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Abstract

In this paper, we investigate the limiting behavior of a continuous-time counterpart
of the Stochastic Gradient Descent (SGD) algorithm applied to two-layer overpa-
rameterized neural networks, as the number or neurons (i.e., the size of the hidden
layer) N — +oco. Following a probabilistic approach, we show ‘propagation of
chaos’ for the particle system defined by this continuous-time dynamics under
different scenarios, indicating that the statistical interaction between the particles
asymptotically vanishes. In particular, we establish quantitative convergence with
respect to IV of any particle to a solution of a mean-field McKean-Vlasov equation
in the metric space endowed with the Wasserstein distance. In comparison to previ-
ous works on the subject, we consider settings in which the sequence of stepsizes
in SGD can potentially depend on the number of neurons and the iterations. We
then identify two regimes under which different mean-field limits are obtained,
one of them corresponding to an implicitly regularized version of the minimization
problem at hand. We perform various experiments on real datasets to validate our
theoretical results, assessing the existence of these two regimes on classification
problems and illustrating our convergence results.

1 Introduction

Due to their ability to tackle very challenging problems, neural networks have been extremely
popular and keystones in machine learning [1]. Thanks to their practical success, they have become
the de facto tool in many application domains, such as image processing [2] and natural language
processing [3]. However, the mathematical understanding of these models and their inherent inference
mechanism still remains limited.

Among others, one suprising empirical observation about modern neural networks is that increasing
the number of neurons in a network often leads to better classification testing and training errors [4],
contradicting the classical statistical learning theory [5]. These experimental results suggest that
neural network-based methods exhibit a limiting behavior when the number of neurons is large, i.e.,
when the neural network is overparameterized.

In this paper, we contribute to the recent literature on the theoretical analysis of this phenomenon. To
this end, we consider a simple two-layer (i.e., one hidden layer) neural network that is parametrized
by N weights w'V = {w"N },1;[:1 and trained to minimize the structural risk ZV by Stochastic
Gradient Descent (SGD) using independent and identically distributed (i.i.d.) samples (X, Y;);en+.
Even in such a simplified setting, the landscape of " is in many cases arduous to be explored, since
2" is non-convex and might exhibit many local minima and saddle points [6,7]; hence making the
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minimization of Z% challenging. However, for large N, the analysis of the landscape of Z” turns
out to be much simpler in some situations. For instance [8] has shown that local minima are global
minima when the activation function is quadratic as soon as [V is larger than twice the size of the
original dataset. More generally, relying on approximation or random matrix theory, several works
(e.g., [9-19]) establish favorable properties for the landscape of 2" as N — o0, such as absence
of saddle points, poor local minima or connected optima. In addition, minimization by SGD in this
setting has also proved to be efficient for some models [20, 21].

In this paper we follow an increasingly popular line of research to analyze the behavior of gradient
descent-type algorithms (stochastic or deterministic) used for overparameterized models. This
approach consists in establishing a ‘continuous mean-field limit’ for these algorithms as N — +o0,
and has been successively applied in [22-29]. Based on this result, the qualitative long-time behavior
of SGD applied to overparameterized neural networks can be deduced: these studies all identify an
evolution equation on the limiting probability measure which corresponds to a mean-field ordinary
differential equation (ODE), i.e., if the initialization is deterministic, then each hidden unit of the
network independently evolves along the flow of a specific ODE. This implies that, even though the
update step is intrinsically stochastic in SGD, the noise completely vanishes in the limit N — +o0. In
this context, two main strategies have been followed to prove convergence of SGD to this mean-field
dynamics. The first one is based on gradient flows in Wasserstein spaces [30-32] and the second
one is the ‘propagation of chaos’ phenomenon [33-35], indicating that the statistical interaction
between the individual entries of the network asymptotically vanishes. Both approaches are in fact
deeply connected, which stems from the duality between probability and partial differential equation
theories [36]. We follow in this paper the second approach and establish that propagation of chaos
holds for a continuous counterpart of SGD to a solution of a McKean-Vlasov type diffusion [37] as
N — +oo0.

The fact that no noise appears in the mean-field limit of SGD obtained in previous work can seem
surprising. Aiming to demystify this matter, we study in this paper the case where the stepsize in
SGD can depend on the number of neurons. Our main contribution is to identify two mean-field
regimes: The first one is the same as the deterministic mean-field limit obtained in the described
literature. The second one is a McKean-Vlasov diffusion for which the covariance matrix is non-zero
and depends on the properties of the data distribution. To the best of our knowledge, this limiting
diffusion has not been reported in the literature and brings interesting insights on the behavior of
neural networks in overparameterized settings. Our results suggest that taking large stepsizes in the
stochastic optimization procedure corresponds to an implicit regularization of the original problem,
which can potentially ease the minimization of the structural risk. In addition, in contrast to previous
studies, we establish strong quantitative propagation of chaos and we identify the convergence rate of
each neuron to its mean-field limit with respect to N. Finally we numerically illustrate the existence
of these two regimes and the propagation of chaos phenomenon we derive on several classical
classification examples on MNIST and CIFAR-10 datasets. In these experiments, the stochastic
regime empirically exhibits slightly better generalization properties compared to the deterministic
case identified in [22,23, 28].

2 Overparametrized Neural Networks

Consider some feature and label spaces denoted by X and Y endowed with o-fields X and )Y
respectively. In this paper, we consider a one hidden layer neural network, whose purpose is to
classify data from X with labels in Y. We suppose that the network has N € N* neurons in the hidden
layer whose weights are denoted by w'®Y = {w* N}V e (RP)". We model the non-linearity by
a function F' : RP? x X — R, and consider a loss function ¢ : R x Y — R, and a penalty function
V : RP — R. Then, the learning problem corresponding to this space of hypothesis consists in
minimizing the structural risk
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AN (W) = fr 0 (N Yo FwhN, ), y) dn(z,y) + 5 S V@), M)

where 7 is the data distribution on X x Y. Note that, in this particular setting, the weights of the
second layer are fixed to (1/NV). This setting is referred to as “fixed coefficients” in [25, Theorem 1]
and is less realistic than the fully-trainable setting. Nevertheless, we believe that this shortcoming
can be circumvented upon replacing F(w® ¥ ) by F(u®" -)v* in (1), where u**" and vV are



the weights of the hidden and the second layer respectively. However, this raises new theoretical
challenges which are left for future work.

Throughout this paper, we consider the following assumptions.

Al. There exist measurable functions ® : X — [1,400) and ¥ : Y — [1,400) such that the
following conditions hold.

(a) £: RxR — Ry issuch that forany y € Y, (¥ — £(y,y)) is three-times differentiable and for
anyy € Randy € Y we have

0100, 9)] < W(y), |0y, v)| + |07y, v)| <
where for any i € {1,2,3}, 9i4(y,y) is the i-th derivative of (y + £(¥, )) aty.

(b) F: RP x X — R is such that for any x € X, (0 — F(0,x)) is three-times differentiable and
foranyw € RP and x € X

|F(w,2)|| + | D F(w, z)|| + | D% F(w,z)|| + | D3 F(w, z)|| < ®(x),
where for any i € {1,2,3}, D!, F(w, x) is the i-th differential of (0 — F (10, z)) at w.
(c) V € C3(RP,R) satisfies sup,,cge{|D*V (w)]| + |D*V (w)||} < +o0.
(d) The data distribution 7 satisfies [ {®'°(x) + ¥*(y)}dr(z,y) < oo .

Note that A1-(d) is immediately satisfied in the case where 7 is compactly supported, X and Y are
subsets of R? and R respectively and ¥ and ® are bounded on the support of 7. A1-(a) is satisfied
for several losses such as the ¥ — (¥ — y)? or the Huber loss ¥ — (1/2)(y — y)?if |y — y| < 1 and
¥+ |7 — y| otherwise. A1-(b) is satisfied in the classical case where F(w, z) = o((w™"), ) + w®)
with w = (w™), w?) and o is the sigmoid function. We believe that the regularity assumptions in
Al can be relaxed and leave this study for future work. For any NV € N*, under A1, by the Lebesgue
dominated convergence theorem, % given by (1) is well-defined, continuously differentiable with
gradient given for any wt™N € (RP)V by

VN (w' ) = V2N (W' 2, y)dr(z,y)

XxY
@N(wI:N’x, y) =1t (% Zﬁle F(wk’Nax)ay) + % Z;ivzl V(wk’N) s
NV, 2N (N z,y) = 914 (% SN F(wkN ), y) Vo FEN (N 3) 4 VYN (V)

setting V., PN (wN  z) = {V, F(wb N, 2)}Y_ Jand VVEN (w1 V) = {VV (wk V)

Let (W) en+ be i.i.d. p dimensional random variables with distribution ji9. Consider the sequence
(W N, en associated with SGD, starting from W'V and defined by the following recursion: for
any n € N denoting the iteration index

WEN = Wi — NP (n + 7a,5(N) ) "o VZN (WY, X, Ya) )

where (X, Y, )nen is a sequence of i.i.d. input/label samples distributed according to 7, and
(YNP(n + Ya.5(N)™1)™%),en as a whole denotes a sequence of stepsizes: here, 8 € [0, 1],
a € [0,1), and 74 5(N) = /A=) NB-D/(=a) " Note that in the constant stepsize setting
a = 0, the recursion (2) consists in using YN as a stepsize In addition, it also encompasses the
case of decreasing stepsizes (as soon as a > 0). The term 7, 5(N) ™! in (2) is a scaling parameter
which appears naturally in the corresponding continuous-time dynamics, see (4) below. We stress
that contrary to previous approaches such as [22,23,28], the stepsize appearing in (2) depends on
the number of neurons /N. Our main contribution is to establish that different mean-field limiting
behaviors of a continuous counterpart of SGD arise depending on . We emphasize that our results
can be extended in a straightforward manner to the case where the sequences of stepsizes is given by
yNP?(n + C)~% upon replacing (t + 1)~ by (¢ + Ca,5(IN)) ™ in the continuous counterpart of
(2).

We will show that the quantity -y, s(IN) plays the role of a discretization stepsize in the McKean-
Vlasov approximation of SGD. The case where o« = 0 and S = 0, i.e., the setting considered



by [22,23,28], corresponds to choosing the stepsize as /N, which decreases with increasing N. In
the new setting o = 0, 8 = 1, this corresponds to take a fixed stepsize . This observation further
motivates the scaling and the parameter we introduced in (2).

Before stating our result, we present and give an informal derivation of the continuous particle
system dynamics we consider to model (2). We first show that (2) can be rewritten as a recursion
corresponding to the discretization of a continuous particle system, i.e., a stochastic differential
equation (SDE) with coefficients depending on the empirical measure of the particles. Let us denote
by Z(E) the set of probability measures on a measurable space (E, £). Remark that for each particle
dynamics (W), cn the SGD update (2) is a function of the current position and the empirical
measure of the weights. To show this, define the mean-field h : R? x #2(R%) — RP? and the noise
field € : RP x Z(RY) x X x Y — RP, forany p € Z(RP), w € RP, (z,y) € X x Y by

h(w7u) = oy ol (M[F(a I)], y) VwF(IU, Z‘) dﬁ(1‘7y) - VV(’U)) )
X
§(w, pyz,y) = —h(w, p) — Ol(p[F (- 2)], y) Vo F(w,2) = VV(w) .
Note that with this notation, h(w*™ vY) = —NO,kvZN (wHN) and (BN VY X, Y,) =

N{=0ur.vZN (w'"N, X,,, Yy) + O ZN (whN)}, forany N € N,k € {1,...,N}and n € N,
where vV is the empirical measure of the discrete particle system corresponding to SGD defined by

N

v, =N -1 ZkN:l 6W7I:~,N. Then, the recursion (2) can be rewritten as follows:

WEN = WEN 4 ANP (4 50 (N) "D~ {RWEN ) 4 e(WEN N X, Y0} . 3)

yVn s

We highlight that even though the stepsize in the SGD (2) scales as O(N?) the stepsize in the asso-
ciated mean-formulation (3) scales as O(N?~1). We now present the continuous model associated
with this discrete process. For large N or small «y these two processes can be arbitrarily close. For
N € N*, consider the particle system diffusion (W});5 = ({Wf’N},]cV:l)tZO starting from
W{EN = Wi defined forany k € {1,..., N} by

AW = (t4+1)7 {h(WW vt + a5 (N)2SV2(WEN wV)aBEL @)
where {( M0 @ k € N*} is a family of independent p-dimensional Brownian motions
and v}V is the empirical probability distribution of the particles defined for any ¢ > 0 by

v =N"1 fo:l dyy.v - In addition in (4), 2 is the p x p matrix given by

E(ww) = foY f(wa ,U'vl'vy)f(wa /LL,:L',y)Td’]T((E,y) ) for any w € R? and e @(Rp) )

which is well-defined under A 1. In the supplementary material we show that under A1, (4) admits
a unique strong solution. We now give an informal discussion to jus~tify why (4) can be seen as
the continuous-time counterpart of (3). For any N € N*, define (W}*V);>¢ for any t > 0 by
WEN = WEN with ny = [t/7a,5(N)] and denote &} the empirical measure associated with
W LN In this case, by defining the interval IV 5 = [MYa,8(N), (n 4 1)7a,5(N)] and using (3)
and 7, 5(N)'~® = yNP~1, we obtain the following approximation for any n € N

Wit ivas 0 = Wi s

= AN (V)7 {RWEY o)+ €WEN Y XY |

— — k,N o 1/2 k,N oV
N’Va,»B(N)(n'Yaﬁ(N)"’l) a{h(me s(N) Yy, s (N ))+E / (an s(N) Vg, B(N))G}

%/ (s+1)‘ah<W§’N,&5>ds+/ W B(N) (s + 1)7oSV2(WEN pNYdBE | (5)
IN IN

n,a,B n,a,B

(4) (B)

where G is a p-dimensional Gaussian random variable with zero mean and identity covariance matrix.
Note that the second line corresponds to (3) and the last to (4). To obtain such proxy, we first remark
that for any w € R? and p € Z(RP), &(w, p, Xy, Yy,) has zero mean and covariance matrix X (w, pt)



and assume that the noise term is roughly Gaussian. Second, we use that the covariance of (B) in
(5) is equal to fIN , Ve B(N)(s +1)7222(WHEN 5N)ds. To obtain the last line, we use some

first-order Taylor expansmn of this term and (A4) as 7,,s(/N) — 0. Then, (5) corresponds to (4) on
I N o, e AS @ result, (4) is the continuous counterpart to (3) and n iterations in (3) correspond to the

horizon time ny, g(NN) in (4). In the next section, we show that a strong quantitative propagation
of chaos holds for (4) i.e., we show that for N — oo the particles become indenpendent and have
the same distribution associated with a McKean-Vlasov diffusion. The extension of these results
to discrete SGD (3) and the rigorous derivation of (5) can be established using strong functional
approximations following [38, Proposition 1]. Due to space constraints, we leave it as future work.

Finally, note that until now we only considered the case where the batch size in SGD is equal to one.
For a batch size M € N*, this limitation can be lifted replacing 7 and Z” in (2) by 7™ and

- i 1 1
’%NﬂM(wl.Nv xZ, y) = M Zf\il 14 (N Z}]gvzl F(wk’Na xi)a yl) B

defined for any w*" € (RP)N, x = (Ti)ieqr,...my € XM andy = (Yi)ieq1,....m} € YM  In this
case, we obtain that the continuous-time counterpart of (3) is given by (4) upon replacing %'/2 by
$:1/2 /M'/2, This leads to the particle system diffusion (W} )50 = ({WFNVIN_ )5 starting
from W} defined for any k € {1,..., N} by

AW = (¢ 4+ 1) {RWEN, pY)dt + (a5 (N)/M) 22 WEN v )aBE . 6)

In the supplement Section S2, we also present the case of a modified Stochastic Gradient Langevin
Dynamics (mSGLD) algorithm [39] which was considered in [23] in the specific case 5 = 0. We
extend our propagation of chaos results to this setting.

3 Mean-Field Approximation and Propagation of Chaos

In this section we identify the mean-field limit of the diffusion (6). More precisely, we show that
there exist two regimes depending on how the stepsize scale with the number of hidden units.

Our results are based on the propagation of chaos theory [33-35] and extend the recent works of [22,23,
25,27,28,40]. In what follows, we denote 25(R?) = {u € Z(R?) : [o, | @|* du(w) < +o00} and
C(R4, RP) the set of continuous functions from R to RP. We also consider the usual metric m on
C(R,RP) defined for any u1,us € C(Ry, RP) by m(uy,uz) = >, cne 27" [Jur — ual| o, /A1 +
lur — 2l }> where [lur — ua|l, ,, = Supseq ) llu1 () —u2(?)]|. Itis well-known that (¢, m) =
(C(R4,RP), m) is a complete separable space. For any metric space (F, mp), with Borel o-field B(F),
we define the extended Wasserstein distance of order 2, denoted M5 : P (F) x Z(F) — [0, +o00] for
any pi1, 2 € P(F) by W5 (pa, p2) = infaeruy ) Jrop Mp (01, v2)dA(v1,v2), where Iy, pi2)
is the set of transference plans between p; and po, i.e., A € T(ug, ps) if for any A € B(F),
A(A X F) = p1(A) and A(F x A) = ua(A).

We start by stating our results in the case where 5 € [0, 1) for which a deterministic mean-field limit
is obtained. Consider the mean-field ODE starting from a random variable W given by

dW; = (t 4+ 1)"*h(W;, A))dt , with A} the distribution of W7 . (7)
We show in the supplement that this ODE admits a solution on R . This mean-field equation (7) is
deterministic conditionally to its initialization.

Theorem 1. Assume Al. Let (W§)ien be a sequence of i.i.d. RP-valued random variables with
distribution 119 € P5(RP) and set for any N € N*, WFN = {WEW_ . Then, for any m € N* and
T > 0, there exists Cy, 7 > 0 such that for any o € [0,1), 8 € [0,1), M € N* and N € N* with
N>m

E [Supte[QT] [WimN _ Wt1;m,*||2] < Cpp {N~(=0)/A=e) =1 L N-1}

with (WE™N Wlm*y = (WY Wf’*)}?zl, (W) the solution of (6) starting from W,
and for any k € N*, Wf’* the solution of (7) starting from WE.



In Theorem 1, m is a fixed number of particles. Note that {(W¥*),>¢ : k € N*} is i.i.d. with
distribution A* which is the pushfoward measure of o by the function (wo — (w¢)¢>0) which from
an initial point wy gives (w;);>o € % the solution of (7) on Ry. Theorem 1 shows that the dynamics
of the particles become deterministic and independent when N — +-o00. The proofs of Theorem 1
and the following result, Theorem 2, are postponed to Section S4.4.

We now consider the case 5 = 1 and derive a similar quantitative theorem as Theorem 1 but with a
different dynamics than (7). Consider the mean-field SDE starting from variable W§ given by

AW} = (t+ 1)~ (AW, AD)dt+ (/O 5(W, X)) /M) 2dB, | (®)

where A} is the distribution of W} and (B;):>¢ is a p dimensional Brownian motion. Note that
taking the limit v — 0 or M — 400 in (8) we recover (7). We show in the supplement that this SDE
admits a solution on R.. The following theorem is similar to Theorem 1 in the case 8 = 1.

Theorem 2. Let 3 = 1. Assume Al. Let (W5)cn be a sequence of RP-valued random variables
with distribution 110 € P5(RP) and assume that for any N € N*, WEN = {WEWN . Then, for
any m € N* and T > 0, there exists Cy,, 7 > 0 such that for any o € [0,1), M € N* and N € N*
with N > m

E [SUpte[o,T] Hwtl:m’N - th:my*”Q < Cm7TN71 g

with (W™ N W) = (WEN W)Y (WEN) the solution of (6) starting from WY,
and for any k € N*, Wf ™™ the solution of (8) starting from WE and Brownian motion (B¥),>o.

The main difference between (7) and (8) is that now this mean-field limit is now longer deterministic
up to its initialization but is a SDE driven by a Brownian motion. The stochastic nature of SGD is
preserved in this second regime. (7) corresponds to some implicit regularization of (8). In the case
where for any w € R? and iy € Z(RP), X(w, u) = 02 Id with 0 > 0, it can shown that (A});>0 is
a gradient flow for an entropic-regularized functional. This relation between our approach and the
gradient flow perspective is investigated in the supplement Section S6.

Denote forany N € N* and m € {1,..., N}, A1 the distribution on % of {(Wf’N)tZO}Z’:l.

Recall that {W}5™V}N | are N i.i.d. RP-valued random variables with distribution g € P (RP).
As an immediate consequence of Theorem 1, Theorem 2 and the definition of W for the distance m
on %, we have the following propagation of chaos result.

Corollary 3. Assume Al. Then for any f € [0,1], « € [0,1), M € N* and m € N we have
lmpy 400 Wa(AL™N (A*)®O™) = 0 where X* is the distribution of (W7 )i>o solution of (7) if
B € (0,1] and (8) if f = 1 with W distributed according to p.

Corollary 3 has two main consequences: when the number of hidden units is large (i) all the units
have the same distribution A*, and (ii) the units are independent. Note also that this corollary is valid
for the whole trajectory and not only for a fixed time horizon.

Finally, we derive similar results to Corollary 3 for the sequence of the empirical measures.
Let (vN)nyen+ be the sequence of empirical measures associated with (6) and given by vV =

N1 chvzl 6(Wk,N)t>0. Note that for any N € N, vV is a random probability measure on Z(%).
Denote for any N € N*, YV its distribution which then belongs to 2(2(%)). Since the conver-
gence with respect to the W, distance implies the weak convergence, using Corollary 3 and the

Tanaka-Sznitman theorem [33, Proposition 2.2], we get that (TN )Nen+ weakly converges towards
Ox+. In fact, we prove the following stronger proposition whose proof is postponed to Section S4.3.

Proposition 4. Assume Al. Then, for any § € [0,1), a € [0,1) and M € N* we have
limp 400 Wa(XN,8x+) = 0, where X* is the distribution of (W );>o solution of (7) if B € (0,1]
and (8) if B = 1 with W{; distributed according to (.

Proof of Proposition 4. We consider only the case 8 = 1, the proof for 3 € [0, 1) following the same
lines. Let M € N*. We have for any NV € N* using Proposition S1,

N
Wy(YN,8x:)? E[mh(™N, X)) < N7 Elm? (W) im0, (W™ )i20)] - )
k=1



Let ¢ > 0 and ng € N* such that 37, 412" < e. Combining (9), Theorem 2 and the Cauchy-
Schwarz inequality we get that for any N e N*

no

no
wg(rN,zs»)zgggu ZZ]E sup [[Wi™ — W |2| <262+ 20N~ " Cip
k=1n=1 te[0,n] n=0

Therefore, for any € > 0 there exists Ny € N* such that for any N > Ny, WQ(TN7 ox) <e. O

Relation to existing results. To the authors knowledge, only the case 5 = 0 has been considered
in the current literature. More precisely, Theorem 1 is a functional and quantitative extension of the
results established in [22-24,28,40]. First, in [22, Theorem 1.6], it is shown that ()\lzmvN )NEN* N>¢
weakly converges towards (A*)®™, [23, Theorem 3] shows quantitative weak convergence of SGD
to (7) with high probability in the case V = 0 and the quadratic loss £(y1,y2) = (y1 — y2)?.
[40, Theorem 1.5] establishes a central limit theorem for (VN )Nen- with rate N ~1/2 \which is in
accordance with the convergence rate identified in Theorem 1. Note that the identified convergence
rates in Theorem 1 and Theorem 2 do not depend on the decreasing rate of the stepsizes given by
«. We expect an interplay between « and 3 to appear in a the rates of a CLT for (v") yen-+ in our
setting. The rigorous derivation of such results is left for future work. Finally, [28, Theorem 2.6]
and [24, Proposition 3.2] imply the convergence of vV almost surely under the setting > = 0 in (6)
which corresponds to the continuous gradient flow dynamics associated with #NM We conclude
this part by mentioning that similar results are derived for mSGLD in the supplement Section S2
which extend the ones obtained in [25].

Having established the convergence of (6) to (8), we are interested in the long-time behaviour of
(W7)¢>0 in the case o« = 0. To address this problem, the first step is to show that this SDE admits at
least one stationary distribution, i.e. a probability measure p* such that if W{ has distribution p*,
then for any ¢ > 0, W7 has distribution p*. If V' is strongly convex, we are able to answer positively
to this question in the case p = 1. The proof of this result is postponed to Section S5.

Proposition 5. Assume Al, « = 0 and p = 1. In addition, assume that there exist n,6 > 0 such
that for any w € R and p € P (R), X(w, p) > 6% and V is n-strongly convex. Let H : P5(R) —
P5(R) defined for any p € P3(R) and w € R by

(dH (p)/dLeb)(w) o< = (w, p) exp [=2 [y h(w, p) /S (0, p)di]

where S (w, p) = /= (w, ) /M and Leb is the Lebesgue measure on R. Then S = {u €
Py(R) : H(p) = pu} # O and for any p € S,  is invariant for (8).

4 Experiments

We now empirically illustrate the results derived in the previous section. More precisely, we focus on
the classification task for two datasets: MNIST [41] and CIFAR-10 [42]. In all of our experiments
we consider a fully-connected neural network with one hidden layer and ReLLU activation function.
We consider the cross-entropy loss in order to train the neural network using SGD as described in
Section 2. All along this section we fix a time horizon 7" > 0 and sample W%TN defined by (3) with
ny = |T/Yas(N)| for 74 5(N) = y/(1=) N(B=1)/(0=) and taking a batch of size M € N*.
We aim at illustrating the results of Section 3 taking N — +oo and different sets of values for the
parameters «, 3, M, ~ in (6). Indeed, recall that as observed in (5), W,}TN is an approximation of
WZLN | See Section S7 for a detailed description of our experimental setting. If not specified, we set
a=0,M =100,T7 = 100,~v = 1.
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Figure 1: Convergence of the empirical distribution of the weights as N — +-o0.

Convergence of the empirical measure. First we assess the convergence of the empirical distri-
bution of the weights of the hidden layer to a limit distribution when N — +o00. We focus on the
MNIST classification task. Note that in this case p = 28 x 28 = 784. In Figure 1, we observe the
behavior of the histograms of the weights W,}TN of the hidden layer along the coordinate (1, 1) as
N — 4o00. We experimentally observe the existence of two different regimes, one for § < 1 and
the other one for 5 = 1. In Figure 1, the first line corresponds to the evolution of the histogram in
the case where 8 = 0.5. The second and the third lines correspond to the same experiment with
B =0.75 and 8 = 1, respectively. Note that in both cases the histograms converge to a limit. This
limit histogram exhibits two regimes depending if 5 < 1 or § = 1.

Existence of two regimes. Now we assess the
stochastic nature of the second regime we ob- o .
tain in the case 8 = 1 in contrast to the regime 100 Lo

for # < 1 which is deterministic. In order to 07 07
highlight this situation, all the weights of the 050 050
neural network are initialized with a fixed value, 025 025
ie., for any N € N*and k € {1, .. ,N}, 0.00 0.00
W0]€7N _ wo E Rp' Then’ the neural network ls 0.00 0.05 0.10 0.00 0.05 0.10
trained on the MNIST dataset for N = 10° and
B8 =0.75 or 8 = 1. Figure 2 represents 7 sam-
ples of the first component of W,.:" obtained
with independent runs of SGD. We can observe that for 8 = 0.75 all the samples converge to the
same value which agrees with (7) while in the case where 5 = 1 they exhibit different values, which
is in accordance with (8).

Figure 2: Deterministic versus stochastic behavior
depending on the value .

From stochastic to deterministic.

We illustrate that when v — 0 the 4= 10
dynamics identified in (8) tends to
the one identified in (7). We fix 8
B = 1and N = 10000 and focus b
on the MNIST classification task. In 5
Figure 3 we show the histogram of
the weights WﬁTN along the coordi-
nate (1, 1) for different values of y. Figure 3: Convergence to the deterministic regime as v — 0.

As expected, see (8) and the follow-

ing remark, when v — 0 we recover the limit histogram with 8 < 1. In Figure S5 we also study the
convergence of the empirical measure when M — +oo in the case where 5 < 1.

0+ 0+ 0
—02 01 0.0 0.1 02 —02 -01 0.0 0.1 02 —02 —01 00 0.1 0.2

Long-time behavior. Finally, we illustrate the interest of taking 5 = 1 in our setting by considering
the more challenging classification task on the CIFAR-10 dataset. We consider the following set
of parameters o = 0, M = 100, T' = 10000, v = 0.1. We emphasize that this experiment aims at
comparing the performance of the setting 8 < 1 and the one with 5 = 1 and that we are not trying to



reach state-of-the-art results. In Table | we present training and test accuracies for the classification
task at hand. To build the classification estimator we average the weights along thelr trajectory, i.e.,

we perform averaging and consider the average estimator W1 N —
1000. Using 8 = 1 roughly increases the test accuracy by 1%, while the training

where n

( T—no+1)

nr 1N
n=ngo n

accuracy is not 100%. This empirically seems to demonstrate that using a smaller value of 3 tends to
overfit the data, whereas using 8 = 1 has a regularizing effect.

Table 1: Training and Test accuracies for different settings on the CIFAR-10 dataset, with a = 0,
M =100 and v = 0.1 for T" = 10000

Values N =5000 | N =5000 | N =10000 | N =10000 | N = 50000 | N = 50000
of NandB || 8=075 | =10 | =075 | B=10 B=075 | B=10
Train acc. 100% 97.2% 100% 97.2% 100 % 99%
Test acc. 55.5% 56.5% 56.0% 56.5% 56.7% 57.7%

5 Conclusion

We show in this paper that taking a stepsize in SGD depending on the number of hidden units
leads to particle systems with two possible mean-field behaviours. The first was already identified
in [22,23,28] and corresponds to a deterministic mean-field ODE. The second is new and corresponds
to a McKean-Vlasov diffusion. Our numerical experiments on two real datasets support our findings.
In a future work, we intend to follow the same approach for deep neural networks, i.e., with a growing
number of hidden layers.
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Broader Impact

Today neural networks can be seen by the non-expert public as black boxes and the lack of under-
standing of the underlying mechanisms in deep learning can frighten some decision makers to use
them due to the risk of unexplained failures.

A theoretical understanding of the behavior of usual training algorithms such as SGD when applied to
neural networks is indeed still largely missing. Such a theory would benefit the experimentators who
could use these results to design new algorithms and improve existing ones. For instance, deriving
properties on the limit points of SGD would give more insight on the estimators constructed by
training neural networks. In particular, we could characterize their bias and dependency with respect
to the training data and quantify their generalization properties.

Analyzing the long-time behavior of classical training algorithms such as SGD is crucial to pinpoint
what are the essential properties of neural networks.

We show that in the simplistic case of a two-layer neural network SGD admits a limiting dynamics
when the number of hidden units N — 4oc0. We identify two regimes depending on an internal
parameter 3 € [0, 1]. If 8 € [0, 1) we recover known deterministic mean-field dynamics and in the
case 5 = 1 we obtain a stochastic mean-field dynamics. Therefore, we claim that, at least in the case
of two-layer neural networks, the long-time behavior of SGD can be analyzed using these mean-field
approximations. It constitutes a step towards a deeper understanding of their properties. We focus on
the simplistic case of a two-layer neural network.
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