
A Discussion of the generative model (1)

In this section, we discuss the equivalence between the generative model (1) and the random effects
estimator. In random effects estimators, there exist additional individual specified effects αi ∈ R, i.e.,

yit = x>itβi + αi + eit, (3)

and we assume that all individual effects are drawn from a normal distribution, i.e.,

αi ∼ N(µ, σ2
0), ∀i ∈ [N].

where µ ∈ R is the mean and σ2
0 ∈ R≥0 is the covariance of an unknown normal distribution. By

Equation (3), for any i ∈ [N], we let αi = µ+ εi where εi ∼ N(0, σ2
0). Then Equation (3) can be

rewritten as
yit = x>itβi + µ+ (εi + eit).

Let Ω ∈ RT×T denote the covariance matrix among error terms eit. Next, we simplify εi + eit by
e′it. Consequently, error terms e′it satisfy that

Exp[e′it] = 0, ∀(i, t) ∈ [N]× [T];

Cov(e′it, e
′
i′t′) = 0 ∀i 6= i′

Cov(e′it, e
′
it′) = Ωtt′ + σ2

0 = Ω′tt′ ∀i ∈ [N], t, t′ ∈ [T].

By this assumption, a random effects estimator can be defined by the following:

min
β,Ω

∑
i∈[N]

(yi −Xiβi − µ · 1)>(Ω′)−1(yi −Xiβi − µ · 1).

Thus, we verify that the random effects estimator is equivalent to the generative model (1).

B Revisit the coreset definition and the Feldman-Langberg framework

In this section, we derive the coreset definitions in Section 3 from coreset of a query space [21, 52].
Then we revisit the Feldman-Langberg framework using the language of query spaces, which helps
us to complete the missing proofs in Sections 4 and 5.

B.1 Revisit the coreset definition

OLSE and GLSE. We first introduce a generalized definition: coresets of a query space, which
captures the coreset definition for OLSE and GLSE.

Definition B.1 (Query space [21, 9]) Let X be a index set together with a weight function u : X →
R≥0. Let P be a set called queries, and ψx : P → R≥0 be a given loss function w.r.t. x ∈ X . The
total cost of X with respect to a query ζ ∈ P is ψ(ζ) :=

∑
x∈X u(x) · ψx(ζ). The tuple (X , u,P, ψ)

is called a query space. Specifically, if u(x) = 1 for all x ∈ X , we use (X ,P, ψ) for simplicity.

Intuitively, ψ represents a linear combination of weighted functions indexed by X , and P represents
the ground set of ψ. Due to the separability of ψ, we have the following coreset definition.

Definition B.2 (Coresets of a query space [21, 9]) Let (X , u,P, ψ) be a query space and ε ∈
(0, 1) be an error parameter. An ε-coreset of (X , u,P, ψ) is a weighted set S ⊆ X together with a
weight functionw : S → R≥0 such that for any ζ ∈ P , ψS(ζ) :=

∑
x∈S w(x)·ψx(ζ) ∈ (1±ε)·ψ(ζ).

Here, ψS is a computation function over the coreset that is used to estimate the total cost of X . By
Definitions 2.2 and 2.3, the regression objectives of OLSE and GLSE can be decomposed into NT
sub-functions. Thus, we can apply the above definition to define coresets for OLSE and GLSE. Note
that OLSE is a special case of GLSE for q = 0. Thus, we only need to provide the coreset definition
for GLSE. We let u = 1 and P = Rd ×Bq . The index set of GLSE has the following form:

Z(G,q) =
{
zit =

(
xi,max{1,t−q}, yi,max{1,t−q}, . . . xit, yit

)
: (i, t) ∈ [N]× [T]

}
,

14

where each element zit consists of at most q + 1 observations. Also, for every zit ∈ Z(G,q) and
ζ = (β, ρ) ∈ P , the cost function ψit is: if t = 1, ψ(G,q)

it (ζ) = (1−‖ρ‖22)·(yi1−x>i1β)2; and if t 6= 1,

ψ
(G,q)
it (ζ) =

(
(yit − x>itβ)−

∑min{t−1,q}
j=1 ρj(yi,t−j − x>i,t−jβ)

)2

. Thus, (Z(G,q),P, ψ(G,q)) is a

query space of GLSE.3 We conclude that the weighted set S in Definition 3.1 is exactly an ε-coreset
of the query space (Z(G,q),P, ψ(G,q)). Specifically, for OLSE, the parameter space is Rd since q = 0,
and the corresponding index set is Z(O) = {zit = (xit, yit) : (i, t) ∈ [N]× [T]} . Consequently, the
query space of OLSE is (Z(O),Rd, ψ(O)).

GLSEk. Let u = 1, Pk =
(
Rd ×Bq

)k
, and Z(G,q,k) =

{zi = (xi1, yi1, . . . , xiT , yiT) : i ∈ [N]} . We can regard (Z(G,q,k),Pk, ψ(G,q,k)) as a query
space of GLSEk. By Definition B.2, an ε-coreset of (Z(G,q,k),Pk, ψ(G,q,k)) is a subset IS ⊆ [N]
together with a weight function w′ : IS → R≥0 such that for any ζ ∈ Pk, Inequality (??) holds, i.e.,∑

i∈IS

w′(i) · ψ(G,q,k)
i (ζ) ∈ (1± ε) · ψ(G,q,k)(ζ).

However, each zi ∈ Z(G,q,k) consists of T observations, and hence, the number of points in this
coreset S is T · |S|. To avoid the size dependence of T , we propose Definition 3.2 for GLSEk. The
intuition is to further select a subset of time periods to estimate ψ(G,q,k)

i .

B.2 Revisit the Feldman-Langberg framework

We also revisit the FL framework stated in Section ??, which is specific for GLSE. We state the
general FL framework that designs for a query space, which captures the query spaces for GLSE and
GLSEk in the last subsection. For preparation, we first give the notion of sensitivity which measures
the maximum influence for each point x ∈ X .

Definition B.3 (Sensitivity [21, 9]) Given a query space (X , u,P, ψ), the sensitivity of a point
x ∈ X is s(x) := supζ∈P

u(x)·ψx(ζ)
ψ(X ,u,ζ) . The total sensitivity of the query space is

∑
x∈X s(x).

Intuitively, if the sensitivity s(x) of some point x is large, e.g., close to 1, x must contribute
significantly to the objective with respect to some query ζ ∈ P . The sampling ensures that we are
likely to include such an x in the coreset for estimating ψ(ζ). We also rewrite Definition 4.2 in the
language of a query space.

Definition B.4 (Pseudo-dimension [21, 9]) For a query space (X , u,P, ψ), we define
range(ζ, r) = {x ∈ X : u(x) · ψx(ζ) ≤ r} for every ζ ∈ P and r ≥ 0. The (pseudo-)dimension of
(X , u,P, ψ) is the largest integer t such that there exists a subset A ⊆ X of size t satisfying that
|{A ∩ range(ζ, r) : ζ ∈ P, r ≥ 0}| = 2|A|.

Pseudo-dimension plays the same role as VC-dimension [51]. Specifically, if the range of ψ is {0, 1}
and u = 1, pseudo-dimension can be regarded as a generalization of VC-dimension to function
spaces. Now we are ready to describe the FL framework in the language of a query space.

Theorem B.5 (FL framework [21, 9]) Let (X , u,P, ψ) be a given query space and ε, δ ∈ (0, 1).
Let dim be an upper bound of the pseudo-dimension of every query space (X , u′,P, ψ) over u′.
Suppose s : X → R≥0 is a function satisfying that for any x ∈ X , s(x) ≥ supζ∈P

u(x)·ψx(ζ)
ψ(X ,u,ζ) , and

G :=
∑
x∈X s(x). Let S ⊆ X be constructed by taking O

(
ε−2G(dim · log G + log(1/δ))

)
samples,

where each sample x ∈ X is selected with probability s(x)
G and has weight w(x) := G

|S|·s(x) . Then,
with probability at least 1− δ, S is an ε-coreset of (X , u,P, ψ).

3Here, we slightly abuse the notation by using ψ(G,q)
it (ζ) instead of ψ(G,q)

zit (ζ).

15

C Existing results and approaches for OLSE

We note that finding an ε-coreset of X for OLSE can be reduced to finding an ε-coreset for least-
squares regression with cross-sectional data. For completeness, we summarize the following theorems
for OLSE whose proofs mainly follow from the literature.

Theorem C.1 (ε-Coresets for OLSE [8]) There exists a deterministic algorithm that for any given
observation matrix X ∈ RN×T×d, outcome matrix Y ∈ RN×T , a collection B ⊆ Rd and constant
ε ∈ (0, 1), constructs an ε-coreset of sizeO(d/ε2) of OLSE, with running time TSV D+O(NTd3/ε2)
where TSV D is the time needed to compute the left singular vectors of a matrix in RNT×(d+1).

Theorem C.2 (Accurate coresets for OLSE [33]) There exists a deterministic algorithm that for
any given observation matrix X ∈ RN×T×d, outcome matrix Y ∈ RN×T , a collection B ⊆ Rd,
constructs an accurate coreset of size O(d2) of OLSE, with running time O(NTd2 +d8 log(NT/d)).

C.1 Proof of Theorem C.1

We first prove Theorem C.1 and propose the corresponding algorithm that constructs an ε-coreset.
Recall that B ⊆ Rd denotes the domain of possible vectors β.

Proof: [Proof of Theorem C.1] Construct a matrix A ∈ RNT×d by letting the (iT − T + t)-th row
of A be xit for (i, t) ∈ [N]× [T]. Similarly, construct a vector b ∈ RNT by letting biT−T+t = yit.
Then for any β ∈ B, we have

ψ(O)(β) = ‖Aβ − b‖22.

Thus, finding an ε-coreset of X of OLSE is equivalent to finding a row-sampling matrix S ∈ Rm×NT
whose rows are basis vectors e>i1 , . . . , e

>
im

and a rescaling matrix W ∈ Rm×m≥0 that is a diagonal
matrix such that for any β ∈ B,

‖WS (Aβ − b) ‖22 ∈ (1± ε) · ‖Aβ − b‖22.

By Theorem 1 of [8], we only needm = O(d/ε2) which completes the proof of correctness. Note that
Theorem 1 of [8] only provides a theoretical guarantee of a weak-coreset which only approximately
preserves the optimal least-squares value. However, by the proof of Theorem 1 of [8], their coreset
indeed holds for any β ∈ Rd.

The running time also follows from Theorem 1 of [8], which can be directly obtained by the algorithm
stated below. �

Algorithm in [8]. We then introduce the approach of [8] as follows. Suppose we have inputs
A ∈ Rn×d and b ∈ Rn.

1. Compute the SVD of Y = [A, b] ∈ Rn×(d+1). Let Y = UΣV > where U ∈ Rn×(d+1),Σ ∈
R(d+1)×(d+1) and V ∈ R(d+1)×(d+1).

2. By Lemma 2 of [8] which is based on Theorem 3.1 of [7], we deterministically construct
sampling and rescaling matrices S ∈ Rm×n and W ∈ Rm×m (m = O(d/ε2)) such that for
any y ∈ Rd+1,

‖WSUy‖22 ∈ (1± ε) · ‖Uy‖22.

The construction time is O(nd3/ε2).

3. Output S and W .

C.2 Proof of Theorem C.2

Next, we prove Theorem C.2 and propose the corresponding algorithm that constructs an accurate
coreset.

16

Proof: [Proof of Theorem C.2] The proof idea is similar to that of Theorem C.1. Again, we
construct a matrix A ∈ RNT×d by letting the (iT − T + t)-th row of A be xit for (i, t) ∈ [N]× [T].
Similarly, construct a vector b ∈ RNT by letting biT−T+t = yit. Then for any β ∈ B, we have

ψ(O)(β) = ‖Aβ − b‖22.

Thus, finding an ε-coreset of X of OLSE is equivalent to finding a row-sampling matrix S ∈ Rm×NT
whose rows are basis vectors e>i1 , . . . , e

>
im

and a rescaling matrix W ∈ Rm×m≥0 that is a diagonal
matrix such that for any β ∈ B,

‖WS (Aβ − b) ‖22 = ‖Aβ − b‖22.

By Theorem 3.2 of [33], we only need m = (d + 1)2 + 1 = O(d2). Moreover, we can construct
matrices W and S in O(NTd2 + d8 log(NT/d)) time by applying n = NT , and k = 2(d+ 1) in
Theorem 3.2 of [33]. �

Main approach in [33]. Suppose we have inputs A ∈ Rn×d and b ∈ Rn. Let A′ = [A,b] ∈
Rn×(d+1) For any β ∈ Rd, we let β′ = (β,−1) ∈ Rd+1 and have that

‖Aβ − b‖22 = ‖A′β′‖22 = (β′)>(A′)>A′β′.

The main idea of [33] is to construct a sub-matrix C ∈ R((d+1)2+1)×(d+1) of A′ whose rows are of
the form wi · (ai,bi)> for some i ∈ [n] and wi ≥ 0, such that C>C = (A′)>A′. Then we have for
any β ∈ Rd,

‖Cβ′‖22 = (β′)>C>Cβ′ = (β′)>(A′)>A′β′ = ‖Aβ − b‖22.
By the definition of C, there exists a row-sampling matrix S and a rescaling matrix W such that
C = WSA′.

We then discuss why such a sub-matrix C exists. The main observation is that (A′)>A′ ∈
R(d+1)×(d+1) and

(A′)>A′ =
∑
i∈[n]

(ai,bi) · (ai,bi)>.

Thus, 1
n · (A

′)>A′ is inside the convex hull of n matrices (ai,bi) · (ai,bi)> ∈ R(d+1)×(d+1). By the
Caratheodory’s Theorem, there must exist at most (d+ 1)2 + 1 matrices (ai,bi) · (ai,bi)> whose
convex hull also contains 1

n · (A
′)>A′. Then 1

n · (A
′)>A′ can be represented as a linear combination

of these matrices, and hence, the sub-matrix C ∈ R((d+1)2+1)×(d+1) exists.

Algorithm 1 of [33] shows how to directly construct such a matrix C. However, the running time is
O(n2d2) which is undesirable. To accelerate the running time, Jubran et al. [33] apply the following
idea.

1. For each i ∈ [n], set pi ∈ R(d+1)2 as the concatenation of the (d+ 1)2 entries of (ai,bi) ·
(ai,bi)

>. Let P be the collection of these points pi. Then our objective is reduced to
finding a subset S ⊆ P of size (d + 1)2 + 1 such that the convex hull of S contains
P = 1

n ·
∑
i∈[n] pi.

2. Compute a balanced partition P1, . . . , Pk of P into k = 3(d+ 1)2 clusters of roughly the
same size. By the Caratheodory’s Theorem, there must exist at most (d+ 1)2 + 1 partitions
Pi such that the convex hull of their union contains P . The main issue is how to these
partitions Pi efficiently.

3. To address this issue, Jubran et al. [33] compute a sketch for each partition Pi including its
size |Pi| and the weighted mean

ui :=
1

|Pi|
·
∑
j∈Pi

pj .

The construction of sketches costs O(nd2) time. The key observation is that there exists a
set S of at most (d+ 1)2 + 1 points ui such that the convex hull of their union contains P
by the Caratheodory’s Theorem. Moreover, the corresponding partitions Pi of these ui are
what we need – the convex hull of

⋃
i∈[n]:ui∈S Pi contains P . Note that the construction of

17

S costs O
(
k2
(
(d+ 1)2

)2)
= O(d8) time. Overall, it costs O(nd2 + d8) time to obtain

the collection
⋃
i∈[n]:ui∈S Pi whose convex hull contains P .

4. We repeat the above procedure over
⋃
i∈[n]:ui∈S Pi until obtaining an accurate coreset of

size (d+ 1)2 + 1. By the value of k, we note that∣∣∣∣∣∣
⋃

i∈[n]:ui∈S

Pi

∣∣∣∣∣∣ ≤ n/2,
i.e., we half the size of the input set by an iteration. Thus, there are at most log(n/d)
iterations and the overall running time is

logn∑
i=0

O(nd2)

2i
+O(d8) · log(n/d) = O

(
nd2 + d8 log(n/d)

)
.

D Missing proofs in Section 4

In this section, we complete the proofs for GLSE. Recall that the parameter space Pλ = Rd ×Bq1−λ
for some constant λ ∈ (0, 1) where

Bq1−λ =
{
ρ ∈ Rq : ‖ρ‖22 ≤ 1− λ

}
.

Also recall that

Z(G,q) =
{
zit = (xi,max{1,t−1}, yi,max{1,t−1}, . . . xit, yit) : (i, t) ∈ [N]× [T]

}
.

Given two integers a, b ≥ 1, denote T (a, b) to be the computation time of a column basis of a matrix
in Ra×b. For instance, a column basis of a matrix in Ra×b can be obtained by computing its SVD
decomposition, which costs O(min

{
a2b, ab2

}
) time by [14].

D.1 Proof of Lemma 4.3: Upper bounding the pseudo-dimension

Our proof idea is similar to that in [37]. For preparation, we need the following lemma which is
proposed to bound the pseudo-dimension of feed-forward neural networks.

Lemma D.1 (Restatement of Theorem 8.14 of [2]) Let (X , u,P, f) be a given query space where
fx(ζ) ∈ {0, 1} for any x ∈ X and ζ ∈ P , and P ⊆ Rm. Suppose that f can be computed by an
algorithm that takes as input the pair (x, ζ) ∈ X × P and returns fx(ζ) after no more than l of the
following operations:

• the arithmetic operations +,−,×, and / on real numbers.

• jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and

• output 0,1.

Then the pseudo-dimension of (X , u,P, f) is at most O(ml).

Note that the above lemma requires that the range of functions fx is [0, 1]. We have the following
lemma which can help extend this range to R.

Lemma D.2 (Restatement of Lemma 4.1 of [53]) Let (X , u,P, f) be a given query space. Let
gx : P × R→ {0, 1} be the indicator function satisfying that for any x ∈ X , ζ ∈ P and r ∈ R,

gx(ζ, r) = I [u(x) · f(x, ζ) ≥ r] .

Then the pseudo-dimension of (X , u,P, f) is precisely the pseudo-dimension of the query space
(X , u,P × R, gf).

Now we are ready to prove Lemma 4.3.

18

Proof: [Proof of Lemma 4.3] Fix a weight function u : [N] × [T] → R≥0. For every (i, t) ∈
[N]× [T], let git : Pλ × R≥0 → {0, 1} be the indicator function satisfying that for any ζ ∈ Pλ and
r ∈ R≥0,

git(ζ, r) := I
[
u(i, t) · ψ(G,q)

it (ζ) ≥ r
]
.

We consider the query space (Z(G,q), u,Pλ × R≥0, g). By the definition of Pλ, the dimension
of Pλ × R≥0 is m = q + 1 + d. By the definition of ψ(G,q)

it , git can be calculated using l =
O(qd) operations, including O(qd) arithmetic operations and a jump. Pluging the values of m
and l in Lemma D.1, the pseudo-dimension of (Z(G,q), u,Pλ × R≥0, g) is O ((q + d)qd). Then by
Lemma D.2, we complete the proof. �

D.2 Proof of Lemma 4.4: Bounding the total sensitivity

We prove Lemma 4.4 by relating sensitivities between GLSE and OLSE. For preparation, we give the
following lemma that upper bounds the total sensitivity of OLSE. Recall that we denote T (a, b) to be
the computation time of a column basis of a matrix in Ra×b.

Lemma D.3 (Total sensitivity of OLSE) Function s(O) : [N]× [T]→ R≥0 of Algorithm 1 satisfies
that for any (i, t) ∈ [N]× [T],

s(O)(i, t) ≥ sup
β∈Rd

ψ
(O)
it (β)

ψ(O)(β)
, (4)

and G(O) :=
∑

(i,t)∈[N]×[T] s
(O)(i, t) satisfying G(O) ≤ d+ 1. Moreover, the construction time of

function s(O) is T (NT, d+ 1) +O(NTd).

Proof: The proof idea comes from [52]. By Line 3 of Algorithm 1, A ⊆ RNT×d′ is a matrix
whose columns form a unit basis of the column space of Z. We have d′ ≤ d + 1 and hence
‖A‖22 = d′ ≤ d+ 1. Moreover, for any (i, t) ∈ [N]× [T] and β′ ∈ Rd′ , we have

‖β′‖22 ≤ ‖Aβ′‖22,

Then by Cauchy-Schwarz and orthonormality of A, we have that for any (i, t) ∈ [N] × [T] and
β′ ∈ Rd+1,

|z>itβ′|2 ≤ ‖AiT−T+t‖22 · ‖Zβ′‖22, (5)

where AiT−T+t is the (iT − T + t)-th row of A.

For each (i, t) ∈ [N] × [T], we let s(O)(i, t) := ‖AiT−T+t‖22. Then G(O) = ‖A‖22 = d′ ≤ d + 1.
Note that constructing A costs T (NT, d+ 1) time and computing all ‖AiT−T+t‖22 costs O(NTd)
time.

Thus, it remains to verify that s(O)(i, t) satisfies Inequality (4). For any (i, t) ∈ [N] × [T] and
β ∈ Rd, letting β′ = (β,−1), we have

ψ
(O)
it (β) = |z>itβ′|2 (Defn. of ψ(O)

it)

≤ ‖AiT−T+t‖22 · ‖Zβ′‖22 (Ineq. (5))

= ‖AiT−T+t‖22 · ψ(O)(β). (Defn. of ψ(O))

This completes the proof. �

Now we are ready to prove Lemma 4.4.

Proof: [Proof of Lemma 4.4] For any (i, t) ∈ [N]× [T], recall that s(i, t) is defined by

s(i, t) := min{
1, 2λ−1 ·

(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)}
.

19

We have that ∑
(i,t)∈[N]×[T]

s(i, t)

≤
∑

(i,t)∈[N]×[q]

2λ−1

×
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
(by definition)

≤ 2λ−1 ·
∑

(i,t)∈[N]×[T](1 + q) · s(O)(i, t)

≤ 2λ−1(q + 1)(d+ 1). (Lemma D.3)

Hence, the total sensitivity G = O(λ−1qd). By Lemma D.3, it costs T (NT, d + 1) + O(NTd)
time to construct s(O). We also know that it costs O(NTq) time to compute function s. Since
T (NT, d+ 1) = O(NTd2), this completes the proof for the running time.

Thus, it remains to verify that s(i, t) satisfies that

s(i, t) ≥ sup
ζ∈P

ψ
(G,q)
it (ζ)

ψ(G,q)(ζ)
.

Since supβ∈Rd
ψ

(O)
it (β)

ψ(O)(β)
≤ 1 always holds, we only need to consider the case that

s(i, t) = 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
.

We first show that for any ζ = (β, ρ) ∈ Pλ,

ψ(G,q)(ζ) ≥ λ · ψ(O)(β). (6)

Given an autocorrelation vector ρ ∈ Rq , the induced covariance matrix Ωρ satisfies that Ω−1
ρ = P>ρ Pρ

where

Pρ =


√

1− ‖ρ‖22 0 0 0
−ρ1 1 0 0
−ρ2 −ρ1 1 0
. .
0 0 0 −ρq . . . −ρ1 1

 .
Then by Equation (7), the smallest eigenvalue of Pρ satisfies that

λmin =
√

1− ‖ρ‖22 (Defn. of Pρ)

≥
√
λ. (ρ ∈ Bq1−λ)

(7)

Also we have

ψ(G,q)(ζ) =
∑
i∈[N]

(yi −Xiβ)>Ω−1
ρ (yi −Xiβ)

(Program (GLSE))

=
∑
i∈[N]

‖Pρ(yi −Xiβ)‖22

(P>ρ Pρ = Ω−1
ρ)

≥
∑
i∈[N]

λ · ‖(yi −Xiβ)‖22

(Ineq. (7))

= λ · ψ(O)(β),

(Defns. of ψ(O))

20

which proves Inequality (6). We also claim that for any (i, t) ∈ [N]× [T],

ψ
(G,q)
it (ζ) ≤ 2 ·

(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
. (8)

This trivially holds for t = 1. For t ≥ 2, this is because

ψ
(G,q)
it (ζ)

=
(

(yit − x>itβ)−
∑min{t−1,q}
j=1 ρj · (yi,t−j − x>i,t−jβ)

)2

(t ≥ 2)

≤
(

1 +
∑min{t−1,q}
j=1 ρ2

j

)
×
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Cauchy-Schwarz)

= 2 ·
(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
.

(‖ρ‖22 ≤ 1)

Now combining Inequalities (6) and (8), we have that for any ζ = (β, ρ) ∈ Pλ,

ψ
(G,q)
it (ζ)

ψ(G,q)(ζ)
≤

2 ·
(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
λ · ψ(O)(β)

≤ 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
= s(i, t).

This completes the proof. �

E Missing proofs in Section 5

In this section, we complete the proofs for GLSEk.

E.1 Proof overview

We first give a proof overview for summarization.

Proof overview of Theorem 5.2. For GLSEk, we propose a two-staged framework (Algorithm 2):
first sample a collection of individuals and then run CGLSE on every selected individuals. By
Theorem 4.1, each subset JS,i at the second stage is of size poly(q, d). Hence, we only need to
upper bound the size of IS at the first stage. By a similar argument as that for GLSE, we can
define the pseudo-dimension of GLSEk and upper bound it by poly(k, q, d), and hence, the main
difficulty is to upper bound the total sensitivity of GLSEk. We show that the gap between the
individual regression objectives of GLSEk and OLSEk (GLSEk with q = 0) with respect to the same
(β(1), . . . , β(k)) is at most 2(q+1)

λ , which relies on ψ(G,q)
i (ζ) ≥ λ·ψ(O)

i (β) and an observation that for
any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pk, ψ(G,q,k)

i (ζ) ≤ 2(q + 1) ·minl∈[k] ψ
(O)
i (β(l)). Thus,

it suffices to provide an upper bound of the total sensitivity for OLSEk. We claim that the maximum
influence of individual i is at most ui

ui+
∑
j 6=i `j

where ui is the largest eigenvalue of (Z(i))>Z(i)

and `j is the smallest eigenvalue of (Z(j))>Z(j). This fact comes from the following observation:
minl∈[k] ‖Z(i)(β(l),−1)‖22 ≤ ui

`j
·minl∈[k] ‖Z(j)(β(l),−1)‖22, and results in an upper bound M of

the total sensitivity for OLSEk since
∑
i∈[N]

ui
ui+

∑
j 6=i `j

≤
∑
i∈[N] ui∑
j∈[N] `j

≤M.

Proof overview of Theorem 5.4. For GLSEk, we provide a lower bound Ω(N) of the coreset size
by constructing an instance in which any 0.5-coreset should contain observations from all individuals.
Note that we consider T = 1 which reduces to an instance with cross-sectional data. Our instance

21

is to let xi1 = (4i, 1
4i) and yi1 = 0 for all i ∈ [N]. Then letting ζ(i) = (β(1), β(2), ρ(1), ρ(2)) where

β(1) = (1
4i , 0), β(2) = (0, 4i) and ρ(1) = ρ(2) = 0, we observe that ψ(G,q,k)(ζ(i)) ≈ ψ(G,q,k)

i (ζ(i)).
Hence, all individuals should be contained in the coreset such that regression objectives with respect
to all ζ(i) are approximately preserved.

E.2 Proof of Theorem 5.2: Upper bound for GLSEk

The proof of Theorem 5.2 relies on the following two theorems. The first theorem shows that IS of
Algorithm 2 is an ε

3 -coreset of
(
ZG,q,k,Pkλ , ψ(G,q,k)

)
. The second one is a reduction theorem that

for each individual in IS constructs an ε-coreset JS,i.

Theorem E.1 (Coresets of
(
ZG,q,k,Pkλ , ψ(G,q,k)

)
) For any given M -bounded observation matrix

X ∈ RN×T×d and outcome matrix Y ∈ RN×T , constant ε, δ, λ ∈ (0, 1) and integers q, k ≥ 1, with
probability at least 0.95, the weighted subset IS of Algorithm 2 is an ε

3 -coreset of the query space(
ZG,q,k,Pkλ , ψ(G,q,k)

)
, i.e., for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pkλ ,∑

i∈IS

w′(i) · ψ(G,q,k)
i (ζ) ∈ (1± ε

3
) · ψ(G,q,k)(ζ). (9)

Moreover, the construction time of IS is
N · SVD(T, d+ 1) +O(N).

We defer the proof of Theorem E.1 later.

Theorem E.2 (Reduction from coresets of
(
ZG,q,k,Pkλ , ψ(G,q,k)

)
to coresets for GLSEk)

Suppose that the weighted subset IS of Algorithm 2 is an ε
3 -coreset of the query space(

ZG,q,k,Pkλ , ψ(G,q,k)
)
. Then with probability at least 0.95, the output (S,w) of Algorithm 2 is an

ε-coreset for GLSEk.

Proof: [Proof of Theorem E.2] Note that S is an ε-coreset for GLSEk if Inequality (9) holds
and for all i ∈ [N], JS,i is an ε

3 -coreset of
(
(Z(i))(G,q),Pλ, ψ(G,q)

)
. By condition, we assume

Inequality (9) holds. By Line 6 of Algorithm 2, the probability that every JS,i is an ε
3 -coreset of(

(Z(i))(G,q),Pλ, ψ(G,q)
)

is at least

1− Γ · 1

20Γ
= 0.95,

which completes the proof. �

Observe that Theorem 5.2 is a direct corollary of Theorems E.1 and E.2.

Proof: Combining Theorems E.1 and E.2, S is an ε-coreset of
(
ZG,q,k,Pkλ , ψ(G,q,k)

)
with proba-

bility at least 0.9. By Theorem 4.1, the size of S is

Γ ·O
(
ε−2λ−1qd

(
max

{
q2d, qd2

}
· log

d

λ
+ log

Γ

δ

))
,

which satisfies Theorem 5.2 by pluging in the value of Γ.

For the running time, it costs N · SVD(T, d + 1) to compute IS by Theorem E.1. Moreover, by
Line 3 of Algorithm 2, we already have the SVD decomposition of Z(i) for all i ∈ [N]. Then it
only costs O (T (q + d)) to apply CGLSE for each i ∈ IS in Line 8 of Algorithm 2. Then it costs
O (NT (q + d)) to construct S. This completes the proof of the running time. �

Proof of Theorem E.1: IS is a coreset of
(
Z(G,q,k),Pkλ , ψ(G,q,k)

)
. It remains to prove Theo-

rem E.1. Note that the construction of IS applies the Feldman-Langberg framework. The analysis
is similar to Section D in which we provide upper bounds for both the total sensitivity and the
pseudo-dimension.

We first discuss how to bound the total sensitivity of (Z(G,q,k),Pk, ψ(G,q,k)). Similar to Section D.2,
the idea is to first bound the total sensitivity of (Z(G,0,k),Pk, ψ(G,0,k)) – we call it the query space
of OLSEk whose covariance matrices of all individuals are identity matrices.

22

Lemma E.3 (Total sensitivity of OLSEk) Function s(O) : [N]→ R≥0 of Algorithm 2 satisfies that
for any i ∈ [N],

s(O)(i) ≥ sup
β(1),...,β(k)∈Rd

minl∈[k] ψ
(O)
i (β(l))∑

i′∈[N] minl∈[k] ψ
(O)
i′ (β(l))

, (10)

and G(O) :=
∑
i∈[N] s

(O)(i) satisfying that G(O) = O(M). Moreover, the construction time of
function s(O) is

N · SVD(T, d+ 1) +O(N).

Proof: For every i ∈ [N], recall that Z(i) ∈ RT×(d+1) is the matrix whose t-th row is z(i)
t =

(xit, yit) ∈ Rd+1 for all t ∈ [T]. By definition, we have that for any β ∈ Rd,

ψ
(O)
i (β) = ‖Z(i)(β,−1)‖22.

Thus, by the same argument as in Lemma D.3, it suffices to prove that for any matrix sequences
Z(1), . . . , Z(N) ∈ RT×(d+1),

s(O)(i) ≥ sup
β(1),...,β(k)∈Rd

minl∈[k] ‖Z(i)(β(l),−1)‖22∑
i′∈[N] minl∈[k] ‖Z(i′)(β(l),−1)‖22

.
(11)

For any β(1), . . . , β(k) ∈ Rd and any i 6= j ∈ [N], letting l? = arg minl∈[k] ‖Z(j)(β(l),−1)‖22, we
have

min
l∈[k]
‖Z(i)(β(l),−1)‖22

≤ ‖Z(i)(β(l?),−1)‖22
≤ ui · (‖β(l?)‖22 + 1) (Defn. of ui)

≤ ui
`j
· ‖Z(j)(β(l?),−1)‖22 (Defn. of `i)

=
ui
`j
·min
l∈[k]
‖Z(j)(β(l),−1)‖22. (Defn. of l?)

Thus, we directly conclude that

minl∈[k] ‖Z(i)(β(l),−1)‖22∑
i′∈[N] minl∈[k] ‖Z(i′)(β(l),−1)‖22

≤
minl∈[k] ‖Z(i)(β(l),−1)‖22(

1 +
∑
i′ 6=i

`i′
ui

)
·minl∈[k] ‖Z(i)(β(l),−1)‖22

=
ui

ui +
∑
i′ 6=i `i′

= s(O)(i).

Hence, Inequality (11) holds. Moreover, since the input dataset is M -bounded, we have

G(O) ≤
∑
i∈[N]

ui∑
i′∈[N] `i′

≤M,

which completes the proof of correctness.

For the running time, it costs N · SVD(T, d+ 1) to compute SVD decompositions for all Z(i). Then
it costs O(N) time to compute all ui and `i, and hence costs O(N) time to compute sensitivity
functions s(O). Thus, we complete the proof. �

23

Note that by the above argument, we can also assume∑
i∈[N]

ui
ui +

∑
i′ 6=i `i′

≤M,

which leads to the same upper bound for the total sensitivity G(O). Now we are ready to upper bound
the total sensitivity of (Z(G,q,k),Pk, ψ(G,q,k)).

Lemma E.4 (Total sensitivity of GLSEk) Function s : [N] → R≥0 of Algorithm 2 satisfies that
for any i ∈ [N],

s(i) ≥ sup
ζ∈Pkλ

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
, (12)

and G :=
∑
i∈[N] s(i) satisfying that G = O(qMλ). Moreover, the construction time of function s is

N · SVD(T, d+ 1) +O(N).

Proof: Since it only costs O(N) time to construct function s if we have s(O), we prove the
construction time by Lemma E.3.

Fix i ∈ [N]. If s(i) = 1 in Line 4 of Algorithm 2, then Inequality (12) trivally holds. Then we
assume that s(i) = 2(q+1)

λ · s(O)(i). We first have that for any i ∈ [N] and any ζ ∈ Pkλ ,

ψ
(G,q,k)
i (ζ)

= min
l∈[k]

∑
t∈[T]ψ

(G,q)
it (β(l), ρ(l)) (Defn. 2.4)

≥ min
l∈[k]

∑
t∈[T]λ · ψ

(O)
it (β(l)) (Ineq. (6))

= λ ·min
l∈[k]

ψ
(O)
i (β(l)). (Defn. of ψ(O)

i)

which directly implies that

ψ(G,q,k)(ζ) ≥ λ ·
∑
i′∈[N]

min
l∈[k]

ψ
(O)
i′ (β(l)). (13)

We also note that for any (i, t) ∈ [N]× [T] and any (β, ρ) ∈ Pλ,

ψ
(G,q)
it (β, ρ)

≤
(

(yit − x>itβ)−
∑min{t−1,q}
j=1 ρj · (yi,t−j − x>i,t−jβ)

)2

(Defn. of ψ(G,q)
it)

≤ (1 +
∑min{t−1,q}
j=1 ρ2

j)×
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Cauchy-Schwarz)

≤ 2
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
. (‖ρ‖22 ≤ 1)

Hence, we have that

1

2
· ψ(G,q)

it (β, ρ) ≤ (yit − x>itβ)2 +

min{t−1,q}∑
j=1

(yi,t−j − x>i,t−jβ)2. (14)

This implies that

ψ
(G,q,k)
i (ζ)

= min
l∈[k]

∑
t∈[T]ψ

(G,q)
it (β(l), ρ(l)) (Defn. 2.4)

≤ min
l∈[k]

∑
t∈[T]2×

(
(yit − x>itβ)2 +

∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Ineq. (14))

≤ 2(q + 1) ·min
l∈[k]

∑
t∈[T]ψ

(O)
it (β(l))

= 2(q + 1) ·min
l∈[k]

ψ
(O)
i (β(l)). (Defn. of ψ(O)

i)

(15)

24

Thus, we have that for any i ∈ [N] and ζ ∈ Pkλ ,

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
≤

2(q + 1) ·minl∈[k] ψ
(O)
i (β(l))

λ ·
∑
i∈[N] minl∈[k] ψ

(O)
i (β(l))

(Ineqs. (13) and (15))

≤ 2(q + 1)

λ
· s(O)(i) (Lemma E.3)

= s(i), (by assumption)

which proves Inequality (12). Moreover, we have that

G =
∑
i∈[N]

s(i) ≤ 2(q + 1)

λ
· G(O) = O(

qM

λ
),

where the last inequality is from Lemma E.3. We complete the proof. �

Next, we upper bound the pseudo-dimension of GLSEk. The proof is similar to that of GLSE by
applying Lemmas D.1 and D.2.

Lemma E.5 (Pseudo-dimension of GLSEk) The pseudo-dimension of any query space
(Z(G,q,k), u,Pkλ , ψ(G,q,k)) over weight functions u : [N]→ R≥0 is at most

O
(
k2q2(q + d)d2

)
.

Proof: The proof idea is similar to that of Lemma 4.3. Fix a weight function u : [N] → R≥0.
For every i ∈ [N], let gi : Pkλ × R≥0 → {0, 1} be the indicator function satisfying that for any
ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pkλ and r ∈ R≥0,

gi(ζ, r) := I
[
u(i) · ψ(G,q,k)

i (ζ) ≥ r
]

= I

∀l ∈ [k], u(i) ·
∑
t∈[T]

ψ
(G,q)
it (β(l), ρ(l)) ≥ r

 .
We consider the query space (Z(G,q,k), u,Pkλ × R≥0, g). By the definition of Pkλ , the dimension of
Pkλ×R≥0 ism = k(q+d)+1. Also note that for any (β, ρ) ∈ Pλ, ψ(G,q)

it (β, ρ) can be represented as a
multivariant polynomial that consists of O(q2d2) terms ρb1c1ρ

b2
c2β

b3
c3β

b4
c4 where c1, c2 ∈ [q], c3, c4 ∈ [d]

and b1, b2, b3, b4 ∈ {0, 1}. Thus, gi can be calculated using l = O(kq2d2) operations, including
O(kq2d2) arithmetic operations and k jumps. Pluging the values of m and l in Lemma D.1, the
pseudo-dimension of (Z(G,q,k), u,Pkλ × R≥0, g) is O

(
k2q2(q + d)d2

)
. Then by Lemma D.2, we

complete the proof. �

Combining with the above lemmas and Theorem ??, we are ready to prove Theorem E.1.

Proof: [Proof of Theorem E.1] By Lemma E.4, the total sensitivity G of (Z(G,q,k),Pkλ , ψ(G,q,k))

is O(qMλ). By Lemma E.5, we can let dim = O
(
k2(q + d)q2d2

)
which is an upper bound of the

pseudo-dimension of every query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) over weight functions u : [N]→
R≥0. Pluging the values of G and dim in Theorem ??, we prove for the coreset size.

For the running time, it costs N · SVD(T, d+ 1) +O(N) time to compute the sensitivity function s
by Lemma E.4, and O(N) time to construct IS . This completes the proof. �

E.3 Proof of Theorem 5.4: Lower bound for GLSEk

Actually, we prove a stronger version of Theorem 5.4 in the following. We show that both the coreset
size and the total sensitivity of the query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) may be Ω(N), even for
the simple case that T = 1 and d = k = 2.

Theorem E.6 (Size and sensitivity lower bound of GLSEk) Let T = 1 and d = k = 2 and λ ∈
(0, 1). There exists an instance X ∈ RN×T×d and Y ∈ RN×T such that the total sensitivity∑

i∈[N]

sup
ζ∈Pkλ

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
= Ω(N).

25

and any 0.5-coreset of the query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) should have size Ω(N).

Proof: We construct the same instance as in [49]. Concretely, for i ∈ [N], let xi1 = (4i, 1
4i) and

yi1 = 0. We claim that for any i ∈ [N],

sup
ζ∈Pkλ

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
≥ 1

2
. (16)

If the claim is true, then we complete the proof of the total sensitivity by summing up the above
inequality over all i ∈ [N]. Fix i ∈ [N] and consider the following ζ = (β(1), β(2), ρ(1), ρ(2)) ∈ Pkλ
where β(1) = (1

4i , 0), β(2) = (0, 4i) and ρ(1) = ρ(2) = 0. If j ≤ i, we have

ψ
(G,q,k)
j (ζ) = min

l∈[2]
(yi1 − x>i1β(l))2

= min

{
1

16j−i
,

1

16i−j

}
=

1

16i−j
.

Similarly, if j > i, we have

ψ
(G,q,k)
j (ζ) = min

{
1

16j−i
,

1

16i−j

}
=

1

16j−i
.

By the above equations, we have

ψ(G,q,k)(ζ) =

i∑
j=1

1

16i−j
+

N∑
j=i+1

1

16j−i
<

5

4
. (17)

Combining with the fact that ψ(G,q,k)
i (ζ) = 1, we prove Inequality (16).

For the coreset size, suppose S ⊆ [N] together with a weight function w : S → R≥0 is a 0.5-coreset
of the query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)). We only need to prove that S = [N]. Suppose there
exists some i? ∈ S with w(i?) > 2. Letting ζ = (β(1), β(2), ρ(1), ρ(2)) where β(1) = (1

4i?
, 0),

β(2) = (0, 4i
?

) and ρ(1) = ρ(2) = 0, we have that∑
i∈S

w(i) · ψ(G,q,k)
i (ζ) > w(i?) · ψ(G,q,k)

i? (ζ)

> 2 (w(i?) > 2 and Defns. of ζ)

> (1 +
1

2
) · 5

4

> (1 +
1

2
) · ψ(G,q,k)(ζ), (Ineq. (17))

which contradicts with the assumption of S. Thus, we have that for any i ∈ S, w(i) ≤ 2. Next, by
contradiction assume that i? /∈ S. Again, letting ζ = (β(1), β(2), ρ(1), ρ(2)) where β(1) = (1

4i?
, 0),

β(2) = (0, 4i
?

) and ρ(1) = ρ(2) = 0, we have that∑
i∈S

w(i) · ψ(G,q,k)
i (ζ) ≤ 2

(
ψ(G,q,k)(ζ)− ψ(G,q,k)

i? (ζ)
)

(w(i) ≤ 2)

≤ 2(
5

4
− 1) (Ineq. (17))

≤ (1− 1

2
) · 1

≤ (1− 1

2
) · ψ(G,q,k)(ζ),

which contradicts with the assumption of S. This completes the proof.

�

26

Figure 1: Boxplots of empirical errors for GLSE w.r.t. varying ε. Uni has higher average and
maximum empirical errors than CGLSE.

F Other empirical results

We also provide boxplots for both synthetic and real-world datasets in Figure 1. The figures indicate
that Uni has higher average and maximum empirical errors than CGLSE.

27

	Discussion of the generative model (1)
	Revisit the coreset definition and the Feldman-Langberg framework
	Revisit the coreset definition
	Revisit the Feldman-Langberg framework

	Existing results and approaches for OLSE
	Proof of Theorem C.1
	Proof of Theorem C.2

	Missing proofs in Section 4
	Missing proofs in Section 5
	Proof overview
	Proof of Theorem 5.2: Upper bound for GLSEk
	Proof of Theorem 5.4: Lower bound for GLSEk

	Other empirical results

