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Abstract

A popular model of preference in the context of recommendation systems is the so-
called ideal point model. In this model, a user is represented as a vector u together
with a collection of items 1, ..., xy in a common low-dimensional space. The
vector u represents the user’s “ideal point,” or the ideal combination of features
that represents a hypothesized most preferred item. The underlying assumption in
this model is that a smaller distance between u and an item x; indicates a stronger
preference for x;. In the vast majority of the existing work on learning ideal point
models, the underlying distance has been assumed to be Euclidean. However, this
eliminates any possibility of interactions between features and a user’s underlying
preferences. In this paper, we consider the problem of learning an ideal point
representation of a user’s preferences when the distance metric is an unknown
Mabhalanobis metric. Specifically, we present a novel approach to estimate the
user’s ideal point « and the Mahalanobis metric from paired comparisons of the
form “item x; is preferred to item ax;.” This can be viewed as a special case of
a more general metric learning problem where the location of some points are
unknown a priori. We conduct extensive experiments on synthetic and real-world
datasets to exhibit the effectiveness of our algorithm.

1 Introduction

Personalized recommendation and ranking algorithms have become increasingly important in recent
years, influencing not only the items a user buys and movies he or she watches, but also potentially
influencing which job candidates are interviewed, which college applicants are admitted, and even the
matching behavior of online dating services. While there are a number of approaches to developing
personalized recommendation systems, a particularly common approach uses a classical model for
user preference known as the ideal point model [1]. In this model a user’s preferences are represented
as apoint u € RP that is embedded in the same space as a set of items ®1,..., TN € RP (movies,
shoes, food, etc). The key model assumption is that the closer an item x; is to u, the more the user
will prefer item x;. We note that the ideal point is not necessarily a specific item x;, but rather
represents the combination of features that the user most prefers. The ideal point model is an intuitive
and interpretable way to model preferences and has been empirically shown to exhibit superior
performance compared to other models of preference [2} 3].

In a practical system, the main challenge is to learn the latent w that represents a particular user’s
preferences. Given a precise quantification of a user’s preferences for a number of items, one could
infer the distances from u to those items and then easily estimate a good embedding w. In practice,
however, users find paired comparison queries of the form “do you prefer item x; or item x;” to be
far easier to answer [4} 5]. As a result, a number of approaches to learning to rank from such paired
comparisons have been proposed in recent years [6-16]]. In the specific context of ideal point models,
such queries allow the user to reveal which of the two items is closer to their ideal point. There is
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now a range of both practical algorithms for estimating u from such queries as well as theoretical
treatments analyzing the performance of these algorithms in terms of error bounds and/or sample
complexity guarantees [[17, (9} [18-26].

While the problem of learning from paired comparisons in the ideal point setting is now well-
understood, the vast majority of past work has only examined the case where the user makes
judgements under the standard Euclidean distance metric. Assuming a Euclidean metric imposes
two main limitations. First, it does not allow for features to interact. In practice, features often
complement or compensate for each other. For example, consider the process of purchasing shoes.
Each shoe can be described in terms of features such as color, price, materials, etc. An individual may
prefer a cost of $50 and a particular material. However, if the price was set instead to $200, the user’s
preferred material may change to reflect the change in price — an effect that cannot be accommodated
by a Euclidean (isotropic) metric. Second, the Euclidean metric assumes that all features are of equal
importance to the user, which is often not the case. In the shoe purchasing example, a price conscious
consumer may prioritize finding the best “bang for their buck,” in which case a lower price and higher
quality of material would be prioritized over aesthetic features such as color.

To overcome these limitations, we consider the case where the user makes comparisons between
items under a Mahalanobis distance. Specifically, let M € RP*P be a symmetric positive definite

matrix and set ||z|[ps = V& Mx. Then ||z — y||as defines a Mahalanobis distance between
and y. This metric captures both feature interactions and the relative significance of those feature
interactions via the eigenvalue decomposition M = VAVT. The eigenvectors specify how features
can interact to jointly affect preferences, and the eigenvalues allow for different combinations of
features to play a larger or smaller role. See Section [.2|below for a concrete example.

While a Mahalanobis metric allows for more flexible and powerful models of preference, the appro-
priate choice of M will in general be unknown a priori. In this paper, we develop a novel method
to jointly learn both the ideal point and Mahalanobis metric from paired comparisons, which to the
best of our knowledge represents the first approach for solving these problems simultaneously. By
leveraging the structure of paired comparisons, we develop a simple convex optimization program
that estimates M and can then directly solve for u. In the process, we also effectively learn the user’s
ranking of the items. We also explore the possible benefits of a more sophisticated alternating scheme
that iteratively refines the estimates of M and u. We demonstrate the effectiveness of our approach
through experiments on both synthetic and real-world datasets.

2 Related Work

Our work naturally builds on the existing literature on learning from paired comparisons, taking
particular inspiration from the convex optimization approach to non-metric multidimensional scaling
of [[17] and the approaches in [9, |18} 21, 26] to developing algorithms for the ideal point setting. We
also build on the extensive prior work on metric learning. Learning a metric from paired comparisons
was introduced in [27]], where the authors assume the distance is parametrized by a known matrix A
and a weighting matrix W with non-negative diagonal entries. W is learned via a convex program
by manipulating the form of diagonal matrix multiplication. Setting A to I does not allow for feature
interactions, whereas picking more complex A without overfitting the training data is non-trivial.
Similarly in [28], the authors minimize the squared-hinge loss of differences in distances of pairs
of items. However, the user is presented with two pairs of items must pick which pair of items is
more similar, which is a more complex querying scheme for the user to answer. The same query
type is used to learn a metric for images in [29]. The problem of learning low-rank/sparse metrics
where all points are known was studied in [30], which established bounds for sample complexity,
generalization error, and model identification. The performance of nearest-neighbor-based classifiers
have also benefited from learning a Mahalanobis metric that enhances class separation [31], where
here class membership is used to inform the learning process.

Metric learning has also been explored in prior work on recommendation systems. For example, [32],
[33], and [34] all learn Mahalanobis metrics for ranking given a known reference point and sets of
similar and dissimilar items. Using sets of positive and negative items for each user, [35]] learns a
personalized projection operator for each user and estimates user preference in the learned latent
space. In a similar setting, [36] learns transformed ideal points and items directly before learning a
metric. Finally, [37]] assumes each user has an ideal feature vector where user preference is measured
by the inner product of this ideal feature vector with an item’s feature vector and develops a feature



selection scheme to account for intransitivity in noisy comparison outcomes while learning an ideal
feature vector.

Our work differs from the above in that it uniquely assumes that both the metric and ideal point are
unknown. Thus, it can be viewed as a more generalized metric learning problem where some of
the data are missing. Most existing metric learning papers avoid the problem of knowing a user’s
preference by assuming a known reference point or utilizing more difficult queries (asking the user to
compare two pairs of items). Based on this prior work, it might be unclear if simultaneous recovery
of an unknown metric and ideal point is even feasible, but we show that it is indeed possible.

3 Observation Model and Estimation Strategy
3.1 Observation model

For simplicity, we will begin by considering the noiseless observation model where the user always
prefers the item closest to the user’s ideal point « under the Mahalanobis distance metric induced
by M, where M is a symmetric positive definite matrix. For a discussion on how to accommodate
noisy paired comparison outcomes, please see the supplementary material. To be more concrete, we
let d € RY be the vector with entries d; = ||z; — u|%,. We let y € R denote our observations,
where the k™ element of y denotes the outcome of the k™ comparison (between items x; . and ;)
and is given by

yr = sign(d;, — d;,). ()

For now we assume that the set of indices Q2 = {(i1, 1), ..., (ip,jp)} corresponding to the items
compared contains each pair of indices at most once, although our methods could easily be adapted
to the case where € is a multiset. We will assume throughout our treatment that the embedding of the
items a1, ...,y is fixed and known, as in a mature recommendation system. This embedding may
correspond to known and interpretable features or be learned from other side information (or even
paired comparisons, following a strategy along the lines of [38]]).

Before we describe our estimation strategy, a few observations are in order. First, note that y consists
of (1-bit) quantized samples of the N x N matrix A = dl% —15d7T, where 1y € RY is the vector
of all ones. It will also be useful to work with the vectorized version of A, which we will denote by
& and can be written ad!]

0=(1Any® Iy — Iy ®1N)d,

where Iy denotes the NV x N identity matrix and ® denotes the Kronecker product. For conciseness,
wewilllet Q =15y R Iy — In R 1y.

To index into §, we map every (i, ji) € 2 to a linear index between 1 and N 2 defined as T =
{(ix — 1)N + ji : (ig, jr) € Q}. We can equivalently write our observation model in (I)) as

y = sign(dr) = sign(Qrd), 2

where the notation dr and Qr indicates the vector or matrix obtained by selecting only the in-
dices/rows indexed by I'.

3.2 Estimation from unquantized observations

To gain some insight into this problem, we will temporarily ignore the quantization and suppose that
we have direct access to dr — in this case, how might we go about estimating M and u?

Consider d;, = ||z, — ul3; and d;, = ||z;, — ul||3; for any (i, jr) € . Then, for the linear
index p corresponding to (i, ji), 8, = ||, — ul|3s — ||zj, — ul3s. Observe that when we expand
these terms we can cancel the coupled term u” Mu, greatly simplifying our subsequent analysis:
8y = lli, —ullfy — @5, —ulis
=] Mz;, —2x] Mu+u" Mu— (wiM:c]k - ZaciMu + u” Mu)

= w;";Mwlk — w;;ijk —2(zy, — mjk_y)TMu 3)

'Note that this follows from the general identity vec(ABC) = (CT @ A)vec(B).



If we define

- (mil - mjl)T - - (mil + mjl)T -
R— — (@i, _. Lo )T — S — _ (wiz + wjz)T -
- (miP - ij)T — - (miP + ij)T
then we can write (3) more concisely as
Op = diag(SMR") — 2RMu, 4)

where diag(A) returns the diagonal of A € RV*¥ as a column vector. For brevity, let apr =
diag(SM RT'). We now observe that if we observed dr directly and already knew M, then we could
estimate u by solving a standard least squares problem, resulting in the estimate

U= %MTRT(aM —op). (5)
Plugging this estimate into (4}, we obtain a simple system of equations that is linear in M:
or =an — 2RM(%MTRT)((1M —r)
=apy — RMM'R'(ay — dr)
=apn — RR'(ay — or),

where the last equality follows from the fact that M is assumed to be positive definite (and hence
full-rank). Rearranging terms, we obtain the more convenient expression

0= (I - RR")(ay — 6r). (6)

3.3 Single-step estimation from quantized observations

Given direct observations of dr, we could immediately estimate M using @ However, our
observations as in are (1-bit) quantized. In this case, using (6), we can instead formulate a
constrained optimization problem to jointly estimate an M and a set of distances d (and hence dr)
that are consistent with both our observations y and (6)). Specifically, we will aim to find a solution
that satisfies (6) while minimizing ¢(d), where £(d) is a loss function that encourages d to be such
that that the signs of entries of dr = Qrd are consistent with the observed comparisons. For example,
one could set £(d) to be the hinge loss:

P

0(d) =Y max(0,1 — y(Qra)z), ()
k=1

where (Qrd);, denotes the k™ element in the vector Qrd. In the remainder of this paper and in our

experiments, we use the hinge loss, but our framework could easily be extended to accommodate

any convex loss. Finally, in our proposed approach we also introduce slack variables ¢ € R” to

loosen the constraint (6)) to improve stability and robustness to noise, and also introduce terms to the

objective function to allow for a small amount of regularization on both M and d:

(M, d, Q) =argmin od) + ¢l + 2| M2 + ys)|df3 (8)

st. —(¢ < (I - RR")(diag(SMRT)—-Qrd)<¢
¢>0, M:>=0.
The first two constraints aim to enforce @, while the final constraint enforces that M is symmetric
positive semi-definite. The constants 71, 72, 3 are parameters set by the user to control the amount

of regularization. The above formulation is a convex (semi-definite) program and can be solved by
standard tools such as CVX [39 40].

With M in hand, we can then immediately solve for @ via (3)). However, since we do not expect our
estimate M to be perfect, we instead use the regularized estimate:

1l = — e A
U= E(MRTRM +aol)"'MR"(ag; — Qrd), )

where « is a regularization parameter set by the user. We will see in Section [4 that this simple
single-step estimation procedure of estimating M followed by w is surprisingly effective.



3.4 Noise considerations

A common noise setting is when paired comparison outcomes are made with respect to differences in
distances corrupted by additive iid noise. Such noise may arise from an imperfectly learned embedding
or as a way of modeling response errors. While we pose the problem in a noiseless environment
for simplicity, the estimation strategy outlined above can be adapted to accommodate such noise by
replacing the loss function in (7)) with the negative log-likelihood of observing comparison outcomes
given a noise model, provided that the log-likelihood function is concave. For example, suppose we
assume paired comparison outcomes follow the Bradley-Terry model [41]], i.e.,

ol

(10)

P(:Ei - acj) =

o lmi—ully 4 o @ —ull,

where x; > x; denotes that item x; is preferred to item x; and yy, is the outcome of the Eth
comparison (with y;, = —1if x; > x; and y, = +1if ; > x;). Then, we can replace the loss
function in (/) with the negative log-likelihood of observing the P paired comparison outcomes:

P
(d) = log(1 + e (@), (1n
k=1

where (Qrd)y, denotes the k" entry of the vector Qrd

3.5 Alternating estimation

While the single-step approach described above is appealing due to its simplicity, the process of
dividing the problem into first estimating M and then estimating u suggests a natural extension of
then taking our estimate of w and refining our estimate of M, and then iteratively alternating between
these two problems to (potentially) improve our estimates. Specifically, after obtaining M and u
using and @), we can set M(® = M and 2 = 4. Then, for iteration k > 0, we re-estimate
M by solving the following optimization problem that replaces the constraint from (6) with the
constraint from (4)) to allow us to directly incorporate our previous estimate of w:

= o . k k k
(M®,d® ™) = argmin {(d) F ANl A8 1M + A5 d) (12)

st. —¢ <diag(SMR") - Qrd — 2RMu*~Y < ¢
¢>0, M 0.

We can then update our estimate of u as before:
(K 1 — =k , —
a®) = §(M(k)RTRM(") +aPDTTMP R (agz,, — Qrd™).

Note that we allow the regularization parameters to change across iterations. In practice we fix ’ygk) ,

fyék), 'yék), and o®) for all iterations & > 1, but we do consider an alternative set of parameters for
the initialization (k = 0). This is somewhat natural since the initialization step actually involves
solving a slightly different optimization problem.

3.6 Identifiability of the metric and ideal point

We conclude our description of our approach with a brief discussion of the degree to which the ideal
point v and metric M are potentially identifiable.

Proposition 1. For a fixed M € RP*P | the ideal point w is identifiable if and only if M is (strictly)
positive definite.

The proof is provided in the supplementary material and is similar to the proof of Proposition 3
in [37]). This result is not surprising, as if M is rank-deficient, any part of u € ker(M ) will be not
recoverable. We note that, since we desire our constraint set to be closed, our estimation procedure
enforces a positive semi-definite constraint. In practice, if M is ill-conditioned, we may estimate a
solution which is rank-deficient (which ignores the eigenvectors corresponding to relatively small
eigenvalues), and thus the portion of u in the span of these eigenvectors may be extremely difficult to



estimate. Note, however, that due to the influence of M, the unidentifiable portion of u also plays
little role in determining the underlying preferences. In recognition of this, we typically quantify our
estimation performance in terms of |u — w||ps.

We also note that, at least in the noise-free setting considered in this paper, even if the metric is
fully identifiable, it will only be so up to a constant scaling factor. However, note that a constant
scaling factor does not change the learned ideal point or ranking of items. To see why this is true,
note that for any M and d satisfying the constraint in (4), rescaling M and d (and hence dr) by an
arbitrary constant ¢ > 0 will yield another valid solution. However, it is relatively easy to show that
for arbitrary scaling of M and dr, the estimate provided by (3) of w, as well as the resulting ranking
of the items, remains unchanged.

Finally, we also note that when recovering M, if a subset of the eigenvalues of M are equal or
relatively close, it becomes impossible, or at least more difficult, to distinguish among the specific
eigenvectors. In this case, our estimate may swap the order of the eigenvectors or learn different
eigenvectors that span a similar space to the original, but can be quite different. As with scaling, this
has little impact on estimating w or in terms of the resulting rankings, but plays an important factor in
determining the appropriate evaluation metrics.

4 Experiments
4.1 Synthetic experiments

In this section, we demonstrate the effectiveness of the joint estimation on synthetically generated
dat We assume a priori knowledge of an existing embedding of items and estimate w and M.
In each simulation, N items @1, ...,z are generated uniformly on the hypercube [—2,2]” and
one user u is generated uniformly on [—1, ILD . A positive definite matrix M is generated by
M = LTL, where the entries of L € RP*P are drawn from the standard normal distribution.
Noiseless comparisons are chosen uniformly without repetition and used for joint estimation.

Certain conditions are imposed on the matrix M: 1) The Frobenius norm of M exceeds a small
chosen threshold e, 2) The smallest singular value of M is larger than a small chosen threshold
€s, and 3) The fraction || Mul|2/||u||2 exceeds a small chosen threshold threshold ep. e and eg are
imposed to guard against numerical instabilities while €p is necessary to ensure that w is identifiable.
For all synthetic experiments, the chosen values were e = 0.5, eg = 0.25, and ep = 0.2.

We define the user’s ideal point reconstruction error (UR error) as ||u — u||3;/||w|3;- Letting the
eigendecompositions of M and Mbe VAVT and VAVT, respectively, we define the weighted
eigenstructure reconstruction error (WER error) as [|A © [VTV| — A||%/||A /2., where © denotes
element-wise multiplication and | A| takes the element-wise absolute value of A. When M is

recovered to be a scaled version of M, we expect the diagonal elements of |VT‘7\ tobe 1. In all
cases when the WER error is small, M is recovered well. However, there are instances in which a
high value of the WER error does not imply a poor estimate of M. For example, (large) repeated

eigenvalues in M would result in a large WER error if the eigenvectors in V' differed, but spanned
the same space. Our synthetic data avoids this, but care is needed to quantify performance in general.

Single-step estimation In the first simulation, we show the improvement in estimation as the
number of comparisons increases. For a fixed number of comparisons, we perform 100 trials and
report the median UR error and WER error, and interpolated median of the fraction of the top 10
closest items to w identified for D = 2,5, and 10. Since the fraction of the top 10 items is discrete,
we utilize the interpolated median in place of the usual median. In all cases, we include the 25% and
75% quantiles. For each trial, we generate a new metric, ideal point, and N = 100 items.

As shown in Fig. [T} when a small number of comparisons are used for joint estimation, the UR and
WER error are large, while the fraction of top 10 items correctly identified is small. As the number of
comparisons increases from 10 to 500, the UR and WER errors decrease rapidly, while the fraction
of top 10 items increases rapidly.

In the second simulation, we compare the performance of our algorithm against two algorithms that
assume Euclidean distance to estimate the ideal point. Euclidean Algorithm 1 is an adaptation of

?Code available at https://github.com/austinxu87/IdealPointMetric


https://github.com/austinxu87/IdealPointMetric

1 g -
-~ =
—D=2 509 E 09
--D=5 £ g
g o8 < 08
g D=10 . =
& g 07 2 07
€ g g
i g o6 £ o
g = z
g 5005 \‘ S os
£ < o
= - 4\ §o¢|8
& £ o3t Q PEEY
=} Z \ s ) — D=2
oo N =
(b T 2 N g o2 --D=5
------ = N k=]
________ = o1 S g o D=10
e e LY A - =
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 = 50 100 150 200 250 300 350 400 450 500
Number of comparisons Number of comparisons Number of comparisons

Figure 1: Median UR error, WER error, and interpolated median fraction of top 10 items identified over 100
trials, plotted with 25% and 75% quantiles. As the number of comparisons grows, both UR and WER error
decrease to 0 as the fraction of top 10 items increases to 1 for all D. Regularization parameters: v1 = 2,72 =
0.002,v3 = 0.001, a = 1.
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Figure 2: Comparison of singe-step estimation against Euclidean Algorithms 1 and 2 when the true distance
metric is M # I. Regularization parameters: v; = 2,72 = 0.002,v3 = 0.001, « = 1.

our single-step algorithm to solve for only the distances d. between items and the ideal point:
(d., <) =ar§lr?in Ude) +7ll¢l +2l1del3 (13)
st. —¢<(I-RR')(diag(SR") - Qrd.) <¢, (>0

From here, we can solve for u by replacing replacing M with I in (9). Euclidean Algorithm 2 is
the approach in [21]], which directly solves a convex program for w from the paired comparisons.

We sweep the performance for all three algorithms for D = 2 over different numbers of comparisons
between 10 and 500. For a fixed number of comparisons, we perform 100 trials and report the median
(or interpolated median) and 25% and 75% quantile for UR error, normalized Kendall’s Tau distance,
and the fraction of top 10 items identified. For each trial, we generate a new metric and ideal point
and N = 100 new items. As seen in Fig. [2] our algorithm outperforms both algorithms that assume a
Euclidean distance metric by recovering a more accurate ideal point, ranking of items, and fraction of
top K items. The same experiment was performed when M = I for all trials with very little loss in
performance by using our algorithm (see the supplementary material for further details).

Alternating estimation We now explore the .
potential improvements that can be attained by 0s T Allemating estimate
our alternating estimation procedure. For D = £

5, we fix an ideal point, metric, and a set of N =
100 items, and vary the number of comparisons.
For a fixed number of comparisons P, we run
100 trials, where we select P new comparisons
at random. We then run the alternating descent
until the difference in the user reconstruction
error between successive iterations is less than o o 20 Olzsgmi”}garf;gn;‘)“ 450 500
1073, with a maximum number of iterations set

to 100. We report the median and 25% and 75%
quantiles for the initial and final UR error in Fig.
[3. We observe that alternating estimation does
not improve the estimate of w much when the s r
number of comparisons is small (< 40) or large 15:73 = 15000 @~ = 3 fork > L.

User recon. error

Figure 3: UR error for single-step and alternating es-

timation. Regularization parameters: fy}o) =2, 'yéo) =

0002, = 0.0001,a® = 1; 4 = 2 ;) —



(> 200). In the first regime, the comparisons do not reveal enough information to reliably recover w,
while in the second regime, the number of comparisons is sufficient to make the single-step estimation
very accurate. The alternating method offers steady improvement in the intermediate regime, and is
able to successfully reduce the error nearly 60%.

4.2 Graduate admissions dataset

‘We now apply our models to two PhD program admissions datasets from Georgia Tech School of
Electrical and Computer Engineering. The Unranked Candidates dataset consists of over 3,000
applicants in three categories: 1) admitted with fellowship, 2) admitted, and 3) denied admission.
The applicants are not ranked, so the only paired comparisons we can form are across categories. We
assume that fellowship recipients are preferred to admitted candidates, who are preferred to denied
candidates, so for N fellowship recipients, N4 admitted candidates, and Np denied candidates, we
can form at most Ng(N4 + Np) + NaNp comparisons. For each applicant, we have access to five
features: GPA, GRE quantitative, verbal, and analytical writing scores, and a letter of recommendation
(LoR) score. Each candidate’s GPA is normalized to a 4.0 scale. The GRE verbal and quantitative
scores are integers between 130 and 170, inclusive, while the GRE writing score is from 0 to 6 in
0.5 increments. Each candidate submitted at most three letters of recommendation, each of which is
scored on a scale of 0 to 3. The scores are averaged and then exponentiated to obtain a LoR score
between 1 and €3 ~ 20.09.

The Ranked Candidates dataset consists of 88 applicants who are scored on a scale of 1 to 10, with 1
being the most preferred and 10 being least preferred. The top 11 candidates are uniquely rank ordered,
and the rest of the candidates are sorted into 8 bins of various sizes. We only form comparisons
between candidates with different scores, so two candidates with the same score are not compared.
For each applicant, we have access to the same features except for letter of recommendation scores.

Unranked Candidates 'We begin by noting that the features being used in this model are inherently
restrictive. Applicants are evaluated on many criteria beyond the features included, which can lead
to occasional unexpected results. For instance, there exist large subsets of denied candidates whose
average GRE scores are higher than those of a some fellowship recipients, which might indicate that
a lower GRE score is more favorable, occasionally leading to rather unusual ideal point placement.
Furthermore, the learned ideal point may fall outside of appropriate ranges (e.g., GPA > 4), which
indicates an extremely strong preference for that feature. However, one can interpret values outside
of appropriate ranges as a preference for the maximum/minimum appropriate score. In reality, we
would expect that the optimal set of features should be the maximum value for all possible features.
Furthermore, of the five features, we suspect that the GRE verbal score should likely matter the least,
followed by the GRE quantitative score, as applicants from across the categories score similarly
on these two GRE sections. Our expectation is that the most significant features should be some
combination of GRE writing, GPA, and LoR. With this in mind, we use our algorithm to learn relevant
feature interactions and confirm our hypothesized ordering of the importance of features via the
learned metric. We take Ny = 33, N4 = 33, and Np = 34, form all 3333 possible comparisons,
and learn the ideal point u and metric M using a subset of all features.

When all five features are used to learn & and M, our hypothesized ordering of importance for the
features is correct. The three most significant features are a weighted difference between GPA and
GRE writing, a weighted sum of GPA and GRE writing, and the LoR score. The learned ideal scores
are 158.08 GRE verbal, 162.50 GRE quantitative, 4.68 GRE writing, 4.06 GPA, 15.28 LoR score. As
seen in Fig. 4, when the GRE verbal and quantitative scores features are used, the learned feature
interactions are a weighted difference (eigenvector 1) and sum (eigenvector 2) of GRE verbal and
quantitative scores. The structure of the learned metric seems to make intuitive sense, indicating
that in order to compensate for a slightly lower GRE quantitative score, one must score significantly
higher on the GRE verbal section.

Ranked Candidates Since ranking information is partially available in this dataset, we record the
fraction of top K = 11,17, and 22 candidates correctly identified as the number of comparisons
increases using all four features. For a fixed number of comparisons, we perform 20 trials and report
the mean and standard deviation of the fraction of the top K candidates correctly identified in Fig. 5]
The fraction of the top K candidates correctly identified for K = 11,17, and 22 increases rapidly as
the number of comparisons increases. With less than 20% of the total number of comparisons, we can
identify over 90% of the top 22 and 17 candidates and over 80% of the top 11 candidates correctly.



130 135 140 145 150 155 160 165 170

GRE Raw Verbal score

165 // ‘\\ E
g / * g
S 160 [ E’:,
- =]
L \ - P
N - s
S 150 e e}
< g
:5\. 145 B °
3 B

2 o B §os —K=11

~ ——Eigenvector 1, \; =1463.6793 5 02} - K =17

135 ——Eigenvector 2, Ay =499.7563 g 01l K =2

# Ideal point = | —
e E 0 500 1000 1500 2000 2500

=

Number of comparisons

Figure 4: Level sets for learned metric for Figure 5: Fraction of top 11, 17, and 22 of ranked
Unranked Candidates GRE verbal and quantita- candidates identified. Regularization parameters:
tive scores. Regularization parameters: v; = Y= Sg—o,fyg = ﬁ,’y:’, = g 21071 o= 1.

1 _ 1 _ 2 —6 _
ﬁ,’}@—m,’)@—ﬁ‘lo 7a—1.
5 Discussion

In this paper, we develop a method for jointly learning a user’s ideal point and an underlying distance
metric from paired comparisons. The metric captures feature interactions and their relative signifi-
cance to users, neither of which are captured by the traditional Euclidean metric. We demonstrate our
algorithm can correctly identify the ideal point and metric and can correctly rank graduate admission
candidates and determine feature interactions on real-world data. We conclude by noting that in the
Euclidean setting, adaptive querying schemes have been shown to enable dramatic reductions in the
required number of comparisons [9, 42]. We expect similar gains are possible in our setting. Devel-
oping novel methods for adaptively selecting comparisons to maximize the amount of information
collected about both u as well as M is an important avenue for future research.



Broader Impact

In an increasingly diverse set of contexts, automated ranking systems are playing an increasing role
in society. We naturally have an interest in ensuring that these systems are as accurate as possible and
not undermined by poor modeling assumptions. If used to augment such systems, our research could
be used to develop improved models for how users implicitly process the features of the ranked items
by learning a metric. In particular, in addition to providing a more powerful and flexible model of
preference, the metric illuminates how features are combined and the ordering of importance of the
combined features, providing both additional insight as well as helping to better identify user desires
and rankings.

In certain applications, such as in hiring or admissions committees, there is also the potential to
apply our techniques to discover if the metric of an evaluator is significantly influenced by certain
factors (e.g., race, gender, sexual orientation, religion, etc.) which we do not wish to influence our
decisions. This information may be useful as feedback to the evaluator or alternatively, to explicitly
compensate for the existence of such influence (e.g., by re-ranking candidates using a modified metric
that eliminates dependence on those factors).

However, this optimistic assessment of the potential of our approach should be tempered by two
important caveats. First, in the absence of any strong theoretical guarantees, we are unable to provide
any notion of confidence intervals or statistical significance in the learned parameters, and so one
must evaluate the learned models with a degree of caution and awareness that the learned parameters
may be the result of chance variation in a small dataset. More generally, there is no notion of causal
influence in our model, and it is always possible that the observed dependence on the features is
the result of correlations with some unobserved latent factors. Second, due to both the potential for
inaccuracies in the learned parameters as well as the personal nature of the revealed preferences, as
with any system involving personal data, privacy remains a significant concern.
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