
A Proof of Theorem 2

Lemma 1 (McDiarmid). Let S and S(i) defined as above, F : (Zm+q)
n → R be any measurable

function for which there exists constant ci(i = 1, . . . , n) such that,

sup
S∈(Zm+q)n,S′i∈Zm+q

|F (S)− F (S(i))| ≤ ci, (7)

then

PS[F (S)− ES[F (S)] ≥ ε] ≤ e−2ε2/
∑n
i=1 c

2
i . (8)

Given Lemma 1, we can upper bound the outer-task gap for S/Q training.
Theorem 2. For any task distribution τ and meta-sample S with n tasks, if a meta-algorithm A has
uniform stability β w.r.t. a loss function l bounded by M , then the following statement holds with
probability of at least 1− δ for any δ ∈ (0, 1):

R(A(S), τ) ≤ R̂(A(S),S) + ε(n, β), (9)

where ε = 2β + (4nβ +M)
√

ln(1/δ)
2n .

Proof. Let F (S) = R(A(S), τ)− R̂(A(S),S) and F (S(i)) = R(A(S(i)), τ)− R̂(A(S(i)),S(i)).
We have

|F (S)− F (S(i))| ≤ |R(A(S), τ)−R(A(S(i)), τ)|+ |R̂(A(S),S)− R̂(A(S(i)),S(i))|. (10)

The first term in (10) can be written as

|R(A(S), τ)−R(A(S(i)), τ)| ≤ |R(A(S), τ)−R(A(S\i), τ)|+ |R(A(S(i), τ)−R(A(S\i), τ)|.
We can upper bound the first term in (10) by studying the variation when a sample set Si of training
task Di is deleted,

|R(A(S), τ)−R(A(S\i), τ)|
≤ED∼τEStr∼DmESts∼Dq |L̂(A(S)(Str), Sts)− L̂(A(S\i)(Str), Sts)|
≤ sup
D∼τ,Str∼Dm,Sts∼Dq

|L̂(A(S)(Str), Sts)− L̂(A(S\i)(Str), Sts)| ≤ β.

Similarly, we have |R(A(S(i)), τ)−R(A(S\i), τ)| ≤ β. So the first term in (10) is upper bounded
by 2β. The second factor in (10) can be guaranteed likewise as follows,

|R̂(A(S),S)− R̂(A(S(i)),S(i))|

≤ 1

n

∑
l 6=i

|L̂(A(S)(Strl ), Stsl )− L̂(A(S(i))(Strl ), Stsl )|

+
1

n
|L̂(A(S)(Stri ), Stsi )− L̂(A(S(i))(S′tri ), S′tsi )|

≤2β +
M

n
. (11)

Hence, |F (S)− F (S(i))| satisfies the condition of Lemma 1 with ci = 4β + M
n . It remains to bound

ES[F (S)] = ES[R(A(S), τ)]− ES[R̂(A(S),S)]. The first term can be written as follows,

ES[R(A(S), τ)] = ES,S′tri ,S′tsi
L̂(A(S)(S′tri ), S′tsi ).

Similarly, the second term is,

ES[R̂(A(S),S)] =ES[
1

n

n∑
i=1

L̂(A(S)(Stri ), Stsi )]

=ES[L̂(A(S)(Stri ), Stsi )]

=ES,S′tri ,S′tsi
[L̂(A(S(i))(S′tri ), S′tsi )].

12



Hence, ES[F (S)] is upper bounded by 2β,

ES[R(A(S), τ)]− ES[R̂(A(S),S)]

=ES,S′tri ,S′tsi
[L̂(A(S)(S′tri ), S′tsi )− L̂(A(S(i))(S′tri ), S′tsi )] ≤ 2β. (12)

Plugging the inequality (12) in Lemma 1, we obtain

PS[R(A(S), τ)− R̂(A(S),S) ≥ 2β + ε] ≤ e−2ε2/
∑n
i=1(4β+M

n )2 . (13)

Finally, setting the right side of (13) to δ, the following result holds with probability of 1− δ,

R(A(S), τ) ≤ R̂(A(S),S) + 2β + (4nβ +M)

√
ln(1/δ)

2n
.

B Proof of Theorem 3

For simplicity, we denote the training error of each task by f(w, S). The following Lemma 2 and
Lemma 3 are proposed in [20] to prove Theorem 3.

Lemma 2 ([20]). Denote byGf,ζ the gradient update rule with a loss function f and step size ζ . If f
is α-smooth, then Gf,ζ is (1 +αζ)-expansive, i.e., ∀v, w ∈ W, ‖G(v)−G(w)‖ ≤ (1 +αζ)‖v−w‖.
If f is η-Lipschitz continuous, then Gf,ζ is (ζη)-bounded, i.e., ‖v −Gf,ζ(v)‖ ≤ ζη.

Based on Lemma 2, the following Lemma 3 states that given two arbitrary sequences of updates:
G1, . . . , GT and G1, . . . , G

′
T , if they have the same initialization: w0 = w′0, the gap between their

outputs at each step t: δt = ‖wt − w′t‖ can be bounded.

Lemma 3 ([20]). Fix any arbitrary sequences of updates G1, . . . , GT and G′1, . . . , G
′
T . Let wt and

w′t be the outputs of the step t and define δt = ‖wt − w′t‖. Assume w0 = w′0, we have

δt+1 ≤


(1 + αζ)δt Gt = G′t is (1 + αζ)-expansive

δt + 2ζη Gt and G′t are ζη-bounded,

Gt is (1 + αζ)-expansive

With Lemma 3, we can obtain the upper bound of β.

Theorem 3. Assume that the loss function l is α-smooth, η-Lipschitz continuous w.r.t. input and
bounded by M > 0. Suppose that a meta-algorithm A is implemented by a SGM after T steps with
step size ζt ≤ c/t, where c is a constant and t < T , then A has randomized uniform stability

β ≤ 1 + 1/αc

n− 1
(
M

2cη2
)αc+1T

αc
αc+1 . (14)

Proof. Let S and S\i be a meta-sample and the leave-one-out meta-sample. Denote by G1, . . . , GT
and G′1, . . . , G

′
T two arbitrary sequences of updates induced by implementing SGM on S and S\i

respectively. Let wt and w′t be the outputs of Gt and G′t, where t ∈ {1, . . . , T}. Let δt = ‖wt −w′t‖.
Denote by I ∈ {1, 2, . . . , n} the step index that the meta-algorithm A selects the deleted training
set Si for the first time. For any t0 ∈ {1, . . . , n}, if t0 < I , we have EA[Gt0 ] = EA[G′t0 ] and
EA[δt0 ] = 0. As Sit is uniformly and randomly selected from the meta-sample, the probability
P(δt0 6= 0) = P(I < t0) = t0

n . And since f(w, S) is η-Lipschitz continuous, we can obtain

EA[|f(wT , S)− f(w′T , S)|]
=P(δt0 6= 0)EA[|f(wT , S)− f(w′T , S)||δt0 6= 0] + P(δt0 = 0)EA[|f(wT , S)− f(w′T , S)||δt0 = 0]

≤ t0
n
M + ηEA[δT |δt0 = 0] (15)

where M is the upper bound of the loss function.
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Based on the fact S\i ⊂ S and S \ S\i = Si, it can be inferred that SGM selects Si with probability
1
n and other meta samples with probability 1 − 1

n . Therefore, with probability 1 − 1
n , we have

EA[Gt] = EA[G′t]. According to Lemma 3, we get EA[δt+1] ≤ (1 + αζt)EA[δt]. Similarly, with
probability 1

n , we have EA[δt+1] ≤ EA[δt] + 2ζtη. We conclude

EA[δt+1|δt0 = 0] ≤ (1− 1

n
)(1 + αζt)EA[δt|δt0 = 0] +

1

n
EA[δt|δt0 = 0] +

2ζtη

n
. (16)

Following the way of manipulating (16) proposed in [20], we get

EA[|f(wT , S)− f(w′T , S)|] ≤ t0M

n
+

2η2

α(n− 1)
(
T

t0
)αc. (17)

Eventually, we can get the upper bound of β (14), through minimizing the right-hand side of inequality
(17) w.r.t. t0 approximately (consider n ≈ n− 1).

C Leave-One-Out Training

C.1 Meta-Algorithms with LOO Episodic Training

As shown in Eq. (6), the generalization bound of meta-algorithms with LOO training relies on both
the stability of meta-algorithms β and the stability of the inner-task algorithm β̃. Note that the
stability is algorithm-dependent. We have studied β by considering the specific training strategy of
meta-algorithms, but the parameter β̃ relies on the specific inner-task algorithm. Hence, there exists
no general β̃ for generic meta-algorithms. If the inner-task algorithm is stable, β̃ should depend
on the sample size m and converges to 0 as m → ∞. Here, take the prototypical networks as an
example, whose inner-task algorithm is a metric-based classification algorithm, we show that its
stability parameter β̃ ≤ O(1/m) as follows.

Stability of Inner-Task Algorithm. If the loss function l(w, z) is convex, the stability parameter
β̃ can be derived straightforwardly [29]. However, for non-convex loss functions such as the cross-
entropy loss used in [31], there is no known general result of the stability parameter, to our best
knowledge. In this section, we derive the stability β̃ for the cross-entropy loss of prototypical
networks.

Prototypical networks find the prototype (mean vector) of each class first and then classifying the
query into the nearest prototype’s class in the embedding space. The loss function of prototypical
networks is defined as

l(w, z) = − log
e−d(φw(x),cy)∑K
k=1 e

−d(φw(x),ck)
, (18)

where z = (x, y) is a query. The prototype of class k is denoted by ck = 1
N

∑
yi=k

φw(xi),
which is the mean vector of the embedded support samples belonging to class k. Note that cy =

1
N−1

∑
yi=y

φw(xi) for LOO loss.

In practice, we randomly select K classes and N samples in each class as the support set Stri of a
training task Di for K-way N -shot learning. However, the data generating process (i.i.d.) cannot
guarantee that the support set exactly contains K classes and N samples per class. Hence, we study
the hypothesis stability (Definition 5) w.r.t. the expectation of the training set Str.

Definition 5 (Hypothesis stability [5]). An algorithm A has hypothesis stability β̃ w.r.t. the loss
function l if the following holds ∀j ∈ {1, . . . ,m}:

EStr∼Dm,z∼D[|l(A(Str), z)− l(A(Str
\j

), z)|] ≤ β̃.

Based on the definition, the following gives the derivation of the stability parameter β̃.
Lemma 4. Given a metric d(φw(x), φw(x′)) bounded by B, the inner-task algorithm of prototypical
networks with loss function l(w, z) in (18) has the uniform stability β̃ ≤ O(1/m).
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Proof. Based on Definition 5, to obtain the hypothesis stability β̃, we upper bound the expectation
of the variation |l(A(Str), z)− l(A(Str

\j
), z)| when deleting ∀j ∈ {1, 2, . . . ,m} w.r.t. Str ∼ Dm

and z ∼ D. Given ∀j ∈ {1, 2, . . . ,m}, denote the class yj of zj as Cyj . Considering two cases: (1)
the query z /∈ Cyj and (2) the query z ∈ Cyj .

Case 1: The variation can be written as | log
∑K
k=1 e

−d(φw(x),ck) − log(
∑K
k=1,k 6=yj e

−d(φw(x),ck) +

e
−d(φw(x),c\jyj

)
)|(?) where c

\j
yj is the prototype of the class Cyj deleted zj . Denote the bigger term in

(?) as log a and the smaller one as log b. Then (?) can be represented as log a
b = log(1 + a−b

b ) ≤
a−b
b ≤

a−b
Ke−B

. Using the fact that e−x is 1-Lipschitz continuous, we have a− b ≤ |d(φw(x), cyj )−
d(φw(x), c

\j
yj )|. The training set Str is i.i.d. sampled from Dm, assume that the size of the support

samples belonging to Cyj is κ. Then we know cyj = 1
κ

∑
yl=yj

xj and c
\j
yj = 1

κ−1

∑
yl=yj ,l 6=j xj , so

the prototype cyj can be seen as a weighted average cyj = 1
κ (xj + (κ− 1)c

\j
yj ). To obtain the upper

bound, we consider the worst case under which the deleted sample xj deviates from c
\j
yj most. There

are two sub-cases: (1) d(φw(x), φw(xj)) = 0, d(φ(x), c
\j
yj ) = B and (2) d(φw(x), φw(xj)) = B,

d(φ(x), c
\j
yj ) = 0. For both sub-cases, the upper bound of the distance gap a − b is B

κ and the
variation (?) is upper bounded by B

Kκe−B
.

Case 2: Similarly with Case 1, the upper bound of the variation is B
κ + B

Kκe−B
.

Using the fact that the query z is i.i.d. sampled from D, the probabilities of Case 1, Case 2 are K−1
K

and 1
K . Then we obtain Ez[|l(A(Str), z)− l(A(Str

\j
), z)|] ≤ (1 + B+BeB

K )Bκ .

For the expectation w.r.t. the support set Str which is also i.i.d. sampled from Dm. The size of class
Cyj follows a multinomial distribution κ ∼ B(m, 1

K ). The expectation of 1
κ+1 can be computed

as E( 1
κ+1 ) =

∑m
l=0

1
l+1

(
m
l

)
(p)l(1− p)n−l = 1

(m+1)p

∑m
l=0

(
m+1
l+1

)
pl+1(1− p)m−l = 1−(1−p)m+1

(m+1)p

where p = 1
K . Obviously, we have E( 1

κ ) ≤ E( 2
κ+1 ), so we get the hypothesis stability parameter

β̃ = 2B(K+B+BeB) 1−((K−1)/K)m+1)
m+1 . Omitting the constantsB andK, ((K−1)/K)m+1 → 0

as m→∞. Therefore, we obtain the upper bound of O(1/m) for the hypothesis stability β̃.

Based on the above results, we obtain Theorem 5.
Theorem 5 (Generalization bound of prototypical networks with the LOO training). Suppose that a
mapping φw(x) is Lipschitz continuous and smooth w.r.t. x, the metric d(φw(x), φw(x′)) is bounded
s.t. the LOO loss function is bounded by M and a meta-algorithm A is implemented by episode. For
any task distribution τ and meta-sample S consisting of n tasks and m support samples per task, the
following holds with probability of at least 1− δ, ∀δ ∈ (0, 1):

EA[R(A(S), τ)] ≤ EA[R̂loo(A(S),S)] + 2β + (4nβ +M)

√
ln(1/δ)

2n
+ β̃, (19)

where β ≤ O(1/n) and β̃ ≤ O(1/m).

Theorem 5 shows the generalization gap converges to 0 as n→∞ and m→∞. With LOO training,
the increase of training samples in each task can also improve generalization. However, in few-shot
learning, m is typically very small, so the generalization bound cannot converge as n grows and
hence is less meaningful in this scenario.

D Additional Experiments

Figure 3 presents additional results on the generalization gaps of Bilevel Programming [19] with
m = {1, 5} and q = {1, 15} respectively.
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Figure 3: Generalization gaps of Bilevel Programming [19] on various regression tasks.
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