A Discussion of the generative model ()

In this section, we discuss the equivalence between the generative model () and the random effects
estimator. In random effects estimators, there exist additional individual specified effects o; € R, i.e.,

Yir = T4 B + i + e, 3)
and we assume that all individual effects are drawn from a normal distribution, i.e.,
a; ~ N(p,08), Vi€[N].

where 11 € R is the mean and 0 € R is the covariance of an unknown normal distribution. By

Equation (3)), for any i € [N], we let o; = i1 + ¢; where g; ~ N (0, 03). Then Equation (3) can be

rewritten as
Yit = Ty Bi + o+ (€5 + €ir).
Let Q € RT*T denote the covariance matrix among error terms e;;. Next, we simplify &; + e;; by
e},. Consequently, error terms e}, satisfy that
Explel;] =0, V(i t) € [N] x [T7;
COV(e,’it, S;/t/) = O Vl # 7:/
Cov(e};, €)= Qur + 0 =, Vi € [N],t,t' € [T).

By this assumption, a random effects estimator can be defined by the following:

I/gllgll (i — XiBi — - 1) (V) Ny — Xiffi — p- 1).
T ie[N)

Thus, we verify that the random effects estimator is equivalent to the generative model (T).

B Revisit the coreset definition and the Feldman-Langberg framework

In this section, we derive the coreset definitions in Section [3|from coreset of a query space [21} [52].
Then we revisit the Feldman-Langberg framework using the language of query spaces, which helps
us to complete the missing proofs in Sections] and 5]

B.1 Revisit the coreset definition

OLSE and GLSE. We first introduce a generalized definition: coresets of a query space, which
captures the coreset definition for OLSE and GLSE.

Definition B.1 (Query space [21,9]) Let X be a index set together with a weight function u : X —
R>. Let P be a set called queries, and 1, : P — Rx>q be a given loss function w.rt. x € X. The
total cost of X with respect to a query ¢ € P is (C) := Y, c u(z) - ¥ (). The tuple (X ,u, P,)

is called a query space. Specifically, if u(x) = 1 for all x € X, we use (X, P,) for simplicity.

Intuitively, 1) represents a linear combination of weighted functions indexed by X', and P represents
the ground set of . Due to the separability of v, we have the following coreset definition.

Definition B.2 (Coresets of a query space [21,(9]) Let (X,u,P,)) be a query space and € €
(0,1) be an error parameter. An e-coreset of (X, u, P, 1) is a weighted set S C X together with a

weight function w : S — Rxq such that for any ¢ € P, 1s(C) := >, cq w(x)1¥2(C) € (1%¢)-4(C).

Here, v is a computation function over the coreset that is used to estimate the total cost of X'. By
Definitions and the regression objectives of OLSE and GLSE can be decomposed into NT'
sub-functions. Thus, we can apply the above definition to define coresets for OLSE and GLSE. Note
that OLSE is a special case of GLSE for ¢ = 0. Thus, we only need to provide the coreset definition
for GLSE. We let u = 1 and P = R? x BY. The index set of GLSE has the following form:

Z(GH) = {Zit = (xi,max{l,tfq}vyi,max{l,tfq}v . ~-Tit7yit) : (Z7t) € [N] X [T]}a

14

where each element z;; consists of at most g + 1 observations. Also, for every z;; € Z (G29) and
¢ = (B, p) € P, the cost function ¢;; is: if t = 1, wftG’Q) (€)= A—|pl3) (yir—=;,8)* andif t # 1,

WED(C) = (v — 208) — SN ey — 0l) Thus, (20, P,@) is
query space of GLSE We conclude that the weighted set S in Deﬁnitionis exactly an e-coreset
of the query space (Z(¢9), P, 1)(-9)). Specifically, for OLSE, the parameter space is R? since ¢ = 0,
and the corresponding index set is Z(©) = {z;; = (241, i) : (i,t) € [N] x [T]} . Consequently, the
query space of OLSE is (Z(9), R? 1)(©)),

GLSE;. Let v = 1, P+ = (R'xBY)", and Z@h =
{zi = (w31,Yi1, - -, i, yar) 11 € [N]}. We can regard (Z(G0F) Pk 4)(Ga:k)) a5 a query
space of GLSE. By Definition [B.2} an e-coreset of (Z(%@F) Pk 4(G:a:k)) is a subset I C [N]
together with a weight function w’ : Is — Rx such that for any ¢ € P¥, Inequality (??) holds, i.e.,

ST w' (@) - TP (C) e (L xe) - pEaR((),

i€lg

However, each z; € Z (G.9:k) consists of T observations, and hence, the number of points in this
coreset S is T' - |\S|. To avoid the size dependence of T', we propose Deﬁnitionfor GLSEj. The

intuition is to further select a subset of time periods to estimate 1/)EG’q’k).

B.2 Revisit the Feldman-Langberg framework

We also revisit the FL. framework stated in Section ??, which is specific for GLSE. We state the
general FL framework that designs for a query space, which captures the query spaces for GLSE and
GLSEj, in the last subsection. For preparation, we first give the notion of sensitivity which measures
the maximum influence for each point z € X.

Definition B.3 (Sensitivity [21,9]) Given a query space (X,u, P,v), the sensitivity of a point

T € Xis s(x) := sup;ep % The total sensitivity of the query space is) 5().

Intuitively, if the sensitivity s(z) of some point z is large, e.g., close to 1, = must contribute
significantly to the objective with respect to some query ¢ € P. The sampling ensures that we are
likely to include such an z in the coreset for estimating ¢(¢). We also rewrite Definition 4.2|in the
language of a query space.

Definition B.4 (Pseudo-dimension [21,9]) For a query space (X,u,P,v), we define
range((,7) = {z € X 1 u(x) - ¥ () < r} for every ¢ € P and r > 0. The (pseudo-)dimension of
(X, u, P, 1)) is the largest integer t such that there exists a subset A C X of size t satisfying that

[{ANrange((,7): ¢ € P,r >0} =214

Pseudo-dimension plays the same role as VC-dimension [51]]. Specifically, if the range of) is {0, 1}
and v = 1, pseudo-dimension can be regarded as a generalization of VC-dimension to function
spaces. Now we are ready to describe the FL framework in the language of a query space.

Theorem B.5 (FL framework [21,9]) Let (X, u, P,) be a given query space and €, € (0,1).
Let dim be an upper bound of the pseudo-dimension of every query space (X,u', P,) over u'.

Suppose s : X — Rxq is a function satisfying that for any v € X, s(x) > SUp¢ep %, and

G =3 ,cx s(@). Let S C X be constructed by taking O (e ~2G(dim - log G + log(1/4))) samples,
where each sample © € X is selected with probability % and has weight w(zx) := ﬁ Then,

with probability at least 1 — 0, S is an e-coreset of (X, u, P,).

3Here, we slightly abuse the notation by using wl(f’q) (¢) instead of z/;ﬁfi"” (©).

15

C Existing results and approaches for OLSE

We note that finding an e-coreset of X for OLSE can be reduced to finding an e-coreset for least-
squares regression with cross-sectional data. For completeness, we summarize the following theorems
for OLSE whose proofs mainly follow from the literature.

Theorem C.1 (¢-Coresets for OLSE [8]) There exists a deterministic algorithm that for any given
observation matrix X € RN*TXd ourcome matrix Y € RVN*T | g collection B C R? and constant
e € (0, 1), constructs an e-coreset of size O(d/e?) of OLSE, with running time Tsy p+O(NTd? /&%)
where Tsv p is the time needed to compute the left singular vectors of a matrix in RNT*(d+1),

Theorem C.2 (Accurate coresets for OLSE [33]) There exists a deterministic algorithm that for
any given observation matrix X € RNXT* oytcome matrix Y € RN*T, g collection B C RY,
constructs an accurate coreset of size O(d?) of OLSE, with running time O(NTd? + d® log(NT/d)).

C.1 Proof of Theorem

We first prove Theorem [C.T]and propose the corresponding algorithm that constructs an e-coreset.
Recall that B C R? denotes the domain of possible vectors 3.

Proof: [Proof of Theorem|C.1]] Construct a matrix A € RN7*? by letting the (iT — T + t)-th row
of A be w4 for (i,t) € [N] x [T). Similarly, construct a vector b € RN by letting byr_ 7.4+ = it.
Then for any 5 € B, we have

P (B) = || AB - b|j3.

Thus, finding an e-coreset of X of OLSE is equivalent to finding a row-sampling matrix S €

whose rows are basis vectors eZ, e etn and a rescaling matrix W € RZ "™ that is a diagonal
matrix such that for any 8 € B,

RmeT

7

WS (AB—b) |3 € (1+e)-[|AB - bII5.

By Theorem 1 of [8], we only need m = O(d/<?) which completes the proof of correctness. Note that
Theorem 1 of [8]] only provides a theoretical guarantee of a weak-coreset which only approximately
preserves the optimal least-squares value. However, by the proof of Theorem 1 of [8]], their coreset
indeed holds for any 5 € R%.

The running time also follows from Theorem 1 of [8]], which can be directly obtained by the algorithm
stated below. |

Algorithm in [8]. We then introduce the approach of [8] as follows. Suppose we have inputs
AcR"™andb € R™.

1. Compute the SVD of Y = [A,b] € R**(@+1) LetY = UXV " where U € R**(d+1) 3 ¢
REHDXx(d+1) gpd V' e R@+Dx(d+1),

2. By Lemma 2 of [8] which is based on Theorem 3.1 of [7]], we deterministically construct
sampling and rescaling matrices S € R™*™ and W € R™*™ (m = O(d/e?)) such that for
any y € RI*1,

IWSUy|l3 € (1£¢) - [Uyll3-
The construction time is O(nd?/c?).
3. Output S and W.
C.2 Proof of Theorem[C.2]

Next, we prove Theorem [C.2] and propose the corresponding algorithm that constructs an accurate
coreset.

16

Proof: [Proof of Theorem [C.2]] The proof idea is similar to that of Theorem Again, we
construct a matrix A € RN by letting the (i7" — T + t)-th row of A be x;; for (i,t) € [N] x [T].
Similarly, construct a vector b € RN by letting by_7.4; = ;. Then for any 3 € B, we have

Y O(B) = ||AB — bll3.

Thus, finding an e-coreset of X of OLSE is equivalent to finding a row-sampling matrix S €

whose rows are basis vectors eZ, cee e-T/ and a rescaling matrix W € RZ;"™" that is a diagonal
matrix such that for any 8 € B,

RmeT

im

IWS (AB =) |13 = ||AB — bll3.
By Theorem 3.2 of [33]], we only need m = (d + 1)? + 1 = O(d?). Moreover, we can construct
matrices W and S in O(NTd? + d®log(NT/d)) time by applying n = NT, and k = 2(d + 1) in
Theorem 3.2 of [33]]. O

Main approach in [33]. Suppose we have inputs A € R"*? and b € R™. Let A’ = [A,b] €
R™*(4+1) For any 5 € R?, we let / = (3, —1) € R%*! and have that

1AB = b3 = |A'B||5 = (8")T(A") TA'B".

The main idea of [33] is to construct a sub-matrix C € R +1)x(d+1) f A7 whose rows are of
the form w; - (a;,b;) " for some i € [n] and w; > 0, such that CTC = (A’)T A’. Then we have for
any 3 € R4,

ICB'3 = (8)'CTCp = () (A) A8 = ||AB - b]3.
By the deﬁrllition of C, there exists a row-sampling matrix S and a rescaling matrix W such that
C=WSA'

We then discuss why such a sub-matrix C' exists. The main observation is that (4)T A’ €

R(d+1)><(d+1) and
(ANTA = (aib;) - (ai,by)".
i€[n]
Thus, L - (A’)T A’ is inside the convex hull of n matrices (a;, b;) - (a;,b;) T € R@+Dx(d+1) By the
Caratheodory’s Theorem, there must exist at most (d + 1) + 1 matrices (a;, b;) - (a;,b;) " whose

convex hull also contains £ - (A’)T A’ Then X - (A’) T A’ can be represented as a linear combination

(d+1)2+1) x (d+1)

of these matrices, and hence, the sub-matrix C' € R(exists.

Algorithm 1 of [33]] shows how to directly construct such a matrix C'. However, the running time is
O(n?d?) which is undesirable. To accelerate the running time, Jubran et al. [33] apply the following
idea.

1. Foreachi € [n], setp; € R(@+1?* a5 the concatenation of the (d + 1)? entries of (a;, b;) -
(a;, bi)T. Let P be the collection of these points p;. Then our objective is reduced to
finding a subset S C P of size (d + 1)? + 1 such that the convex hull of S contains

P = Y Pi

2. Compute a balanced partition Py, ..., P, of Pinto k = 3(d + 1)? clusters of roughly the
same size. By the Caratheodory’s Theorem, there must exist at most (d + 1)2 + 1 partitions
P; such that the convex hull of their union contains P. The main issue is how to these
partitions P; efficiently.

3. To address this issue, Jubran et al. [33]] compute a sketch for each partition P; including its
size | P;| and the weighted mean

1
U; :ﬁ ij

tojep;

The construction of sketches costs O(nd?) time. The key observation is that there exists a

set S of at most (d + 1)? + 1 points u; such that the convex hull of their union contains P
by the Caratheodory’s Theorem. Moreover, the corresponding partitions P; of these u; are

what we need — the convex hull of | J, €[n)uses P; contains P. Note that the construction of

17

S costs O (k2 ((d+ 1)2)2) = O(d®) time. Overall, it costs O(nd? + d®) time to obtain

the collection | J P; whose convex hull contains P.

i€[n]:u; €S
4. We repeat the above procedure over | J, [n)iuscs P; until obtaining an accurate coreset of

size (d + 1)? + 1. By the value of k, we note that
U Pl <n/2,

i€[n]iu; €S

i.e., we half the size of the input set by an iteration. Thus, there are at most log(n/d)
iterations and the overall running time is

logn
=0

— + O(d%) - log(n/d) = O (nd* + d®*log(n/d)) .

2

O(nd?)
2

D Missing proofs in Section 4]

In this section, we complete the proofs for GLSE. Recall that the parameter space Py = R? x Bl_,
for some constant A € (0, 1) where

Bl ,={peR%:|p3 <1-2A}.
Also recall that
ASE {zit = (@i max{1,6-1}> Yimax{1,t—1}» - - - Tie, Yar) : (i, 1) € [N] x [T} .
Given two integers a, b > 1, denote T'(a, b) to be the computation time of a column basis of a matrix
in R**?. For instance, a column basis of a matrix in R**? can be obtained by computing its SVD
decomposition, which costs O(min {a?b, ab?}) time by [[14].
D.1 Proof of Lemma[4.3; Upper bounding the pseudo-dimension

Our proof idea is similar to that in [37]]. For preparation, we need the following lemma which is
proposed to bound the pseudo-dimension of feed-forward neural networks.

Lemma D.1 (Restatement of Theorem 8.14 of [2]) Let (X, u, P, f) be a given query space where
f=(¢) € {0,1} forany x € X and ¢ € P, and P C R™. Suppose that | can be computed by an
algorithm that takes as input the pair (z,() € X X P and returns f,(C) after no more than l of the
following operations:

o the arithmetic operations +, —, X, and | on real numbers.
o jumps conditioned on >, >, <, <, =, and # comparisons of real numbers, and
e output 0,1.

Then the pseudo-dimension of (X ,u, P, f) is at most O(ml).

Note that the above lemma requires that the range of functions f, is [0, 1]. We have the following
lemma which can help extend this range to R.

Lemma D.2 (Restatement of Lemma 4.1 of [53]) Ler (X, u, P, f) be a given query space. Let
gz : P xR — {0, 1} be the indicator function satisfying that forany x € X, (€ Pandr € R,

92(C7) = I [uz) - f(x,¢) = 7]

Then the pseudo-dimension of (X,u, P, f) is precisely the pseudo-dimension of the query space
(X,U,P X R,gf).

Now we are ready to prove Lemma[4.3]

18

Proof: [Proof of Lemma[4.3]] Fix a weight function u : [N] x [T] — Rx¢. For every (i,t) €
[N] x [T}, let g;1 : Px x R>g — {0, 1} be the indicator function satisfying that for any ¢ € Py and
re RZO’

gir(Gor) = 1 [u(i,) 07 (Q) = v

We consider the query space (Z (G20) u, Py x R>0,g). By the definition of Py, the dimension
of Py x R>p is m = ¢+ 1 + d. By the definition of wgf”q), gi+ can be calculated using [=
O(qd) operations, including O(gd) arithmetic operations and a jump. Pluging the values of m
and [in Lemma the pseudo-dimension of (Z(%9) u, Py x Rsq,g) is O ((q + d)qd). Then by

O

Lemma[D.2] we complete the proof.

D.2 Proof of Lemma[d.4; Bounding the total sensitivity

We prove Lemma [f.4] by relating sensitivities between GLSE and OLSE. For preparation, we give the
following lemma that upper bounds the total sensitivity of OLSE. Recall that we denote T'(a, b) to be
the computation time of a column basis of a matrix in R**?.

Lemma D.3 (Total sensitivity of OLSE) Function s©) : [N]x [T] — R ofAlgorithmsatisﬁes
that for any (i,t) € [N] x [T,

(0)
. i ()
sCOi,t) > ﬁsgﬂgd w(t@(ﬂ)’

and GO) = 2 (i) E[N] X [T] s(0) (i, t) satisfying G(O) < d + 1. Moreover; the construction time of
function s(©) is T(NT,d + 1) + O(NTd).

“4)

Proof: The proof idea comes from [52]. By Line 3 of Algorithm [1} A € RNT*?" s a matrix
whose columns form a unit basis of the column space of Z. We have d’ < d + 1 and hence
|A||2 = d’ < d + 1. Moreover, for any (i,t) € [N] x [T] and 8’ € R?, we have
1813 < 148113,

Then by Cauchy-Schwarz and orthonormality of A, we have that for any (¢,t) € [N] x [T] and
ﬂ/ c RdJrl’

281 < [Air—r4ell3 - 112815,)
where A;p_74¢ is the (iT — T + t)-th row of A.

For each (i,t) € [N] x [T], we let () (i,t) := ||Ayp_74¢||3. Then GO = ||A||3 = d' < d+ 1.
Note that constructing A costs T(NT,d + 1) time and computing all || A;7—_7¢||5 costs O(NTd)
time.

Thus, it remains to verify that s(9) (4,) satisfies Inequality (@). For any (i,) € [N] x [T] and
B € R?, letting 3’ = (B, —1), we have
v B) = =i (Defn. of ;"))
< Air—riell3- 112813 (Ineq. B))
| Air—rell3 - 09 (5). (Defn. of ()

This completes the proof.]

A

Now we are ready to prove Lemma[4.4]

Proof: [Proof of Lemma[d.4] For any (i,t) € [N] x [T, recall that s(i, t) is defined by
s(i,t) := min

{1’ ox-L. (s(o)(i,t) 4 Z;p:iri{t—l,q}S(O)(i’ t— j))} i

19

‘We have that

Z s(i,t)

(&,t)€[N]X[T]

>t

(i,t)€[N]x[q]

x (s, 0 + 2 s -)
(by definition)

227 Y e (L + @) - 5, 1)

< 20 Yg+1)(d+1). (LemmaD3)

Hence, the total sensitivity G = O(A\~'qd). By Lemma[D.3] it costs T(NT,d + 1) + O(NTd)
time to construct s(?). We also know that it costs O(NTq) time to compute function s. Since
T(NT,d+ 1) = O(NTd?), this completes the proof for the running time.

IN

IN

Thus, it remains to verify that s(¢, t) satisfies that

N e (9
G022 ey

(0)
Since supgepa Zj(’oi)ggg < 1 always holds, we only need to consider the case that

s(irt) = 2271+ (s, 0) + 05O it -)).
We first show that for any ¢ = (8, p) € Py,
D) = A O(B). (©)

Given an autocorrelation vector p € RY, the induced covariance matrix {2, satisfies that Q;l =pr P,
where

I—|pl3 O o 0
P, = —p2 - 10
0 0 0 —-pg ... —p1 1

Then by Equation (7)), the smallest eigenvalue of P, satisfies that

Amin = 1—|lpll3 (Defn. of P,)
> VA (p € Bi_))

(7

Also we have

YD) = > (i — XiB) Qi — XiB)

1€[N]
(Program (GLSE))

= Z 1P, (yi — XiB)lI3
1€[N]

(PPTPP :Q;l)
> A i = XiB)l5

1€[N]
(Incq. (1)

= A 99(p),
(Defns. of 1(?))

v

20

which proves Inequality (6). We also claim that for any (i,¢) € [N] x [T,

B0 <2 (v (B) + Sy e (8)) (®)
This trivially holds for ¢ = 1. For ¢ > 2, this is because
G
= (o= o)~ Sy], ,8))
(t>2)

IN

(1+Zm1n{t 1,q} 2)
x (i =38 + Sy gy - 2l ,8)%)
(Cauchy-Schwarz)
o min R
2 (65B) + 0D 8)

(el <1)
Now combining Inequalities (6) and (8), we have that for any ¢ = (8, p) € Pa,

min 1, o]
v 2- (0) + Y,)
PEa(Q) ~ A 1/1(0)(5)
< 2271 (5 0) + ST O -)
= s(i,t).
This completes the proof. U

E Missing proofs in Section
In this section, we complete the proofs for GLSE.

E.1 Proof overview

We first give a proof overview for summarization.

Proof overview of Theorem[5.2] For GLSEy,, we propose a two-staged framework (Algorithm 2)):
first sample a collection of individuals and then run CGLSE on every selected individuals. By
Theorem [4.1] each subset Jg; at the second stage is of size poly(q,d). Hence, we only need to
upper bound the size of Ig at the first stage. By a similar argument as that for GLSE, we can
define the pseudo-dimension of GLSE;, and upper bound it by poly(k, ¢, d), and hence, the main
difficulty is to upper bound the total sensitivity of GLSE;. We show that the gap between the
individual regression objectives of GLSE;, and OLSE,, (GLSE,, with ¢ = 0) with respect to the same

(BW, ..., M) is at most (qH) , which relies on ¢§G’Q)(C) >)\'1/)50) (8) and an observation that for
any ¢ = (800, 509,50, 0) € PR 5O < 2(g £ 1) - mimepy (). Thus,

it suffices to pr0v1de an upper bound of the total sensitivity for OLSE;. We claim that the maximum

influence of individual 7 is at most ué% where u; is the largest eigenvalue of (Z())T Z(%)

and ¢; is the smallest eigenvalue of (Z (J))TZ (). This fact comes from the following observation:
ming ey 1Z2® (W, -1)|3 < 7+ - mingepy |Z@)(BW, —1)||3, and results in an upper bound M of

2ic
< < M.
"i+23¢i b = Zje[N] Zj - M

the total sensitivity for OLSEk since), €[]

Proof overview of Theorem For GLSEy, we provide a lower bound Q(N) of the coreset size
by constructing an instance in which any 0.5-coreset should contain observations from all individuals.
Note that we consider 7' = 1 which reduces to an instance with cross-sectional data. Our instance

21

is to let z;; = (4°, &) and y;; = 0 for all i € [N]. Then letting () = (81, 32, p(V) p(2)) where
BD = (£,0), @) = (0,4%) and p) = p(®) = 0, we observe that ¢(G4:K) ((()) a p{FTH) (¢ (D)),
Hence, all individuals should be contained in the coreset such that regression objectives with respect

to all ¢(*) are approximately preserved.

E.2 Proof of Theorem Upper bound for GLSE,

The proof of Theorem [5.2]relies on the following two theorems. The first theorem shows that I's of
Algorithm 2|is an £-coreset of (Z% ¢k, P§,)(G:2F))_ The second one is a reduction theorem that
for each individual in I constructs an e-coreset Jg ;.

Theorem E.1 (Coresets of (2%, P¥ (@4*))) For any given M-bounded observation matrix

X € RNXTXd and outcome matrix Y € RN*T, constant €,6, \ € (0, 1) and integers q, k > 1, with

probability at least 0.95, the weighted subset Is of Algorithm|2|is an -coreset of the query space

(ZGak PhplGek) e, forany ¢ = (BW), ..., 3" pM . pk)) e Pk
> (@) () € (1) - (Q). ©)

iclg
Moreover, the construction time of Ig is
N -SVD(T,d+ 1) + O(N).

We defer the proof of Theorem [E.T|later.

Theorem E.2 (Reduction from coresets of (2%, P}, 1)(G:2:k)) to coresets for GLSEy)
Suppose that the weighted subset Is of Algorithm E] is an 5-coreset of the query space
(ZG’q’k, Pk, w(G’q’k)). Then with probability at least 0.95, the output (S, w) ofAlgorithm is an
e-coreset for GLSE},.

Proof: [Proof of Theorem Note that S is an e-coreset for GLSEy, if Inequality (9) holds
and for all i € [N], Jg,; is an 5-coreset of ((Z(®)(©9) P, (¢:2)). By condition, we assume
Inequality (@) holds. By Line 6 of Algorithm the probability that every Jg ; is an §-coreset of
(2@)(GD Py p(@D) is at least
1
1-T- 20T = 0.95,
which completes the proof. (|

Observe that Theorem [5.2)is a direct corollary of Theorems [E.T|and [E.2}

Proof: Combining Theorems and , S is an e-coreset of (Z Gk pk z/J(G’q’k)) with proba-
bility at least 0.9. By Theorem the size of S is

r
r-o (62/\1C]d (max {d°d, qd*} - 10g§ + log 5)) :

which satisfies Theorem [5.2] by pluging in the value of I'.

For the running time, it costs N - SVD(T,d 4 1) to compute Is by Theorem Moreover, by
Line 3 of Algorithm we already have the SVD decomposition of Z(*) for all i € [N]. Then it
only costs O (T'(q + d)) to apply CGLSE for each i € I in Line 8 of Algorithm 2} Then it costs
O (NT(q+ d)) to construct S. This completes the proof of the running time. O

Proof of Theorem I is a coreset of (Z(G4:*) Pk 4(Gak)) " It remains to prove Theo-
rem Note that the construction of /s applies the Feldman-Langberg framework. The analysis
is similar to Section [D]in which we provide upper bounds for both the total sensitivity and the
pseudo-dimension.

We first discuss how to bound the total sensitivity of (Z(¢:4:%) Pk 4(G:a:k)) Similar to Section D.2]
the idea is to first bound the total sensitivity of (Z(%:0:k) Pk 4 (G0k)) _ we call it the query space
of OLSEj whose covariance matrices of all individuals are identity matrices.

22

Lemma E.3 (Total sensitivity of OLSE;,) Function s(°) : [N] — Rx ofAlgorithmsatisﬁes that
foranyi € [N],

i ©) ()
(i) > sup mingepp ¥y (BY) (10)

B BWERT YT TNy P (B0’

(0)

S

and G©) = Yie(N] 5(0) (i) satisfying that G(©) = O(M). Moreover, the construction time of
function s\©) is

N -SVD(T,d + 1) + O(N).

Proof: For every i € [N], recall that Z() € RT*(4+1) g the matrix whose ¢-th row is z{”) =

(wit,yie) € R4 forall ¢ € [T). By definition, we have that for any 3 € R,

i (B) = 129 (8,-1)|2.

Thus, by the same argument as in Lemma [D.3] it suffices to prove that for any matrix sequences
ZW . ZN) g RT*(d+1)

9 @) > sup
B ... B0 eRE
: . 11
mingegy | 2080, —1)|3 (1)

D irevy Mingepy |20 (B0, ~1)[13

Forany s, ..., 3 € R? and any i # j € [N], letting [* = arg minepy |20 (87, —1)|13, we
have

5(

20 (30 _1y2
;g[llg]II BY, =13

< [FARCARNES] T

< wi - (18413 +1) (Defin. of u;)

< % ZD (B, —1)|2 (Defn. of ¢;)
j

_ Y nin ||Z(j)(ﬁ(l)7 1|2 (Defn. of [*)
Ej l€[k]

Thus, we directly conclude that
minepy, 128D, -1)|3
S e Mingeqs 120 (60, —1)]3
mine gy |Z29(80), -1)]3

(14 i &) - mimepy 120(30, -1)]13
Uj

U; + lesél ei/
= s(O)(4).

IN

Hence, Inequality (TT) holds. Moreover, since the input dataset is M/ -bounded, we have
R < M,

G\ <
i€[N] i’ €[N] gi/

which completes the proof of correctness.

For the running time, it costs N - SVD(T',d + 1) to compute SVD decompositions for all Z(*). Then
it costs O(NN) time to compute all u; and ¢;, and hence costs O(N) time to compute sensitivity
functions s(9). Thus, we complete the proof. O

23

Note that by the above argument, we can also assume

"
SRR
e Ui T 2ty

)

which leads to the same upper bound for the total sensitivity G(?). Now we are ready to upper bound
the total sensitivity of (Z(G-@F) Pk ¢)(Ga:k))

Lemma E.4 (Total sensitivity of GLSE;) Function s : [N] — Rx>q of Algorithm @satisﬁes that
forany i € [N],

. L9 ()
02 S @R ()

and G 1=},) s(i) satisfying that G = O(%5- Y Moreover, the construction time of function s is
N -SVD(T,d+1) + O(N).

(12)

Proof: Since it only costs O(N) time to construct function s if we have s(°), we prove the
construction time by Lemma[E3]

Fix i € [N]. If s(i) = 1 in Line 4 of Algorithm [2] then Inequality (T2) trivally holds. Then we
assume that s(i) = w - 5(9)(4). We first have that for any i € [N] and any ¢ € P¥,

wE()
= min 3, s (B0, o) (Defn. 2.4)
> min 3 err A v (80) (Ineg. ())
= A+ min IS GICH (Defn. of ¢/{”)
which directly implies that
PR Z lrg[gw('(89). (13)
We also note that for any (¢,t) € [N] x [T] and any (ﬁ, p) € Pa,
vie ™ (8,0)
< (le =208 - IR ey — ol 8) (Defin. of (&)
< (1 +me{t L.a} 2) ((yit—mlﬁ) +me{t 1’Q}(y¢,t_j —th_jﬂ)2> (Cauchy-Schwarz)
< 2 — 228+ 2P iy — 2l 8)?) - (lol3 < 1)
Hence, we have that
min{t—1,q}
5 VB S a—ah B+ DD (e — vl B) (14)
=1
This implies that]
(9
= min Yremtis (B0, p0) (Defn. Z4)
< ZHEIII?] ZtG[T]2 X ((yit -z,) me{t bat (Yit—j — UCL*J‘B)Q) (Ineq. (14)) (15)
< 2q+ 1) min S (87)
= 2q+ 1) miny{®(60). (Defn. of 1))

24

Thus, we have that for any i € [N] and ¢ € P¥,

v () 2(g + 1) - minyepy 1117 (80)

DCTR(C) < A Yo mimic %(O) (80) (Inegs. (13) and (15))
< w 5O (i) (Lemmal[E3)
_ s(i), (by assumption)

which proves Inequality (I2). Moreover, we have that
. 2(¢+1) (0) q
=5 < g — oM
G s(i) < 3 g (\),

1€[N]

where the last inequality is from Lemma[E3] We complete the proof.]

Next, we upper bound the pseudo-dimension of GLSEy,. The proof is similar to that of GLSE by
applying Lemmas[D.T|and [D.2]

Lemma E.5 (Pseudo-dimension of GLSE;) The pseudo-dimension of any query space
(Z(Gak) y, Pk, P(GDR)) over weight functions u : [N] — R>g is at most

O (K*¢*(q + d)d?) .

Proof: The proof idea is similar to that of Lemma Fix a weight function u : [N] — Rxo.
For every i € [N], let g; : P¥ x R>o — {0, 1} be the indicator function satisfying that for any
C=(BMD,...,8H pM . pk)) e Pkandr € Rs,

Gi(G,r) = 1 [uG) - (@M (¢) = 7]

_ Ve k], u@i)- Y 9?0, p0) > r
te[T]

We consider the query space (Z(%%%) y, P¥ x R, g). By the definition of P¥, the dimension of

PExR>qism = k(g+d)+1. Also note that for any (3, p) € Px, %‘(taq) (8, p) can be represented as a

multivariant polynomial that consists of O(q?d?) terms pl! p%2 353 84 where c1, ¢2 € [q], ¢3, ¢4 € [d]
and by, by, b3, by € {0,1}. Thus, g; can be calculated using [= O(kq?*d?) operations, including
O(kq*d?) arithmetic operations and k jumps. Pluging the values of m and [in Lemma [D.1} the
pseudo-dimension of (Z(%4%) v, PF x Rxg, g) is O (k*¢*(q + d)d?). Then by Lemma|D.2| we
complete the proof. (]

Combining with the above lemmas and Theorem ??, we are ready to prove Theorem [E.T]

Proof: [Proof of Theorem By Lemma the total sensitivity G of (Z(Gak) P (G k)
is O(%). By Lemma we can let dim = O (k?(q + d)¢®d?*) which is an upper bound of the
pseudo-dimension of every query space (Z(%@:%) 4 Pk 1)(G@k)) over weight functions u : [N] —
R>q. Pluging the values of G and dim in Theorem ??, we prove for the coreset size.

For the running time, it costs N - SVD(T,d + 1) + O(N) time to compute the sensitivity function s
by Lemma and O(N) time to construct Is. This completes the proof. (]

E.3 Proof of Theorem[5.4; Lower bound for GLSE,,

Actually, we prove a stronger version of Theorem [5.4]in the following. We show that both the coreset
size and the total sensitivity of the query space (Z(3%) o, P¥ (¢ 4k)) may be Q(N), even for
the simple case that 7' =1and d = k = 2.

Theorem E.6 (Size and sensitivity lower bound of GLSEy) LetT = landd =k =2 and X €
(0,1). There exists an instance X € RN*T*4 and Y € RN*T such that the total sensitivity

(G.q:k)
sup u = Q(N).

IE[N] CG'P;‘: q/j(G"q’k) (C)

25

and any 0.5-coreset of the query space (Z(%3%) Pk, Y(GDR)Y should have size Q(N).

Proof: We construct the same instance as in [49]. Concretely, for ¢ € [N], let 2,1 = (4i, 4%) and
y;1 = 0. We claim that for any ¢ € [N],
G,q.k
(9

1
SUp —=—— > .
cepr VELR(¢) T 2
If the claim is true, then we complete the proof of the total sensitivity by summing up the above
inequality over all i € [N]. Fix i € [N] and consider the following ¢ = (81, 32, p(1) p(2)) € Pk
where g1 = (£,0), B = (0,47) and p1V) = p(®) = 0.1f j < 4, we have

G,q,k 1
v = min(yn —26"0)°

(16)

. 1 1
= Mm-S ———, ~
167—*" 16*—7
1
T

Similarly, if j > ¢, we have

Gk 1 11
v) = mm{ma‘—i’ 16i—j} T

By the above equations, we have
L1 Y1 5
(G,q,k) — — — < = 17
VOO =D 5t 2 e < (1n
j=1 j=i+1

Combining with the fact that zbl(G’q’k) (¢) = 1, we prove Inequality (T6).
For the coreset size, suppose S C [N] together with a weight function w : S — R is a 0.5-coreset
of the query space (Z(%@F) vy, Pk +)(G4:k)) We only need to prove that S = [N]. Suppose there
exists some i* € S with w(i*) > 2. Letting ¢ = (81, 83, pM), o) where g1 = (=,0),
B2 = (0,4") and p™V) = p(® = 0, we have that

Sow(i) - w{ O >)

=
> 2 (w(i*) > 2 and Defns. of ()
1.5
> (1+ 5))
> (14 %) -EeR (), (Ineq. (7))

which contradicts with the assumption of .S. Thus, we have that for any ¢ € S, w(i) < 2. Next, by
contradiction assume that i* ¢ S. Again, letting ¢ = (3™, 5, p(1) | p(?)) where (1) = (4}* ,0),
B2 = (0,4") and p™V) = p(® = 0, we have that

Stwli) N < 2 (O Q) - S (Q)

i€S
(w(i) <2
< G- (Ineq. (T7))
< (1- %) 1
S -5 e,

which contradicts with the assumption of S. This completes the proof.

26

[CGLSE (Gaussian] [] Uni {Gaussian)

12

1
08
06
04

emp. err.

02
[1}

Figure 1: Boxplots of empirical errors for GLSE w.r.t.

SYNTHETIC DATASET

CGLSE {Cauchy)

Uni (Cauchy)

o

05

maximum empirical errors than CGLSE.

F Other empirical results

emp. err.

1.2

0.8
06
04
02

REAL-WORLD DATASET

[J coLse [uni
9 2 - L BB =L
01 02 03 04 05
£

varying €. Uni has higher average and

We also provide boxplots for both synthetic and real-world datasets in Figure[T} The figures indicate
that Uni has higher average and maximum empirical errors than CGLSE.

27

	Discussion of the generative model (1)
	Revisit the coreset definition and the Feldman-Langberg framework
	Revisit the coreset definition
	Revisit the Feldman-Langberg framework

	Existing results and approaches for OLSE
	Proof of Theorem C.1
	Proof of Theorem C.2

	Missing proofs in Section 4
	Missing proofs in Section 5
	Proof overview
	Proof of Theorem 5.2: Upper bound for GLSEk
	Proof of Theorem 5.4: Lower bound for GLSEk

	Other empirical results

