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Abstract

We create a computationally tractable algorithm for contextual bandits with con-
tinuous actions having unknown structure. Our reduction-style algorithm com-
poses with most supervised learning representations. We prove that it works in a
general sense and verify the new functionality with large-scale experiments.

1 Introduction

In contextual bandit learning [6, 1, 39, 3], an agent repeatedly observes its environment, chooses
an action, and receives a reward feedback, with the goal of optimizing cumulative reward. When
the action space is discrete, there are many solutions to contextual bandit learning with successful
deployments in personalized health, content recommendation, and elsewhere [e.g., 42, 54, 2, 44, 25,
43]. However, in many practical settings the action chosen is actually continuous. How then can
we efficiently choose the best action given the context? This question is also extremely relevant to
reinforcement learning more generally since contextual bandit learning is one-step reinforcement
learning.

There are many concrete examples of reinforcement learning problems with continuous actions.
In precision medicine [20, 31], doctors may prescribe to a patient a medication with a continuous
value of dosage [32]. In data center optimization, the fan speeds and liquid coolant flow may be
controllable continuous values [41]. In operating systems, when a computer makes a connection
over the network, we may be able to adjust its packet send rate in response to the current network
status [30]. All of these may be optimizable based on feedback and context.

A natural baseline approach here is to posit smoothness assumptions on the world, as in much prior
work, e.g., [5, 34, 18, 50, 19]. This approach comes with practical drawbacks. Many applications do
not exhibit any smoothness structure. When/if they do, the smoothness parameters (such as a Lips-
chitz constant) must be known in advance. Unfortunately, discovering the smoothness parameters is
challenging, and requires knowing some other parameters and/or extensive exploration.

A recent approach to continuous actions [37] realizes similar performance guarantees without know-
ing the Lipschitz constant (let alone a more refined smoothness structure), while leveraging any
preferred policy representation. Here, each action is “smoothed” to a distribution over an interval,
and the benchmark one competes with is “smoothed” similarly. Unfortunately, their algorithm is
computationally infeasible since it requires enumeration of all possible policy parameter settings.
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In this paper, we realize benefits similar to this approach with a computationally practical al-
gorithm, for contextual bandits with continuous action space [0, 1]. Our algorithms are oracle-
efficient [39, 21, 3, 47, 53]: computationally efficient whenever we can solve certain supervised
learning problems. Our main algorithm chooses actions by navigating a tree with supervised learn-
ers acting as routing functions in each node. Each leaf corresponds to an action, which is then
“smoothed” to a distribution from which the final action is sampled. We use the reward feedback to
update the supervised learners in the nodes to improve the “tree policy.”

Our contributions can be summarized as follows:

• We propose CATS, a new algorithm for contextual bandits with continuous actions (Algorithm 1).
It uses ε-greedy exploration with tree policy classes (Definition 2) and is implemented in a fully
online and oracle-efficient manner. We prove that CATS has prediction and update times scal-
ing as log of the tree size, an exponential improvement over traditional approaches. Assuming
realizability, CATS has a sublinear regret guarantee against the tree policy class (Theorem 6).

• We propose CATS Off, an off-policy optimization version of CATS (Algorithm 3) that can utilize
logged data to train and select tree policies of different complexities. We also establish statistical
guarantees for this algorithm (Theorem 7).

• We implement our algorithms in Vowpal Wabbit (vowpalwabbit.org), and compare with baselines
on real datasets. Experiments demonstrate the efficacy and efficiency of our approach (Section 5).

Discussion. The smoothing approach has several appealing properties. We look for a good interval
of actions, which is possible even when the best single action is impossible to find. We need to guess
a good width, but the algorithm adjusts to the best location for the interval. This is less guessing
compared to uniform discretization (where the width and location are tied to some extent). While the
bandwidth controls statistical performance, an algorithm is free to discretize actions for the sake of
computational feasibility. An algorithm can improve accuracy by reusing datapoints for overlapping
bands. Finally, the approach is principled, leading to specific, easily interpretable guarantees.

The tree-based classifier is a successful approach for supervised learning with a very large number
of actions (which we need for computational feasibility). However, adapting it for smoothing runs
into some challenges. First, a naive implementation leads to a prohibitively large per-round running
time; we obtain an exponential improvement as detailed in Section 3.1. Second, existing statistical
guarantees do not carry over to regret in bandits: they merely “transfer” errors from tree nodes to
the root [10, 9], but the former errors could be huge. We posit a realizability assumption; even then,
the analysis is non-trivial because the errors accumulate as we move down the tree.

Another key advantage of our approach is that it allows us to use off-policy model selection. For
off-policy evaluation, we use smoothing to induce exploration distribution supported on the entire
action space. Hence, we can discover when refinements in tree depth or smoothing parameters result
in superior performance. Such model selection is not possible when using discretization approaches.
When employed in an offline setup with data collected by a baseline logging policy, our experiments
show that off-policy optimization can yield dramatic performance improvements.

Related work. Contextual bandits are quite well-understood for small, discrete action spaces, with
rich theoretical results and successful deployments in practice. To handle large or infinite action
spaces, most prior work either makes strong parametric assumptions such as linearity, or posits
some continuity assumptions such as Lipschitzness. More background can be found in [17, 51, 40].

Bandits with Lipschitz assumptions were introduced in [5], and optimally solved in the worst case
by [33]. [34, 35, 18, 50] achieve optimal data-dependent regret bounds, while several papers relax
global smoothness assumptions with various local definitions [7, 34, 35, 18, 49, 45, 27]. This litera-
ture mainly focuses on the non-contextual version, except for [50, 36, 19, 56] (which only consider a
fixed policy set Π). As argued in [37], the smoothing-based approach is productive in these settings,
and extends far beyond, e.g., to instances when the global optimum is a discontinuity.

Most related to this paper is [37], which introduces the smoothness approach to contextual ban-
dits and achieves data-dependent and bandwidth-adaptive regret bounds. Their approach extends to
generic “smoothing distributions” (kernels), as well as to adversarial losses. However, their algo-
rithms are inherently computationally inefficient, because they build on the techniques from [6, 21].
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Our smoothing-based reward estimator was used in [37] for contextual bandits, as well as in [31, 20]
in the observational setting. The works of [31, 20] learn policies that are linear functions of the
context, and perform policy optimization via gradient descent on the IPS loss estimate.

2 Preliminaries

Setting and key definitions. We consider the stochastic (i.i.d.) contextual bandits (CB) setting. At
each round t, the environment produces a (context, loss) pair (xt, `t) from a distribution D. Here,
context xt is from the context space X , and the loss function `t is a mapping from the action space
A , [0, 1] to [0, 1]. Then, xt is revealed to the learner, based on which it chooses an action at ∈ A
and observes loss `t(at). The learner’s goal is to minimize its cumulative loss,

∑T
t=1 `t(at).

Define a smoothing operator: Smoothh : A → ∆(A), that maps each action a to a uniform distri-
bution over the interval {a′ ∈ A : |a− a′| ≤ h} = [a− h, a+ h]∩ [0, 1]. As notation, let ν denote
the Lebesgue measure, i.e. the uniform distribution over [0, 1]. Denote by Smoothh(a′|a) the prob-
ability density function w.r.t., ν for Smoothh(a) at action a′. We define Smooth0(a) , δa, where
δa is the Dirac point mass at a. For a policy π : X → A, we define πh(a′|x) , Smoothh(a′|π(x))
to be the probability density value for action a′ of the smoothed policy πh on context x.

Equivalently, we define h-smoothed loss `h(a) , Ea′∼Smoothh(·|a) [`(a′)]. For policy π : X → Awe
define the corresponding h-smoothed expected loss as λh(π) , E(x,`)∼D Ea∼Smoothh(π(x)) [`(a)].
This is equivalent to defining πh : x 7→ Smoothh(π(x)), and evaluating πh on the original loss, i.e.,
λ0(πh) = λh(π). The bandwidth h governs an essential bias-variance trade-off in the continuous-
action setting: with small h, the smoothed loss λh(π) closely approximates the true expected loss
function λ0(π), whereas the optimal performance guarantees scale inversely with h.

Over the T rounds, the learner accumulates a history of interaction. After round t, this is
(xs, as, ps, `s(as))

t
s=1, where xs is the context, as is the chosen action, ps = Ps(as | xs) is the

value of the density Ps(· | xs) used at round s at as, and `s(as) is the observed loss. From this
history, we use an inverse propensity score (IPS) estimator [29] to compute an unbiased estimate
of the smoothed loss λh(π): V̂t(πh) = 1

t

∑t
s=1

πh(as|xs)
Ps(as|xs) `s(as). A useful primitive in contextual

bandits is to find a policy π that minimizes V̂t(πh), which is a surrogate for λ0(π).

A natural approach for policy optimization is to reduce to cost-sensitive multiclass classification
(CSMC). We choose a discretization parameter K, and instantiate a policy class Π : X → AK
where AK , {0, 1

K ,
2
K , . . . ,

K−1
K }. Then, as πh(as | xs) = Smoothh(as | i/K), if π(xs) = i/K,

policy optimization can be naturally phrased as a CSMC problem. For each round, we create a cost-
sensitive example (xs, c̃s) where c̃s(i/K) = `s(as)

Ps(as|xs)Smoothh (as|i/K), for all i/K in AK . Then,

optimizing V̂t(πh) is equivalent to computing argminπ∈Π

∑t
s=1 c̃s(π(xs)). When working with

h-smoothed losses, the error incurred by using the discretized action space AK can be controlled,
as we can show that `h(a) is 1/h-Lipschitz [37].1 So, this discretization strategy can compete with
policies that are not restricted to AK , incurring an additional error of 1

hK per round.

Tree policies. One challenge with applying the CSMC approach is computational: for general
classes Π, classical methods for CSMC (such as one-versus-all) have Ω(K) running time. This is
particularly problematic since we want K to be quite large in order to compete with policies that are
not restricted to AK . To overcome this challenge, we consider a structured policy class induced by
a binary tree T , where each node v is associated with a binary classifier fv from some base class
F .2

Definition 1 (Tree policy). LetK = 2D for some natural numberD, andF be a class of binary clas-
sifiers from X to {left, right}. T is said to be a tree policy over action space AK = {i/K}K−1

i=0

using F , if: (1) T is a complete binary tree of depth D with K = 2D leaves, where each leaf v has
label label(v) = 0/K, . . . ,K−1/K from left to right, respectively; (2) in each internal node v of T ,
there is a classifier fv in F; (3) the prediction of T on an example x, T .get action(x), is defined

1Although we use the 1/h-Lipschitz property of h-smoothed losses here, in general, h-smoothed losses
have more structure than 1/h-Lipschitz losses, which admit better regret guarantees in general.

2We assume that F is finite for simplicity. This can be extended with empirical process arguments.
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as follows. Starting from the root of T , repeatedly route x downward by entering the subtree that
follows the prediction of the classifier in the tree nodes. When a leaf is reached, its label is returned
(see Algorithm 4 in Appendix A for a formal description).

In other words, a tree policy over action spaceAK can be viewed as a decision tree of depthD, where
its nodes form a hierarchical partition of the discretized action space AK . For each node in the tree,
there is a subset of the context space that gets routed to it; therefore, given a tree policy T overAK , it
also implicitly defines a hierarchical partition of the context spaceX . The crucial difference between
a tree policy and a decision tree in the usual sense, is that each leaf node corresponds to a distinct
action. Our tree policy approach is also fundamentally different from the approach of [50, 56] in
contextual bandits, in that their usages of trees are in performing regression of reward as a function
of (context, action) pairs. Our policy classes of interest are tree policy classes:

Definition 2. Let FK denote the policy class of all tree policies over ac-
tion space AK using base class F , that is, the set of tree policies FK =
{T : T is a tree policy over action space AK using F}. Furthermore, Let F∞ denote the policy
class of all tree policies of arbitrary depths using base class F , formally, F∞ =

⋃
K:K∈2N FK .

As a computational primitive, we assume that we can solve CSMC problems over the base class
F . Note that formally these are binary classification problems. The main advantage of using these
structured policy classes is computational efficiency. As we demonstrate in the next section, we can
use fast online CSMC algorithms to achieve a running time of O(logK) per example. At the same
time, due to the hierarchical structure, choosing an action using a policy in FK also takesO(logK)
time. Both of these are exponentially faster than the O(K) running time that typically arises from
flat representations. Finally, given a tree policy, we define the tree policy rooted at one of its nodes:

Definition 3. Let v be an internal node in T . We define T v as the tree-based policy with root at v.
We will abbreviate T v.get action(x) as T v(x) or v.get action(x).

The performance benchmark. We define the performance benchmark: Reg(T,F∞, h) ,

E
[∑T

t=1 `t(at)
]
− T infπ∈F∞ λh(π). In words, we are comparing the cumulative expected loss

of our algorithm, with the h-smoothed cumulative expected loss of the best tree policy of arbitrary
depth. We call this the h-smoothed regret w.r.t. F∞. Although the focus of this paper is on con-
textual bandit algorithms with computational efficiency guarantees, in Appendix D, we also present
several extensions of our results to general policy classes.

Miscellaneous notation. Given a set of CSMC examples S = {(x, c)} of size n, and a function
f , we use ES [f(x, c)] , 1

n

∑
(x,c)∈S f(x, c) to denote empirical expectation of f over S. Given

a function f with domain Z , define its range to be the set of values it can take, i.e. range(f) ,
{f(z) : z ∈ Z}. Specifically, given a tree T over action space AK and a node v in T , range(T v)
denotes the actions reachable by T , i.e. the action labels of the leaves that are descendants of v.
Given a natural number n, we denote by [n] , {1, . . . , n}.

3 Algorithm

We describe our main algorithm CATS for learning with continuous actions using tree policies in
Algorithm 1 and an off-policy version in Algorithm 3 for unknown h. In Appendix C, we also
present a variant of CATS that works online for unknown h.

3.1 Smoothed ε-greedy algorithm with trees

We present Algorithm 1 in this section. It consists of two main components: first, a smoothed ε-
greedy exploration strategy (lines 4 to 6); second, a tree training procedure Train tree called at
line 7, namely Algorithm 2. We discuss each component in detail next.

ε-greedy exploration with smoothing. At time step t, the algorithm uses the policy πt learned
from data collected in previous time steps to perform action selection. Specifically, with probability
ε, it chooses an action uniformly at random from A; otherwise, it chooses an action based on the
prediction of πt,h, the h-smoothing of policy πt. As we will see, πt,h has expected loss competitive
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Algorithm 1 CATS: continuous action tree with smoothing

Input: Exploration and smoothing parameters (ε, h), discretization scale K = 2D, base class F
1: Initialize dataset S0 ← ∅, and tree policy T with classifiers fv ∈ F at every internal node v.
2: for t = 1, 2, . . . , T do
3: Let πt be the tree policy T with {fv} as classifiers.
4: Define policy Pt(a | x) := (1− ε)πt,h(a|x) + ε.
5: Observe context xt, select action at ∼ Pt(· | xt), observe loss `t(at).
6: Let c̃t(i/K)← Smoothh(at|i/K)

Pt(at|xt) `t(at) for all i
7: T ← Train tree(K,F , {(xs, c̃s)}ts=1).

Algorithm 2 Tree training: Train tree

Input: K = 2D, F , data {(xs, cs)}ns=1 with cs ∈ RK
1: For level d = 0, . . . , D − 1: Bd ← {(D − d− 1)n′ + 1, . . . , (D − d)n′}, where n′ = bn/Dc.
2: for level d from D − 1 down to 0 do
3: for nodes v at level d do
4: For each (xs, cs) define binary cost cvs with

cvs(left) = cs(v.left.get action(xs)), c
v
s(right) = cs(v.right.get action(xs)).

5: Train classifier at node v: fv ← argminf∈F ESv [cv(f(x))], where Sv = {(xs, cvs) : s ∈
Bl, c

v
s(left) 6= cvs(right)}:

6: return tree T with {fv} as node classifiers.

with any smoothed policy πh with π in FK (and is therefore competitive with F∞). This compo-
nent is similar to the ε-greedy algorithm for discrete action contextual bandits [e.g. 39]; here ε is a
parameter that trades off between exploration and exploitation, where a larger ε yields better quality
data for learning, and a smaller ε implies actions with better instantaneous losses are taken.

Tree training. Given the interaction log collected up to time t, {(xs, as, Ps(as | xs), `t(as))}ts=1,
Algorithm 1 incorporates it to produce a policy πt+1 for time t + 1. Specifically, πt+1 is a tree
policy T in FK that approximately minimizes V̂t(T ′h) over all policies T ′ in F∞. To this end, we
use Train tree (Algorithm 2) over the set of cost-sensitive examples (xs, c̃s)

t
s=1 constructed by

IPS. For technical reasons3, Train tree differs from the filter tree algorithm [10] in that it partitions
the dataset into D = logK subsets, with their indices B0, . . . , BD−1 being disjoint subsets in [n].
For every i, the examples with indices inBi are dedicated to training classifiers in tree nodes at level
i. Train tree trains the classifiers in the tree nodes in a bottom-up fashion. At the bottom layer,
each node v with two leaves as children seeks a classifier fv in F that directly classifies the context
x to the action in range(T v) with smaller expected cost E[`(a) | x]. For this, it invokes CSMC
learning with class F where costs are the IPS costs for the two children v.left and v.right. At
other internal nodes v, given that all the downstream classifiers in subtrees rooted at v.left and
v.right have been trained, it aims to find a classifier fv in F such that fv, in conjunction with other
classifiers in T v, routes context x to the action in range(T v) with the smallest expected cost.

Computational complexity. CATS can be implemented in a fully online and oracle-efficient fashion,
using online CSMC learners. Specifically, line 5 in Train tree can be implemented by maintaining
a stateful online learner for each tree node v, which at time t maintains fvt , an approximation of
argminf∈F

∑t−1
s=1 [cvs(f(xs))]. Then, upon seeing a binary CSMC example (xt, c

v
t ), the learner

employs incremental update rules such as stochastic gradient descent to update its internal state to
fvt+1, an approximate solution to the next CSMC problem.

We now look at the per-example computational cost of CATS using the above online implementation
of CSMC oracle. Naively, in line 5 of Train tree, if we instead define Sv = {(xs, cvs) : s ∈ Bi}
for every node v, i.e. we do not filter out examples with identical costs for left and right sides at

3We need to partition the input CSMC dataset in a delicate manner to ensure Train tree’s theoretical
guarantees; see Lemma 9 and its proof in Appendix B for more details. In our implementation we ignore such
subtlety; see Algorithm 8 in Appendix G.
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Algorithm 3 CATS Off

Input: logged data {(xt, at, Pt(at | xt), `t(at))}Tt=1, minimum density of action distribution pmin,
set of (bandwidth, discretization level) combinations J ⊂ [0, 1]× 2N, base class F .

1: for (bandwidth, discretization level) (h,K) in J do
2: For every t in [T ], let c̃ht (i/K)← Smoothh(at|i/K)

Pt(at|xt) `t(at) for all i ∈ {0, . . . ,K − 1}.
3: for t = 1, 2, . . . , T do
4: T h,Kt ← Train tree(K,F ,

{
(xs, c̃

h
s )
}t−1

s=1
).

5: Let (ĥ, K̂) ← argmin(h,K)∈J

(
1
T

∑T
t=1 c̃

h
t (T h,Kt (xt)) + Pen(h,K)

)
, where Pen(h,K) =√

1
T

∑T
t=1 c̃

h
t (T h,Kt (xt)) ·

64 ln
4T |J |
δ

Tpminh
+

64 ln
4T |J |
δ

Tpminh
.

6: return π̂ drawn uniformly at random over set
{
T ĥ,K̂
t,ĥ

}T
t=1

.

node v, the time for processing each example would be O(K), since it contributes a binary CSMC
example to Sv for every node v.

Our first observation is that, if at time t, cvt (left) = cvt (right), the online CSMC learner can skip
processing example (xt, c

v
t ), as is done in line 5 of Train tree. This is because adding this example

does not change the cost-sensitive ERM from round t to round t + 1. However, the algorithm still
must decide whether this happens for each node v, which still requires O(K) time naively.

Our second observation is that, by carefully utilizing the piecewise constant nature of the IPS cost
vector c̃t, we can find the nodes that need to be updated and compute the costs of their left and
right children, both in O(logK) time per example. Specifically, as c̃t is piecewise constant with
two discontinuities, only two root-to-leaf paths contain nodes that have children with differing costs
and must be updated (see Appendix G, specifically Lemma 17 and its proof for more explanations).
Exploiting these observations, we implement CATS to have O(logK) update time, an exponential
improvement over naive implementations. This is summarized in the next theorem.

Theorem 4. CATS with an online learner at each node requiresO(logK) computation per example.

We elaborate on our online implementation and present the proof of the theorem in Appendix G. Our
theorem generalizes the computational time analysis of the offset tree algorithm for discrete-action
contextual bandits [9], in that we allow input IPS CSMC examples to have multiple nonzero entries.

3.2 Off-policy optimization

As discussed above, one major advantage of the smoothing approach to contextual bandits with
continuous actions is that policy optimization can be easily reduced to a CSMC learning problem
via counterfactual techniques. This allows off-policy optimization, in the sense that the logged data
can be collected using one policy that takes action in A, while we can optimize over (smoothed)
policy classes that take actions in AK . In the special setting that we learn from a tree policy class
FK , the CATS Off algorithm (Algorithm 3) can be used.

The algorithm receives an interaction log {(xt, at, Pt(at | xt), `t(at)}Tt=1, collected by another al-
gorithm such that Pt(a | xt) ≥ pmin for all a ∈ A, a collection of (bandwidth, disretization levels)
J , and a base policy class F as input. It consists of two stages: tree training and policy selection.
In the tree training stage (lines 1 to 4), for each ((h,K), t) combination in J × [T ], the algorithm
again calls Train tree over cost-sensitive examples

{
(xs, c̃

h
s )
}t−1

s=1
induced by the interaction log

and the bandwidth h. As a result, we obtain a set of tree policies
{
T h,Kt : t ∈ [T ], (h,K) ∈ J

}
In the policy selection stage (line 5), we choose a pair (ĥ, K̂) from the set J using structural risk
minimization [55], by trading off 1

T

∑T
t=1 c̃

h
t (T h,Kt (xt)), the progressive validation loss estimate

of smoothed policies
{
T h,Kt,h : t ∈ [T ]

}
on logged data [15] and its deviation bound Pen(h,K) that

depends on h andK. A similar procedure has been proposed in the discrete-action contextual bandit
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learning setting [52]. As we see from Theorem 7 below, the obtained tree policy T has expected
loss competitive with all policies in the set ∪(h,K)∈J {πh : π ∈ FK}.

4 Performance guarantees

In this section, we show that CATS and CATS Off achieve sublinear regret or excess loss guaran-
tees under a realizability assumption over the (context, loss) distribution D. We defer the formal
statements of our theorems and their proofs to Appendix B.

As learning decision trees is computationally hard in general [28], many existing positive results
pose strong assumptions on the learning model, such as uniform or product unlabeled distribu-
tion [13, 16], separability [23, 48, 14] or allowing membership queries [38, 26]. Our tree policy
training guarantee under the following realizability assumption is complementary to these works:

Definition 5. A hypothesis class F and data distribution D is said to be (h,K)-realizable, if there
exists a tree policy T in FK such that the following holds: for every internal node v in T , there
exists a classifier fv,? in F , such that

fv,?(x) = left⇒ min
a∈range(T l)

E[`h(a) | x] ≤ min
a∈range(T r)

E[`h(a) | x],

fv,?(x) = right⇒ min
a∈range(T r)

E[`h(a) | x] ≤ min
a∈range(T l)

E[`h(a) | x],

where l = v.left and r = v.right are v’s two children; recall that `h(a) , Ea′∼Smoothh(·|a)`(a
′).

Intuitively, the above realizability assumption states that our base class F is expressive enough, such
that for every discretization parameterK in 2N, there exists a set of (K−1) classifiers {fv,?}v∈T ⊂
F occupying the internal nodes of a tree T of K leaves, and T routes any context x to its Bayes
optimal discretized action in AK , formally argmina∈AK E[`h(a) | x]. As `h(·) is 1

h -Lipschitz,
mina∈AK E[`h(a) | x] −mina∈A E[`h(a) | x] ≤ 1

hK . This implies that, if K is large enough, the
Bayes optimal policy π?(x) = argmina∈A E[`h(a) | x] can be well-approximated by a tree policy
in FK with little excess loss. Under the above realizability assumption, we now present a theorem
that characterizes the regret guarantee when Algorithm 1 uses policy class FK .

Theorem 6 (Informal). Given h, suppose (F ,D) is (h,K)-realizable for any K ∈ 2N. Then with
appropriate settings of greedy parameter ε and discretization scale K, with high probability, Algo-
rithm 1 run with inputs ε, h,K,F has regret bounded as: Reg(T,F∞, h) ≤ O

((
T 4 ln|F|/h3

)1/5
)

.

We remark that we actually obtain a stronger result: with appropriate tuning of ε, the h-smoothed

regret of CATS against FK is O
((

K2T 2 ln
|F|
δ /h

)1/3
)

, which is similar to the O
(
T 2/3|A|1/3

)
regret

for ε-greedy in the discrete actions setting, with 1/h serving as the “effective number of actions.” We
also note that if we used exact ERM over FK instead of the computationally efficient Train tree

procedure, the dependence on K would improve from K2/3 to K1/3. This K2/3 dependence is due
to compounding errors accumulating in each node, and we conjecture that it is the price we have to
pay for using the computationally-efficient Train tree for approximate ERM.

The aforementioned h-smoothed regret bound against FK reflects a natural bias-variance tradeoff
in the choice of h and K: for a smaller value of h, the h-smoothed loss more closely approximates
the true loss, while achieving a low h-smoothed regret bound is harder. A similar reasoning applies
to K: For larger K, FK more closely approximates F∞, while the regret of CATS against FK can
be higher.

We now present learning guarantees of CATS Off under the same realizability assumption.

Theorem 7 (Informal). Suppose (F ,D) is (h,K)-realizable for all (h,K) ∈ J . In addition, the
logged data S = {(xt, at, Pt(at | xt), `t(at))}Tt=1 has a sufficient amount of exploration: Pt(a |
xt) ≥ pmin. Then, with high probability, Algorithm 3 run with inputs S, pmin,J ,F outputs a policy

π̂ such that: λ0(π̂) ≤ min(h,K)∈J ,π∈FK

(
λh(π) +O

(
K
√

ln
|F||J |
δ /(pminhT )

))
.
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Figure 1: (left) Best progressive validation losses obtained by parameter search for different online learning
algorithms on six regression datasets. (right) Test-set absolute losses for initial online-trained model using
CATS with an initial set of discretization and smoothing parameter (Kinit, hinit) = (4, 1/4), and off-policy
optimized models output by CATS Off. All confidence intervals are calculated with a single run using the
Clopper-Pearson interval with 95% confidence level (note that they are very small for most of the datasets).

The above theorem shows the adaptivity of CATS Off: so long as the logged data is generated by
an sufficiently explorative logging policy, its learned policy is competitive with any policy in the set
∪(h,K)∈J {πh : π ∈ FK}, under realizability assumptions.

5 Experiments

Following the contextual bandit learning evaluation protocol of [12], we evaluate our approach on
six large-scale regression datasets, where regression predictions are treated as continuous actions
in A = [0, 1]. To simulate contextual bandit learning, we first perform scaling and offsetting to
ensure yt’s are also in [0, 1]. Every regression example (xt, yt) is converted to (xt, `t), where
`t(a) = |a− yt| is the absolute loss induced by yt. When action at is taken, the algorithm receives
bandit feedback `t(at), as opposed to the usual label yt.

Of the six datasets, five are selected from OpenML with the criterion of having millions of samples
with unique regression values (See Appendix F for more details). We also include a synthetic dataset
ds, created by the linear regression model with additive Gaussian noise.

Online contextual bandit learning using CATS. We compare CATS with two baselines that perform
ε-greedy contextual bandit learning [39] over the discretized action space AK . The first baseline,
dLinear, reduces policy training to cost-sensitive one-versus-all multiclass classification [11] which
takes O(K) time per example. The second baseline, dTree, uses the filter tree algorithm [10] as
a cost-sensitive multiclass learner for policy training, which takes O(logK) time per example, but
does not perform information sharing among actions through smoothing. We run CATS with (h,K)
combinations in the following set:

J =
{

(h,K) : h ∈
{

2−13, . . . , 2−1
}
,K ∈

{
22, · · · , 213

}
, hK ∈

{
20, . . . , 211

}}
. (1)

We also run dLinear and dTree with values of K in
{

21, 22, · · · , 213
}

. All algorithms use ε =
0.05; see Appendix F for additional experimental details.

In the left panel of Figure 1 we compare CATS with dLinear and dTree. Using progressive valida-
tion [15] for online evaluation, our algorithm (with optimally-tuned discretization and bandwidth)
achieves performance similar to dLinear, and is better than dTree for most of the datasets.

As discussed in Section 3, the time cost of our implementation of CATS is O(log(K)) per example.
Figure 2 demonstrates that the training time of CATS is constant w.r.t. bandwidth h, and grows loga-
rithmically w.r.t. the discretizationK. This shows that CATS has the same computational complexity
as dTree. In contrast, dLinear has O(K) time complexity per example. The time improvement
of CATS compared with dLinear becomes more significant when K becomes larger. In summary,
CATS outperforms dTree statistically, and has much better scalability than dLinear.

Off-policy optimization using CATS Off. A major advantage of the CATS approach over naı̈ve
discretization methods is that the interaction log collected by our algorithm with one setting of
(h,K) can be used to optimize policies with alternate settings of (h,K). To validate this, we first
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Figure 2: Online learning time costs of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization
scale K = 213; (middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K)
with a fixed h = 1/4, compared against dLinear (orange bar) and dTree (green bar), on the ds dataset.Similar
figures for the rest of the datasets can be found in the Appendix H.

create an 80-20% split or training and test sets. With the training set, we first collect interaction log
tuples of (xt, at, Pt(at | xt), `t(at)) using CATS with initial discretization and smoothing parameter
(Kinit, hinit) = (4, 1

4 ), and greedy parameter ε = 0.05. We then run CATS Off over the logged
data using J , defined in (1), as the set of parameters. Since standard generalization error bounds are
loose in practice, we replaced 64 ln 2T |J |

δ in the penalty term in line 5 with constant 1. Note that this
constant term as well as the learning rate and the greedy parameter are fixed for all of the datasets in
our experiments.

The right panel in Figure 1 shows the test losses of the models obtained by CATS after making a pass
over the training data, and the test losses of the optimized models obtained through CATS Off by
optimizing counterfactual estimates offline. It can be seen that offline policy training produces tree
policies that have dramatically smaller test losses than the original policies.

6 Conclusion

Contextual bandit learning with continuous actions with unknown structure is quite tractable via the
CATS algorithm, as we have shown theoretically and empirically. This broadly enables deployment
of contextual bandit approaches across a wide range of new applications.

Broader Impact

Our study of efficient contextual bandits with continuous actions can be applied to a wide range of
applications, such as precision medicine, personalized recommendations, data center optimization,
operating systems, networking, etc. Many of these applications have potential for significant positive
impact to society, but these methods can also cause unintend harms, for example by creating filter
bubble effects when deployed in recommendation engines. More generally our research belongs to
the general paradigm of interactive machine learning, which must always be used with care due to
the presence of feedback loops. We are certainly mindful of these issues, and encourage practitioners
to consider these consequences when deploying interactive learning systems.
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