
We thank the reviewers for their commitment and valuable insights despite the difficult times. We use Ri below to refer1

to the ith reviewer. Questions/remarks are indicated by Q with reviewer identifiers in parentheses, answers are denoted2

by A. To refer to line X in the submission we use the shorthand ’lX’. Our new figures are located on the r.h.s.3

We briefly recall our primary focus (l55-58): to propose a flexible optimization framework capable of handling jointly4

general hard shape constraints (expressible as affine inequalities over derivatives on compact sets) with rich function5

classes (RKHSs). To the best of our knowledge, our approach is the first in this direction with guarantees. We are thus6

less concerned about high-dimensional scalability questions, though we explicitly acknowledge it (l226) and provide7

practical algorithms which allow a benign control of the computations in moderate dimension (l227-231, l258-259). We8

note that specialized SOC solvers (instead of CVXGEN which we used for illustration) can provide additional speed-up.9

Q (R1, R3): Table 1 (SOCP vs PDCD: comparable performance). R3: It would be nice to also demonstrate empirically10

that JQR violates the imposed non-crossing constraints. A: We answer these 2 questions jointly. Following Sangnier et11

al. 2016, a JQR method is considered to be favorable if (i) the technique gives comparable results in terms of pinball12

loss (see our Table 1), and (ii) it violates the imposed shape constraints less often (SOCP respects it by construction,13

whereas PDCD often produces crossings as it can be seen in the last column of Table 1 of Sangnier et al. 2016).14
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Q (R1, R3): higher dimensionality, soft shape constraint inducing regularizers.15

A: In higher dimensions, compact coverings and our technique can still be16

applied, though η would be larger. Soft-constrained solutions (e.g. PDCD)17

might run faster but again without guarantees.18

Q (R1, R2): Role of virtual points (R1) and computational complexity (R2)19

are not discussed. A: The complexity is O((P +N +M)3) in the worst case20

(l226). As even a kernel ridge regression (KRR) scales cubicly one can not21

expect in general better behavior with additional hard shape constraints. We22

provide the computational times for the reviewers associated to KRR with23

monotonicity (Section B) on the r.h.s. In practice, recycling the N sample24

points among the M virtual centers effectively reduces (l228-231, l259) the25

number of coefficients to be determined (see fη,q in Theorem (ii)) and hence26

the computational time.27

Q (R1): Prior work for shape-constrained GPs could be added, like SK (A.28

Solin & M. Kok., 2019). A: We cite from the GP literature C. Agrell (2019)29

who handles shape constraints a ≤ Lf ≤ b in GPs in a soft fashion where30

L is a linear operator. SK tackles equality constraints (f(x) = 0) on the31

boundary of the domain of a GP in a hard way. Though SK’s constraint32

(equality of only function values on boundary) and its handling (computing33

the eigendecomposition of the Laplace operator) are quite different from ours,34

we are happy to refer to it for the sake of completeness.35

Q (R2): The authors give only examples where 0-order differential constraints36

are imposed. A: We consider higher order constraints in our examples in economics (Fig. 1(a): 0-1st order; Fig. 1(b):37

0-1-2nd order), analysis of aircraft trajectories (Fig. 2, 0-1st order), and KRR with monotonicity (Fig. 4(a), 1st order).38

Q (R2): Could a representer theorem be achieved by setting η = 0? A: Yes, however the choice of η = 0 would39

correspond to the discretization (6) which does not ensure shape constraints in a hard way on the Ki-s.40

Q (R3): Significance of (9)? A: (9) is a computable bound (footnote 5) and can be applied as an alternative stopping41

criterion for the number of virtual points to add. In practice, we use the strategy detailed in l227-231 which works42

reliably.43

Q (R3, R4): How is (8) solved in practice? A: For instance in the JQR example (4)-(5), with a radial kernel44

k(x,y) = k0(‖x− y‖X) and k0 monotonically decreasing (such as the Gaussian kernel) (8) simplifies (l220) to45

ηi = supu∈B‖·‖X (0,1)

√
|2k0(0)− 2k0 (δi ‖u‖X)| =

√
|2k0(0)− 2k0 (δi)|; hence ηi can be computed analytically.46

Similar computation can be carried out for higher order derivatives. For more general kernels, estimating ηi-s can be47

also done by sampling uniformly u in the unit ball.48

Q (R3, R4): It would be interesting to see the effects of the choice of δ (or M ) and compare it with η = 0. A: The49

objective values for η = 0 are always below the optimal value of the original problem, while that of with η > 0 are50

above. We provide an illustration (r.h.s.) that as M is increasing the objective values get closer to each other.51

Q (R4): How the virtual points xi,m-s are chosen in practice? A: According to our experiences, besides the recycling52

trick (l227-231), choosing the xi,m-s to form an approximately uniform grid is a safe and reliable choice as it implies53

uniformly small δi, thus low bound on ηi (l222), and hence tighter guarantee (see (10)).54

We hope that we have answered all the questions of the reviewers.55


