
We thank the reviewers for their insightful feedback! We are encouraged that they appreciated the novelty ofM-flows1

(R1, R3, R4), their ability to learn the data manifold and a tractable density on it from samples (R4), and the exact2

invertibility on the manifold (R3, R4). We are glad that the reviewers liked our discussion of the subtleties of maximum-3

likelihood training (R1, R2) and appreciated the benefits of the new training scheme that separates manifold and density4

updates (R1, R2, R3, R4). They also found our experiments diverse (R1, R2) and convincing (R2, R4), noticed our5

improvements to the PIE baseline (R2) and commended the writing and pedagogical examples (R2). We answer some6

questions below, but will incorporate all feedback in the final version.7

Why use normalizing flows for dimensionality reduction (R3)? Our primary goal was to construct a tractable8

probabilistic model for data on an n-dimensional manifold embedded in the data space, but in addition the coordinates9

of the learned manifold make a great candidate for dimensionality reduction: the flow approach ensures that for data10

exactly on the manifold, the compression to these variables is lossless, and the decoder is by construction the exact11

inverse of the encoder (unlike in autoencoders). Our goal is not to reduce the dimensionality further below n.12

What are the convergence properties of the proposed training method (R4)? We wholeheartedly agree with R413

that this needs more discussion. The convergence of the model to the correct manifold shape (defined by f ) and14

to the true density on the manifold (defined by f and h) can be analyzed separately. 1) The ability ofM-flows to15

converge to the correct manifold is essentially the same as the considerations for autoencoders, with an additional16

architectural requirement of invertibility. For data on a manifold that can be described by a single chart with the latent17

space dimensionality (which we assume in this first work), this does not pose a restriction (related to the fact that18

all submanifolds that satisfy modest regularity conditions can be expressed as level sets of bijections). 2) If f has19

converged and learned the manifold, then learning the density on the manifold is a n-dimensional density estimation20

task. By implementing h as a flow that is a universal density approximator, we ensure that theM-flow model can21

express any density on the manifold (up to some regularity assumptions). We do not study the convergence properties in22

detail, but argue that the loss will learn the correct distribution in the infinite capacity, asymptotic training limit. In that23

spirit, the argument is much like the initial claims for the ability of GANs to learn the distribution on a data manifold.24

Is the sequential or alternating training scheme better (R4)? Unclear. We compare both approaches in the25

polynomial surface experiment, but did not find a clear advantage.26

Comparison to autoencoders (AEs), VAEs, GANs (R1, R2, R3). We agree that a comparison to (V)AEs and GANs27

on generative and dimensionality reduction tasks would be very interesting. We also really like R1’s suggestion of28

comparing to anM-flow-like model with a non-invertible decoder. In the paper we focused on AF and PIE because29

(likeM-flows) they allow for exact likelihood evaluations, which is crucial for inference tasks.30

It would be nice to have a different metric to compare the models (R1). We agree, but do not know any single metric31

of all relevant aspects. Since likelihood values on different manifolds cannot be compared, we chose to study different32

metrics of data generation (manifold distance, FID scores, physics closure tests), manifold quality (reconstruction error33

when projecting to the manifold), inference (MMD between true and estimated posterior, log posterior evaluated at the34

true parameter point), and OOD detection (ROC AUC between in-distribution and OOD test samples).35

In the particle physics task, it seems unfair to compare on a new metric of inference of underlying parame-36

ters (R1). Instead of “unfair” we would characterize it as a different metric that is often more relevant in a scientific37

context. Likelihood-free inference (LFI) is its own thriving research area with applications from neuroscience to38

epidemiology. Many state-of-the-art methods do not involve learning the likelihood, so the quality of likelihood39

estimation is not admissable to compare them. The good performance ofM-flows on LFI tasks could be impactful.40
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Did the AF baseline learn the manifold in the polynomial surface task (R1)? No.41

On the right we show the AF andM-flow log likelihood along the two-dimensional42

slice x0 = 0 through the 3-D data space. The AF density is sharply peaked around43

the true data manifold and most of the probability mass is very close to it. Still, it has44

non-zero support off the manifold, especially in regions of low density. In contrast, the45

M-flow exactly learns a two-dimensional manifold. We thank R1 for the suggestion46

of showing this explicitly and will include more results in the final version.47

No PIE results for CelebA (R2). These were not completed in time for the submission. We have the answers now: on48

CelebA, PIE achieves FID scores of 75.7± 5.1, substantially worse than ourM-flow results and the AF baseline.49

M-flows did not outperform AF on CelebA (R1, R2). Yes. As R2 pointed out, here we do not know the manifold50

dimension. Due to limited resources, we have not scanned over this hyperparameter or optimized the architecture. The51

good performance ofM-flows in datasets with known manifold dimension makes us optimistic that such a tuning will52

improve the results, but we are not in a position to make this claim at this time. We share R2’s hope that our results will53

spark more research along these lines, and were excited to see some steps at the recent ICML INNF+ workshop.54


