and f , respectively.
Further, given a function class F , we denote by gF ∈ F a function that attains risk equal to
infg∈F R(g).3 A table of notation is provided in the full version of this paper [39].

2In some cases, the results we obtain are not exactly comparable to the ones obtained in the
related work, as some of our assumptions are considerably weaker, e.g. non-realizable setting, and
our guarantees stronger, excess risk vs bounds in ‖·‖2

n or ‖·‖2
P norms defined in Section 1.1. However,

in some applications we require boundedness which is not required in some of the prior work, and
some of our results are stated only in expectation, rather than high probability. We note that we
can also easily obtain high-probability results in some settings (e.g. heavy-tailed classes under the
lower-isometry assumption) that are outside the scope of the related work in the early stopping
literature. See the full version of this paper [39] for an extended discussion.

3If such a function gF does not exist, we can redefine gF to be any function in F such that
R(gF ) ≤ infg∈F R(g) + δ for any arbitrarily small δ > 0.
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Offset Rademacher complexities. When learning with the quadratic loss, a theory
of localization based on shifted Rademacher processes was developed by Liang et al. [23]
inspired by prior work in online learning [30]. The use of shifted empirical processes in order
to bypass technicalities present in the classical localization arguments date back at least
to [41] and have recently found applications in cross-validation [21], classification [47] and
PAC-Bayes bounds [44]. For a function class G, a dataset Dn, an independent sequence of
Rademacher random variables σ1, . . . , σn, and any c ≥ 0, the empirical offset Rademacher
complexity is defined as, conditionally on the observed data Dn:

Rn(G, c) = Eσ1,...,σn

[
sup
g∈G

{
1
n

n∑
i=1

(2σig(xi)− cg(xi)2)
}]

.

Note that since the terms −cg(xi)2 are always non-positive, the above notion of complexity
is never larger than global Rademacher complexity of the class G, which is recovered with
c = 0. On the other hand, for any c > 0, the quadratic term in the above definition has a
localization effect by compensating for the fluctuations in the term involving Rademacher
variables (see Section 5.2 and the discussion following Theorem 3 in [23]). Importantly, the
theory of localization via offset complexities replaces the Bernstein condition used in the
classical theory of localization by the offset condition defined below.
Definition 1 (Offset condition). A triple (P,F , ĝ) satisfies the offset condition with parame-
ters ε ≥ 0, c > 0, if for Dn ∼ Pn, with probabilty 1, we have Rn(ĝ)−Rn(gF )+c‖ĝ−gF‖2n ≤ ε.

The above condition with ε = 0 was introduced in [23] where it was called the geometric
inequality and shown to hold for ERM estimators over convex classes F as well as the
two-step star estimator [4] over general classes for finite aggregation.4 A key advantage
offered by the theory of offset complexities is that the range of ĝ need not be a subset
of F , as long as the offset condition is satisfied. This allows us to consider very general
estimators ĝ, possibly with non-convex ranges G. In this respect, our work can be seen
as showing that early-stopped mirror descent satisfies the offset condition defined above.
Once an estimator is shown to satisfy the offset condition, its excess risk E(ĝ,F) can be
controlled in terms of the offset complexity Rn(G − gF , c). The theory developed in [23]
establishes high-probability bounds under the lower-isometry assumption, which can hold
even for possibly heavy-tailed classes ([23, Theorem 4]), as well as bounds in expectation
under no assumptions other than boundedness ([23, Theorem 3]). The result in expectation
states that given supg∈G∪gF |g|∞ ≤ B and ‖Y ‖L∞(P ) ≤M for some B,M > 0, we have

E[E(ĝ,F)] ≤ c1E[Rn(G − gF , c2)] + ε,

where c1 = (4 + c/2)B+ 2M and c2 = c/(4(B+M)(2 + c)) and the expectation is taken over
datasets Dn; here c and ε are those that appear in the offset condition. The generality of the
above result allows us to improve upon the existing bounds in the early stopping literature
even for gradient descent updates (cf. Section 2.1).

Mirror descent. The key object characterizing the geometry of the mirror descent al-
gorithm is the mirror map ψ, a strictly convex and differentiable function mapping some
open set D ⊆ Rm to R whose gradient is surjective, i.e. {∇ψ(α) | α ∈ D} = Rm. By
slightly abusing notation, we use Rn(α) := Rn(gα) to denote the empirical risk of gα. When
optimizing the empirical risk Rn(α), the mirror descent updates in continuous and discrete
time are given respectively by

d

dt
αt = −

(
∇2ψ(αt)

)−1∇Rn(αt) and ∇ψ(αt+1) = ∇ψ(αt)− η∇Rn(αt), (2)

where η > 0 is the step-size. We remark that the choice ψ(α) = 1
2 ‖α‖

2
2 reduces the above

updates to gradient descent. A key notion in the analysis of mirror descent algorithms is the
Bregman divergence, defined as Dψ(α′, α) = ψ(α′)− ψ(α)− 〈∇ψ(α), α′ − α〉 for all α′, α in
the domain of ψ. By convexity of ψ, the Bregman divergence Dψ is non-negative and enters
the analysis of mirror descent algorithms through the following elementary equality:

− d

dt
Dψ(α′, αt) = 〈−∇Rn(αt), α′ − αt〉 . (3)

4The ε term affects the resulting excess risk bounds only by an additive term equal to ε, which
can be chosen to be arbitrarily small in our main results (cf. the full version of this paper [39]).
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Let ᾱt = 1
t

∫ t
0 αtdt. In the optimization literature, the above equation can be used to establish

that Rn(ᾱt) can get arbitrarily close to Rn(α′) from above, for any reference point α′. In
particular, by convexity of Rn, we have 〈−∇Rn(αt), α′ − αt〉 ≥ Rn(αt)−Rn(α′) and so

1
t
Dψ(α′, α0) ≥ 1

t

∫ t

0
− d

ds
Dψ(α′, αs)ds ≥

1
t

∫ t

0
Rn(αs)−Rn(α′)ds ≥ Rn(ᾱt)−Rn(α′), (4)

where the last line follows by convexity of Rn. Remarkably, the above proof works in-
dependently of the choice of the mirror map ψ, establishing convergence for a family of
algorithms in a unified framework. For more information we refer the interested reader to
the surveys by Bubeck [10] and Bansal and Gupta [6]. The latter survey focuses entirely on
such potential-based proofs in a variety of settings, including acceleration.

2 Summary of Techniques and Main Results

We develop a general theory for learning linear models (including kernel machines) with the
squared loss that shows how the optimization trajectory of unconstrained mirror descent
applied to minimize the unregularized empirical risk is inherently connected to excess risk
guarantees via offset Rademacher complexity. Unlike in most prior work on early stopping,
the notion of statistical complexity appears naturally from intrinsic properties of mirror
descent applied to the unregularized empirical risk, without invoking lower-level arguments
related to concentration to the fictitious population version of the algorithm. Furthermore,
our theory leads to an explicit characterization of stopping times from the point of view of
both optimization and statistics, which directly yields excess risk bounds and allows us to
re-derive previously established results, and some new results, in a much simpler fashion.
As discussed in Section 1.1, early-stopped unconstrained iterative algorithms do not easily fit
within the mathematical framework of classical localization techniques, partially explaining
the scarcity of results connecting localized complexity measures with such algorithms. Offset
Rademacher complexities, on the other hand, open up another avenue for establishing
such connections via the design of update rules tailored to satisfy the offset condition (cf.
Definition 1). Instead of optimizing the empirical risk Rn, a natural approach to consider
is an application of some iterative optimization algorithm to directly minimize the term
appearing in the definition of the offset condition: R̃α′, cn (α) = Rn(α)−Rn(α′) + c‖gα− gα′‖2n.
For any c > 0, the gradient ∇αR̃α

′, c
n (α) depends on the unknown reference point α′ and

hence cannot be computed in practice. Remarkably, we show that the mirror descent updates
applied to the empirical loss Rn simultaneously implicitly minimizes R̃α′, 1n for all reference
points α′ up to a certain stopping time (which depends on α′), while also staying inside
a certain Bregman “ball” centered at α′ up to the corresponding stopping time. While
mirror descent was developed within the framework of convex optimization, it has also found
applications in a wide range of problems including bandits [1], online learning [19], the
k-server problem [11] and metrical task systems [12]. In this respect, our work can be seen
as an exposition of yet another example where mirror descent naturally solves a problem
outside of its originally intended scope.
The key insight behind our main result is the following identity, linking the potential-based
analysis of mirror descent (cf. Section 1.1) to the statistical guarantees derived from offset
complexities via the offset condition (cf. Definition 1).
Lemma 1. For any α, α′ ∈ Rm, the following holds:

〈−∇Rn(α), α′ − α〉 = Rn(α)−Rn(α′) + ‖gα − gα′‖2n.

Proof. Recall that there exists some Z ∈ Rn×m such that for any parameter α we have
gα(xi) = (Zα)i (cf. Section 1). Hence, we can write Rn(α) = 1

n‖Zα− y‖
2
2, where y ∈ Rn is

a vector with the ith entry equal to yi and also, ‖gα − gα′‖2n = 1
n‖Zα− Zα

′‖22. The result
follows via an application of the equality 2〈a, b〉 = ‖a‖22 + ‖b‖22 − ‖a− b‖22, which holds for
any vectors a, b ∈ Rm. See [39] for full details.

To appreciate the significance of the above lemma we revisit the potential-based proof of
mirror descent presented in Equation (4) in Section 1.1. This time, instead of using the
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Figure 2: Consider the setting of Figure 1 and let εt = Rn(αt)−Rn(α′) + ‖gαt − gα′‖
2
n. The

above plots illustrate the following two points. First, there exists a stopping time time t? such
that εt? ≈ 0 (denoted by the vertical dotted line). Hence, the triple (P, {gα′}, gαt? ) satisfies
the offset condition (cf. Definition 1) with parameters (c = 1, ε ≈ 0). Second, while εt ≥ 0,
the Bregman divergence Dψ(α′, αt) denoted by the green line is non-increasing. It follows
that the estimator gαt? is constrained to lie in the set {gα : Dψ(α′, α) ≤ Dψ(α′, α0)}, the
offset complexity of which can be used to upper-bound the excess risk of interest. Crucially,
this type of analysis does not directly rely on the particular form taken by the mirror descent
update rules, which bypasses the limitations present in prior work (cf. Section 2.1) and allows
us to provide excess risk guarantees for a family of mirror descent algorithms. In the plot
above, the solid lines denote means over 100 runs, the dots denote the minimum of each
solid line, whereas the shaded regions correspond to the 10th and the 90th percentiles.

convexity of Rn which gives 〈−∇Rn(αt), α′ − αt〉 ≥ Rn(αt) − Rn(α′), we directly plug in
the identity given in Lemma 1 into Equation (3) which yields the following equality:

− d

dt
Dψ(α′, αt) = Rn(αt)−Rn(α′) + ‖gαt − gα′‖2n.

The above equation shows that while Rn(αt) − Rn(α′) + ‖gαt − gα′‖2n > 0, the iterates
of mirror descent stay withing the Bregman ball {α ∈ Rm : Dψ(α′, α) ≤ Dψ(α′, α0)}. At
the same time, the integration argument used in Equation (4) establishes that the term
Rn(αt) − Rn(α′) + ‖gαt − gα′‖2n eventually gets arbitrarily close to 0, and thus the early-
stopped mirror descent iterates satisfy the offset condition (cf. Definition 1). For a visual
demonstration of the above proof sketch see Figure 2. We provide full details of this argument
in the proof of Theorem 1 as well as a discrete-time version in Theorem 2.

Summary of contributions:

1. Our work extends the scope of offset Rademacher complexities to a family of early-stopped
mirror descent methods. Additionally, we extend the scope of mirror descent to be used as
a computationally efficient statistical device in an i.i.d. batch statistical learning setting.

2. Our main results, in a short and transparent way, yield bounds on the excess risk
of the iterates of (both continuous-time and discrete-time) mirror descent using offset
Rademacher complexities. In contrast to prior work, our arguments require no direct use
of low-level mathematical techniques such as symmetrization, peeling, or concentration to
the population version of the algorithm.

3. In Section 4, we demonstrate some selected applications of our main results and comment
on the connections to the related work therein.

2.1 Comparison with Related Work

Statistical and computational properties of unconstrained gradient descent updates have
been a subject of intense study over the past two decades, with most of the existing results
focusing on the quadratic loss in reproducing kernel hilbert spaces (RKHS) [13, 45, 8, 32, 42].
In contrast to our work, the above work focuses either on bounds in ‖·‖2n or in ‖·‖2P norms,
which can be arbitrarily smaller than the excess risk considered in our work (see [37, Section
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1] for an example). In addition, the analysis in [13, 45, 8, 32] is closely tied to the `2 geometry
of the gradient descent updates, which allows one to view the algorithm as a particularly
simple linear operator acting on the observed labels. Spectral properties of these linear
operators are then analyzed as a function of the number of iterations, which can be solved
for a stopping time via some form of bias-variance decomposition. Our work, in contrast,
enables simultaneously studying a family of update rules, characterized by different choices
of the mirror map, in a unified framework without relying on their particular form.
One of the primary contributions of our work is the connection between mirror descent
iterates and localized complexity measures. To the best of our knowledge, there are only two
prior works making connections of a similar nature, albeit only in the setting of Euclidean
gradient descent updates, that is, with the choice of the mirror map ψ(α) = ‖α‖22/2 [32, 42].
Such connections are observed in an algebraic fashion in the former work, while localized
complexities appear more naturally in [42], via the analysis of the range of estimators defined
by gradient descent iterates up the stopping time. In this respect, the work in [42] is the
closest to ours. In Theorem 3, we show how a straightforward application of our main results
immediately recovers results similar to the ones obtained in [32, 42].
Beyond the Euclidean setup, interest in understanding the generalization properties of neural
networks has sparked research into implicit regularization properties of various factorized
models. In the context of neural networks, the authors of [17, 22, 3, 43, 16] show that
iterates of gradient descent applied to factorized matrix models are implicitly biased towards
some sparsity-inducing structure such as low-rankness or low nuclear norm. Such results,
however, hold under certain limit statements, such as vanishing initialization or step-size,
the number of iterations going to infinity, or no noise in the problem. In the setting of linear
regression, matrix factorization models reduce to vector Hadamard product factorizations,
where early-stopped gradient descent was shown to yield minimax optimal rates for sparse
recovery with the analysis vitally relying on the restricted isometry property [46, 40]. In
Theorem 4, we demonstrate a simple analysis of such updates within our framework without
any assumptions on the design matrix other than bounded columns, yielding an (up to a log
factor) minimax optimal algorithm for in-sample linear prediction under `1 norm constraints.
Implicit regularization properties of mirror descent have recently attracted a considerable
amount of attention; however, most results in this area either focus on optimization guarantees
that do not provide any direct link to statistical guarantees on out-of-sample prediction
[18, 5], or establish a connection to statistics via some forms of explicit regularization [38].
The work [38] shows connections between the iterates on the entire path and the solutions on
the regularization path for a suitable regularized risk minimization problem. In Theorem 5,
we show how the analysis of such problems naturally fit within our framework. Yet other
papers have used early stopping to solvers applied directly to appropriately constrained
problems and regularization-promoting structures encoded directly into the loss function [26].
Recent work has also focused on providing statistical guarantees for iterates generated via
gradient descent updates in stochastic [35, 25, 28, 2], accelerated [14, 29], and distributed
settings [24, 33, 34]. These works provide statistical guarantees without establishing connec-
tions to localized complexity measures; we anticipate such connections to be studied within
our framework in future work, for a family of mirror descent algorithms.

3 Main Results

We first state and prove a continuous-time version of our main theorem, which demonstrates
the key ideas behind our approach in the simplest setting. The first part of the theorem shows
that the iterates of mirror descent stay within a certain Bregman ball up to the prescribed
stopping time t?. The second part of the theorem immediately establishes that when the
parametrization given by α ∈ Rm is independent of the data, the early-stopped estimator
gαt? satisfies the offset condition (cf. Definition 1) with parameters c = 1 and any ε > 0.5 For
the applications we consider, we choose ε to match the complexity measure of interest and

5When the parametrization is data dependent, such as in the setting of kernel methods, our main
theorems also establish that the early-stopped mirror descent iterates satisfy the offset condition (cf.
Definition 1). We analyze a concrete example and provide full details in Theorem 3.
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recover the statistical-computational trade-offs consistent with the previous results in the
literature. In particular, t? = O(Dψ(α′, α0)/ε), so that achieving higher statistical accuracy
requires more computational power. Finally, we note that the dependence of t? on the
unknown radius Dψ(α′, α0) is unavoidable purely from an optimization point of view.
Theorem 1. Consider the continuous-time mirror descent updates given in Equation (2).
Let α0 be the initialization point, α′ be any chosen reference point, and fix any ε > 0. Then,
there exists a stopping time t? = t?(Dn, ψ, α0, α

′) ≤ 2Dψ(α′, α0)/ε such that:

1. For all 0 ≤ t ≤ t?, gαt ∈ G(ψ, α0, α
′) = {gα ∈ Rm : Dψ(α′, α) ≤ Dψ(α′, α0)}.

2. At the stopping time t?, we have Rn(αt?)−Rn(α′) + ‖gαt? − gα′‖2n ≤ ε.

Proof. To simplify the notation let δt = Rn(αt)−Rn(α′) and rt = ‖gαt − gα′‖2n. Combining
Equation (3) with Lemma 1 we have − d

dtDψ(α′, αt) = rt + δt. Let T = 2Dψ(α′, α0)/ε.
Integrating both sides of the above equality we obtain

Dψ(α′, α0)−Dψ(α′, αT ) =
∫ T

0
− d

dt
Dψ(α′, αt)dt =

∫ T

0
(rt + δt)dt

=⇒ inf
0≤t≤T

{rt + δt} ≤
1
T

∫ T

0
(rt + δt)dt ≤

Dψ(α′, α0)
T

≤ ε

2 .

It follows that the following infimum is well defined: t? = inf{0 ≤ t ≤ T | rt + δt ≤ ε}. Hence,
rt? + δt? ≤ ε and for all 0 ≤ t ≤ t? we have

Dψ(α′, α0)−Dψ(α′, αt) =
∫ t

0
(rt + δt)dt ≥ tε ≥ 0.

The above inequality implies that Dψ(α′, αt) ≤ Dψ(α′, α0), which concludes our proof.

In the next theorem, we prove an equivalent result in discrete-time. Let ‖·‖ denote any norm.
We say that Rn is β-smooth with respect to ‖·‖ if Rn(α′) ≤ Rn(α) + 〈∇Rn(α), α′ − α〉 +
β
2 ‖α− α

′‖2 for any α, α′ in the domain of Rn. We also say that the mirror map ψ is
ρ-strongly convex with respect to ‖·‖ if for any α, α′ we have Dψ(α′, α) ≥ ρ

2 ‖α
′ − α‖2. The

proof of the below theorem is presented in the extended version of this paper [40].
Theorem 2. Consider the discrete-time mirror descent updates given in Equation (2).
Suppose that Rn is β-smooth and ψ is ρ-strongly convex with respect to some norm ‖·‖.
Let α0 be the initialization point, α′ be any reference point, η ≤ ρ/β, and fix any ε > 0.
Then, there exists a stopping time t? = t?(Dn, ψ, α0, α

′, η) ≤ (Dψ(α′, α0) + ηRn(α′))/(ηε)
such that:

1. For all 0 ≤ t ≤ t?, gαt ∈ G(ψ, α0, α
′, η) = {gα : Dψ(α′, α) ≤ Dψ(α′, α0) + ηRn(α′)}.

2. At the stopping time t?, we have Rn(αt?)−Rn(α′) + ‖gαt? − gα′‖2n ≤ ε.

We now briefly comment on the above theorem. First, the step size condition η ≤ ρ/β and
the number of iterations O(1/ε) needed to reach a desired level of accuracy are identical
to the guarantees proved in purely convex optimization settings (cf. Theorem 4.4 in [10]).
On the other hand, comparing Theorems 1 and 2, in the discrete setting we pay a price of
ηRn(α′) in the radius of the Bregman ball where our early-stopped estimator lies. This is
consistent with prior work in the early stopping literature, where such an expansion of the
radius dependent on the noise level6 propagates into the resulting bounds (cf. definition of C
in Theorem 1 in [42]). Our work, on the other hand, allows for a more fine-grained control
of statistical-computational trade-offs via a selection of a small enough step-size η.

4 Selected Applications of the Main Results

In this section, we discuss three selected applications of our main theorems. See the full
version of this paper for proofs, comparisons with related work and additional context [39].

6Since α′ is independent of the data and since it corresponds to the best parameter in some class
of interest, Rn(α′) ≈ R(α′) and hence it can be interpreted as the noise level of the problem.
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Early stopping for non-parametric regression. Let P be any distribution supported
on X × [−M,M ] and let k : X × X → [0,∞) be a Mercer kernel which induces a Hilbert
space of functions H equipped with norm ‖·‖H. Assume that supx∈X k(x, x) ≤ L for some
constant L > 0 and, conditionally on the observed data, denote by K ∈ Rn×n a matrix such
that Kij = k(xi, xj). Such a setup is standard in the literature and we refer the interested
reader to the book by Scholkopf and Smola [36] for more background on RKHS.

In the theorem below, we consider mirror descent updates with ψ(α) = αTKα (cf. [39] for
justification when K is singular) with α0 = 0 and η ≤ 1 ∧ 1/λmax(K/n), where λmax(K/n)
is the maximum eigenvalue of K/n. In particular, Z = K and Rn(α) = ‖Zα− y‖22/n.
Theorem 3. Consider the setup described above. Fix any R > 0 and let FR = {h ∈ H :
‖h‖H ≤ R}. There exists a data-dependent stopping time t? ≤ c3/(ηE[Rn(FR, c2)]) such that

E[E(gαt? ,FR)] ≤ c1E[Rn(FR, c2)],
where constants c1, c2, c3 > 0 depend only on the boundedness constants M,L and R.

In-sample linear prediction under `1 constraints. Let Z ∈ Rn×d be a fixed-design
matrix such that the `2 norms of columns of Z/

√
n are bounded by some constant κ. Assume

a well-specified model, i.e., the existence of a vector α′ such that the observations y ∈ Rn

follow the distribution y = Zα′ + ξ, where ξ is a vector with i.i.d. zero-mean σ2-subGaussian
components. We consider running mirror descent with the hyperbolic entropy mirror map [15]
given by ψ(α) =

∑d
i=1(αi arcsinh (αi/γ)−

√
α2
i + γ2) with any 0 < γ ≤ (‖α′‖1 ∧ 1)/(3e2d)

and η ≤ 1
24κ2‖α′‖1 log(3γ−1) ∧

‖α′‖1
2σ2 . The theorem below yields minimax-optimal rates [31] up

to the multiplicative factor log(3γ−1).
Theorem 4. Consider the setup described above. There exists a data-dependent stopping
time t? ≤

√
n/(η · 3κσ

√
log d) such that with probability at least 1− 2e−nc − 1

8d3 , where c is
an absolute constant, we have

1
n
‖Zαt? − Zα′‖

2
2 ≤ 36 ·

κ ‖α′‖1 σ
√

log d√
n

· log(3γ−1).

Results on the whole optimization path. Theorem 1 immediately implies that along
its optimization path, continuous-time mirror descent satisfies excess risk guarantees that one
would obtain for a series of ERM solutions over a corresponding set of explicitly constrained
convex and bounded problems (cf. [39] for an exact setup) with varying radius R.
Theorem 5. Fix any α0 ∈ Rm, R > 0 and let F(α0, R) = {gα : Dψ(α, α0) ≤ R}. For any
ε > 0, there exists a data-dependent stopping time t? ≤ 2R/ε such that for some c1, c2 > 0
depending only on the boundedness constants (cf. [39]), we have

E[E(gαt? ,F(α0, R))] ≤ c1E[Rn(F(α0, R)− gF(α0,R), c2)] + ε.

5 Future Directions

Our work provides a simple and transparent framework for simultaneously analyzing statisti-
cal and computational properties of iterates traced by a family of mirror descent algorithms
applied to the i.i.d. batch statistical learning setting. Among the research directions that
would yield additional computational savings are extensions of our results to stochastic and
accelerated frameworks, where connections between early stopping and localized complexity
measures are yet to be established, even in the restricted setting of Euclidean gradient de-
scent updates.
Beyond the computational savings, our main results reveal a curious property of mirror
descent. For an unknown parameter of interest denoted by α′, the statistical complexity of
an appropriately stopped mirror descent iterate is given by the offset complexity of the class
{gα − gα′ : Dψ(α′, α) ≤ Dψ(α′, α0)}. Thus, gα is implicitly constrained to lie in a possibly
non-convex Bregman ball centered at the unknown α′ with unknown radius Dψ(α′, α0).
Therefore, in general, solutions traced by mirror descent iterates cannot be practically
expressed as solutions of explicitly constrained optimization problems. Consequently, early-
stopped mirror descent can potentially solve problems that cannot be tractably solved by
the means of explicit regularization. This observation necessitates further investigation.
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