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We sincerely thank all the reviewers for their insightful comments. We take these comments seriously and address them2

below. This paper was first submitted to ICML 2020. The paper got one accept and two weak accepts. The main3

comments were to focus on a single regression problem (GLSE) in the main body of the paper and include empirical4

results with real world data – we did both. In doing so – we moved GLSEk to the appendix – this seems to have diluted5

the technical novelty of the current paper for some of the current reviewers. While this is disappointing, we fully6

understand – we can easily bring back the emphasis on GLSEk where there is significant technical novelty.7

Technical novelty for GLSEk. Novelty 1: Coreset definition. The first difficulty is that, unlike GLSE, due to the8

min operation, the objective function ψ(G,q,k) of GLSEk can only be decomposed into sub-functions ψ(G,q,k)
i instead9

of individual-time pairs. We address this by incorporating min operations in the computation function ψ(G,q,k)
S over the10

coreset S. The second difficulty is that the clustering centers are subspaces induced by regression vectors β(1), . . . , β(k),11

instead of points as in Gaussian mixture models or k-means. So it is unclear how GLSEk can be reduced to projective12

clustering used in Gaussian mixture models (see also [Feldman et al., 2019, Coresets for Gaussian mixture models13

of any shape]). We address this by treating observation vectors of an individual (xi1, . . . , xiT ) as one entity while14

constructing coresets. Novelty 2: Coreset construction/upper bounding total sensitivity. This involves two steps.15

In Step 1, we reduce the sensitivity function from GLSEk to OLSEk (Lemma D.10), based on two observations: for any16

ζ = (β, ρ) ∈ Pλ (recall that Pλ = Rd×Bq1−λ for some constant λ ∈ (0, 1) whereBq1−λ =
{
ρ ∈ Rq : ‖ρ‖22 ≤ 1− λ

}
)17

we have ψ(G,q)
i (ζ) ≥ λ · ψ(O)

i (β) that provides an upper bound of the individual objective gap between GLSE and18

OLSE, and for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pk, ψ(G,q,k)
i (ζ) ≤ 2(q+1) ·minl∈[k] ψ

(O)
i (β(l)); and for any19

ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pkλ , ψ(G,q,k)
i (ζ) ≤ 2(q + 1) ·minl∈[k] ψ

(O)
i (β(l)), that provides a lower bound20

of the individual objective gap between GLSEk and OLSEk. Step 2 upper bounds the total sensitivity of OLSEk. This21

key step for coreset construction (Lines 3-4 in Algorithm 2) is done by showing that the max. influence of individual i is22

at most ui

ui+
∑

j 6=i `j
where ui is the largest eigenvalue of (Z(i))>Z(i) and `j is the smallest eigenvalue of (Z(j))>Z(j),23

where Z(i) ∈ RT×(d+1) is the matrix whose t-th row is z(i)t = (xit, yit) ∈ Rd+1 (Definition D.3 and Lemma D.9).24

Empirical performance of our coresets. Reviewers note weak performance of coresets relative to uniform on average25

error. As noted by R1, uniform may have lower average error, but has higher std (more large errors), i.e., many26

observations may be poorly represented. Std is also higher in real data, where errors may not be “regular” as in27

Gaussian noise. To illustrate this, we will include RMSE (root mean square error)–a standard metric of performance.28

Given a set of errors e1, . . . , en, RMSE :=
√

1
n

∑
i∈[n] e

2
i . In Table 1, RMSE(coresets) < RMSE(uniform) in both29

datasets—60%-90% of uniform on real data and 50%-85% of uniform on synthetic data with Gaussian errors. Further,30

unlike coresets, uniform also has no performance bounds on max error. For instance, in the real-world data with ε = 0.5,31

the max. error of uniform is .775 which exceeds the desired error bound. R1 asks about role of leverage. Coresets32

should perform better with high leverage observations, given max. error guarantees. We earlier presented Gaussian error33

(low leverage, few outliers) because it is a "hard" benchmark to beat. We illustrate this by replacing Gaussian errors34

in Eq. (2) with the Cauchy (0,2) distribution that has heavy tails as in eit =
∑min{t−1,q}
a=1 ρaei,t−a + Cauchy(0, 2),35

Table 2 shows that coreset performance relative to uniform is now even better for max/avg/RMSE errors. The max36

error for uniform exceeds the desired bound for all values of ε; and is at least 10x that of our coreset. In summary, we37

greatly appreciate the issues raised. We note that the issues raised (performance on real data, outliers/leverage points)38

strengthen evidence in favor of our coreset. We will add these points to the final version.39

R1. Thank you for your constructive feedback. The final version will account for your expositional suggestions.40

Hopefully we have addressed your concerns and we hope you will support our paper.41

R2. Thank you for appreciating our paper, providing positive feedback, and supporting it. The code is already on github42

(not included for anonymity); a link will be added in final version.43

R3. Thanks for appreciating the novelty of our GLSE result. We hope the above discussion on empirical results and44

technical novelty (for GLSEk) addresses your concerns. We hope you will strengthen support for our paper.45

R4. Thank you for your detailed feedback. We clarify that our GLSE coreset with AR(q) works for any q′ ≤ q and46

any ρ ∈ Bq . On the real-world use of GLSEk, it is a basic problem with applications in many fields; as accounting for47

unobserved heterogeneity in panel regressions is critical for unbiased estimates. See, Arellano, M. (2003). Panel data48

econometrics. Halaby, C. N. (2004). Panel models in sociological research. Annual Review of Sociology. We will add49

a discussion on the importance of GLSEk. We will add boxplots in the full version. We hope you will support our paper.50

1


