
A Proof of Proposition 3.1

The proof follows directly from the Deterministic Policy Gradient Theorem, Therefore, the Proposi-
tion inherits all of its smoothness assumptions about the Markov Decision Process [47].

Proposition 3.1. Let Π be a parametric space of Lπ-Lipschitz continuous differentiable deterministic
policies, Q a space of approximate value functions and ‖ · ‖ any p-norm. Given π ∈ Π and Q̂ ∈ Q,
the norm of the difference between the true policy gradient ∇θJ(θ) and its approximation ∇̂θJ(θ),
which uses Q̂, can be upper bounded as:

‖∇θJ(θ)− ∇̂θJ(θ)‖ ≤ Lπ
1− γ E

s∼dπµ

∥∥∥∥∇aδπ,Q̂(s, a)
∣∣∣
a=π(s)

∥∥∥∥ .

Proof.

‖∇θJ(θ)− ∇̂θJ(θ)‖ =
1

1− γ

∥∥∥∥
∫

S
dπµ(s)

(
∇aQπ(s, a)|a=π(s) −∇aQ̂(s, a)|a=π(s)

)
∇θπ(s)ds

∥∥∥∥
(10)

=
1

1− γ

∥∥∥∥
∫

S
dπµ(s)∇aδπ,Q̂(s, a)|a=π(s)∇θπ(s)ds

∥∥∥∥ (11)

≤ 1

1− γ

∫

S
dπµ(s)

∥∥∥∇aδπ,Q̂(s, a)|a=π(s)

∥∥∥ · ‖∇θπ(s)‖ ds

≤ Lπ
1− γ

∫

S
dπµ(s)

∥∥∥∇aδπ,Q̂(s, a)|a=π(s)

∥∥∥ds. (12)

Equation 10 follows from the Deterministic Policy Gradient Theorem. To obtain Equation 11, we
exploit the definition of δπ,Q̂ and linearity of differentiation. Finally, in Equation 12, we use the
Lipschitz policy assumption.

B Additional Experiments

B.1 Unconstrained Action-Value Gradient learning

Proposition 3.1 directly encourages training the critic by minimizing the bound on the er-
ror of the policy gradient, i.e., the norm of the action-gradient of the policy evaluation error.

0 5,000 10,000

−2

0

·10−2

Step

∇aQ(s, a)|a=π(s)

∇aQ(ŝ, π(ŝ))|a=π(s)

∇ar(s, a)|a=π(s)

Figure 5: Action-gradients

However, we found a direct optimization of this bound, by means
of the TD-error, difficult in the context of Dyna-like algorithms. We
analyze this behavior in the Pendulum-v0 environment [6], instan-
tiating a version of MAGE based on DDPG [28] (MAGE-DDPG).
To understand the learning dynamics of the action-value gradients
in a way that is not affected by the model bias, we employ the differ-
entiable version of the real environment dynamics and test MAGE
without the TD-error regularization (i.e., with λ = 0). Therefore, at
each step, Qω is improved by minimizing the norm of δ̂ computed
on transitions whose next state is sampled from p. Unfortunately,
no useful learning can be achieved in this setting: a degenerate so-
lution consisting of Q̂ such that

∥∥∥∇aQ̂(s, a)
∥∥∥ ≈ 0,∀s ∈ S,∀a ∈ A

is rapidly reached, as shown in Figure 5. We employ exactly the
settings and hyperparamters that are successfully employed in the full version of MAGE.

We believe that understanding whether, or under which circumstances, the direct minimization of the
bound in Proposition 3.1 is possible is an interesting open question.

13

0 50,000 100,000

0

2,000

4,000

6,000

8,000

Step

A
v
e
ra

g
e
R
e
tu

rn

HalfCheetah-v2

0 50,000 100,000

−1,500

−1,000

−500

0

Step

Pendulum-v0

0 50,000 100,000

0

200

400

Step

CartPole-v1

0 50,000 100,000

−60

−40

−20

Step

A
v
e
ra

g
e
R
e
tu

rn

Pusher-v2

0 50,000 100,000

0

1,000

2,000

3,000

Step

Walker2d-v2

0 50,000 100,000

−150

−100

−50

0

Step

Swimmer-v2

MAGE-TD3 (ours) MAGE-TD3 with r̂ Dyna-TD3 Dyna-TD3 with r̂

Figure 6: Performance in terms of average return of MAGE-TD3 and Dyna-TD3 with and without
the use of an estimated reward function r̂ (5 runs, 95% c.i.).

B.2 MAGE with Trained Reward Function

As discussed in Section 4, MAGE is able to achieve good performance even with an estimated reward
function. We report in Figure 6 the full results of this experiment on all the considered environments.
For reference, we test MAGE and Dyna-TD3 as well as their versions in which the ground-truth
reward function is substituted with one trained on the experience replay data using the MSE loss.

The results indicate that learning the reward function when it is not directly accessible does not
produce any catastrophic harm to the performance of the algorithm. Therefore, our approach remains
competitive even when the assumption of a know differentiable reward function is not satisfied.

B.3 Importance of model capacity

The quality of the learned model is of paramount importance for most MBRL algorithms, whose
performance, generally, deteriorates when the model is not enough expressive for a given task.

0 20,000 40,000 60,000 80,000 100,000

−80

−60

−40

−20

Step

A
v
e
ra

g
e
R
e
tu

rn

Dyna-TD3 MAGE-TD3

Dyna-TD3-small MAGE-TD3-small

Dyna-TD3-smaller MAGE-TD3-smaller

Figure 7: Pusher-v2 (5 runs, 95% c.i.).

Thus, we performed an additional experiment to inves-
tigate how the performance of MAGE (compared to the
Dyna-TD3 baseline) is affected by the use of less powerful
models. We evaluated two versions of the model with
reduced capacity: (i) only 2 members in the ensemble, 4
hidden layers and 256 units per layer (-small suffix); (ii)
no ensemble (a single model), 2 hidden layers, 256 units
per layer (-smaller suffix). Recall that the original setting
involves a more powerful model with 8 members in the
ensemble, 4 hidden layers, 512 units per layer (no suf-
fix). The results on the Pusher-v2 environment, reported
in Figure 7, show that MAGE is robust to the presence
of a misspecified model: while a simpler but still quite
capable model does no harm to MAGE, a significantly
smaller model has a reasonable impact on the obtained
average return.

14

B.4 Importance of λ

Our practical solution to viably minimize the norm of the action-gradient of the TD-error in-
volves a constrained optimization problem, that limits the magnitude of the traditional TD-error.

0 20,000 40,000 60,000 80,000 100,000

0

2,000

4,000

6,000

8,000

Step

A
v
e
ra

g
e
R
e
tu

rn

Dyna-TD3

MAGE (λ = 0.05)

MAGE (λ = 0.02)

MAGE (λ = 0.20)

MAGE (λ = 1)

Figure 8: Median return of MAGE for
different λ ∈ [0, 1] (5 runs, 95% c.i.).

We approximately solve this problem by transforming it
into an unconstrained one, introducing a new hyperpa-
rameter λ. λ can be seen as a weight that is given to the
traditional TD-error, assigning more or less importance
to it compared to the error on the action-gradient. In the
main experiment shown in the paper, we used λ = 0.2,
which was chosen arbitrarily. How sensitive is MAGE to
this parameter?

To study that, we carried out an experiment on the environ-
ment HalfCheetah-v2, by testing the TD3-based version
of MAGE using four different values of λ. The results are
shown in Figure 8, and demonstrate that, regardless of the
value of λ, MAGE is significantly better than the baseline
Dyna-TD3. MAGE is therefore robust to the choice of
this hyperparameter. Notice also that the λ = 0.2 we used
is probably not optimal for some environments: thus, the
absolute returns obtained by MAGE could be improved
for particular tasks if a different hyperparameter is used for each of them, which we leave for a future
work. Nonetheless, we decided to report in Figure 2 results for a fixed value of λ across all the
environments to show the robustness and ease of use of MAGE.

B.5 Asymptotic Performance

A particularly important question concerning the performance of a model-based reinforcement
learning algorithm is whether it matches the one of model-free baselines. We answer this question
by running MAGE-TD3 and Dyna-TD3 until convergence on the HalfCheetah-v2 environment and
replicating the evaluation procedure used to obtain the asymptotic performance of an algorithm in the
original TD3 paper [18]. This amounts to repeating a number of trials (we use 5 of them for both the
model-based algorithms) and considering the maximum average return over them.

Table 1: Maximum Average Return on HalfCheetah-v2 over different trials for three versions of TD3.
Best performance is in bold.

Algorithm Maximum Average Return

MAGE-TD3 (3 · 106 steps, 5 trials) 9660.79± 2821.31
Dyna-TD3 (3 · 106 steps, 5 trials) 8372.76± 1859.73

TD3 (1 · 107 steps, 10 trials) 9636.95± 859.07

Results are reported in Table 1. Two conclusions can be drawn from them. The first one is that
MAGE not only shows superior sample-efficiency compared to its model-free counterpart, but also
matches its asymptotic performance in a smaller number of steps (less than one third). Secondly, the
inferior performance of Dyna-TD3 compared to model-free TD3 once again reinforces the evidence
that any simple introduction of a dynamics model into a model-free algorithm does not guarantee an
improvement, when measuring performance using commonly employed metrics.

C Action-Gradient of the TD-error

In this section, we present some additional information about the computation of the action-gradient
of the TD-error, carried out during the critic learning step of MAGE. To implement MAGE, we
employed PyTorch [34] and its automatic differentiation tools in order to compute the second-order
gradient required by our method. In this way, we did not need to explicitly derive a closed form
expression for a given model class or neural network architecture. Nonetheless, we report here the

15

a s′

r

Q̂

δ̂
Q̂′a′

γ

Figure 9: Alternative view of the computational graph constructed during the computation of the
TD-error δ̂, following the notation from [43]. Round nodes represent stochastic variables, squares
represent deterministic variables. Nodes with incoming dashed edges also depend on the state s.

general expression for the action-gradient of the TD-error:

∂δ̂π,Q̂(s, a, s′)
∂a

=
∂r(s, a)

∂a
+ γ

∂p̂(s′|s, a)

∂a

(
∂Q̂(s′, π(s′))

∂s′
+
∂π(s′)
∂s′

∂Q̂(s′, a′)
∂a′

)
− ∂Q̂(s, a)

∂a
.

(13)
In MAGE, we employ a Gaussian stochastic model p̂: therefore, its action-gradient ∂p̂(s

′|s,a)
∂a can be

obtained by reparameterizing this distribution using randomly drawn unit Gaussian noise together with
the learned mean and standard deviations. In our experiments, we only deal with continuous state and
action spaces; however, by leveraging appropriate approximations (e.g., concrete distributions [31]),
similar techniques can be employed also in the case of a discrete state space S.

To further visualize the constructed computational graph, it is possible to employ a different view,
inspired recent work on stochastic computational graphs [43], w.r.t. the one leveraged in Figure 1
(see Figure 9). In our case, the only possibly stochastic entity is the approximate model.

D Experimental details

D.1 Instantiating MAGE

We presented in Algorithm 1 a generic version with MAGE, whose structure can be adapted to many
model-free actor-critic algorithms. In most of our experiments, we use TD3 [18] as a reference
algorithm, due to its stability and performance, giving birth to MAGE-TD3. In Algorithm 2, we report
pseudocode for this version of our method. Unfortunately, while the use of the model is unchanged
w.r.t. the abstract version, the addition of a second value function implies the computational overhead
of using second-order differentiation twice.

D.2 Hyperparameters

We employ 1000 (100 for the Pendulum and Cartpole environments) warmup steps of interaction
with the environment before starting to update the critic and the actor. We use an ensemble of 8
neural network as approximate dynamics models, that learn both mean and standard deviation of a
Gaussian distribution, of 4 hidden layers of 512 neurons (2 layers with 128 units for the Pendulum
and Cartpole environments) with swish [37] activation function. They are trained by maximum
likelihood, minimizing the loss function, after every 25 steps of interaction with the environment,
on 120 batches of 256 samples. We employ multi-layer perceptrons also for the actor (2 layers, 128
neurons each for the Pendulum and CartPole environments and 284 for all the others) and the critic (2
layers, 384 neurons each). Model, actor and critic are trained with the RAdam optimizer [29], with
learning rates of 0.0001 and default parameters, and a weight decay of 0.0001 for the approximate
dynamics model. For MAGE-TD3, we employ λ = 0.2 for the experiment showed in Figure 2 and
λ = 0.05 for the other experiments. We update the critic and the actor by extracting 1024 (512 for the

16

Algorithm 2 Model-based Action-Gradient-Estimator TD3 (MAGE-TD3)
Input: Initial buffer B, parameters {ω,φ1,φ2,θ}, target parameters

{
φ̄1 = φ1, φ̄2 = φ2, θ̄ = θ

}
for each iteration do

Collect transition (s, a, s′) acting according to exploratory policy πε(s) = πθ(s) + ε, ε ∼ N (0, σ)
B ← B ∪ {(s, a, s′)}
for each model learning step do
ω ← ω − αp∇ω`(s, a, s′;ω), (s, a, s′) ∼ B

end for
for each policy optimization step do

Extract state s after sampling (s, ·, ·) ∼ B
ŷ ← r(s, πε(s)) + γmini=1,2 Qφ̄i(ŝ, πθ̄(ŝ)), ŝ ∼ pω(·|s, πθ(s)), ε ∼ clip(N (0, σ̄))
for i ∈ {1, 2} do

δ̂(s, a, ŝ;φi)← ŷ −Qφi(s, a), a = πθ(s)

φi ← φ− αQ∇φi
(∥∥∥∇aδ̂(s, a, ŝ;φi)∣∣a=πθ(s)

∥∥∥+ λ
∣∣∣δ̂(s, a, ŝ;φi)∣∣∣)

φ̄i ← τφi + (1− τ)φ̄i
end for
if tmod d = 0 then
θ ← θ + απ∇θ mini=1,2 Qφi(s, πθ(s))
θ̄ ← τθ + (1− τ)θ̄

end if
end for

end for

Pendulum and CartPole environment) states from the buffer of collected transitions, then sampling
from the ensemble by first randomly selecting one of the members and then sampling an estimated
difference between current and next state. The critic is trained by employing an Huber loss.

In MAGE-TD3, we employ the suggested hyperparameters of TD3: an action noise of 0.1, a target
noise of 0.2, noise clipping to 0.5 and a delay in the policy updates of 2. During training, the actions
that the actor executes in the environment are perturbed by Gaussian noise ε ∼ N (0, 0.1). We obtain
the target networks for both actor and critic by Polyak averaging with decay τ = 0.995.

For the reward estimation experiments, we employ a neural network with 3 hidden layers of 256 units
(1 hidden layer with 128 units for the Pendulum and Cartpole environments) and swish activations
We employ a discount factor of γ = 0.99.

For our experiment on the evaluation of gradients, we initially collect 200 transitions, then simply
run the algorithms with standard settings but without any update of the actor. Every 10 steps, we
collect 10 trajectories in the environment and average the error over them. We compute the ground-
truth ∇aG(s, a)|a=π(s), with G(s, a) =

∑H−1
t=0 γtr(st, at)|s=s0,a=a0 being the empirical return, by

automatic differentiation, leveraging the differentiable oracle model. We then average, the resulting
discounted error:

L(Qπ, Q̂) =
1

H

H−1∑

t=0

γt‖∇aG(st, at)−∇aQ̂(st, at)‖1. (14)

We average this value across the 10 different trajectories.

Across all the experiments, despite the formulation we used throughout the paper, we employ a reward
r(s, a, s′), which is thus also a function of the next state. Formally, it is possible to interpret the
state-action reward we use throughout the paper as r(s, a) = Es′∼p(·|s,a) [r(s, a, s′)]. For generating
the performance plots, we evaluate, after every 1000 steps of environment interaction, the actor for
10 episodes and average the result. To improve presentation, we then uniformly smooth the resulting
curves with a window size of 25.

17

