
Supplementary Material

A Proof of Proposition 1

Proposition 1: For a fixed M 2 RD⇥D, the ideal point u is identifiable if and only if M is (strictly)
positive definite.

Proof. Let w 2 RD be arbitrary. Note that for any point x 2 RD, one can easily show that
kx� uk2M = kx�wk2M (14)

if and only if
h2x� u�w,M(u�w)i = 0. (15)

This follows simply by expanding the expressions on both sides of (14) and rearranging the terms to
obtain (15).

We now show that if u is identifiable then M is strictly positive definite. Suppose for the sake of a
contradiction that M is not strictly positive definite, i.e., that there exists a non-zero v 2 RD such
that Mv = 0. Let w = u� v. Then, by (15)

h2x� u�w,M(u� (u� v)i = h2x� u�w,Mvi = 0.

From this we can show that, kx� uk2M = kx� (u� v)k2M . This is a contradiction since u cannot
be identifiable as w = u� v 6= u would yield identical observations.

We now show that if M is positive definite then u is identifiable. Suppose that w 2 RD satisfies
kx�uk2M = kx�wk2M for all x 2 RD. From (15) we have that because h2x�u�w,M(u�w)i =
0 8x 2 RD, it must be the case that M(u�w) = 0. If M is positive definite, then it must be the
case that u�w = 0, and hence w = u. ⇤

B Additional Synthetic Simulation Results

Additional results for single-step estimation For the single-step estimation experiment found in
Section 4.1, we also quantify algorithm performance via the normalized Kendall’s Tau distance and
the fraction of top 5 and 20 items correctly identified. The median (or interpolated median) and 25%
and 75% quantiles are reported in Fig. 6. While the normalized Kendall’s Tau distance decreases for
D = 2, 5, and 10, it does so rather slowly. This is due to the fact that many items are very similar
to each other in terms of their distance from u, and hence getting the exact ordering of all items
correct is rather difficult. However, the performance in identifying the top 5, 10, and 20 items is
strong, which indicates that the algorithm is in fact learning which items are important.

Figure 6: Median normalized Kendall’s Tau distance and interpolated median fraction of top 5 and 20 items
identified over 100 trials, plotted with 25% and 75% quantiles. Regularization parameters: �1 = 2, �2 =
0.002, �3 = 0.001,↵ = 1.

Single-step estimation when M = I We demonstrate the effectiveness of our algorithm when
M = I and compare performance with Euclidean Algorithm 1 and Euclidean Algorithm 2 as
defined in Section 4.1. We sweep the performance for all three algorithms for D = 2 over different
numbers of comparisons between 10 and 500. For a fixed number of comparisons, we perform
100 trials and report the median (or interpolated median) and 25% and 75% quantile for UR error,
normalized Kendall’s Tau distance, and the fraction of top 5, 10, and 20 items identified. For each
trial, we generate a new metric and ideal point and N = 100 new items. As seen in Fig. 7, there is no
significant loss in performance when using our algorithm, especially as the number of comparisons
increases. Thus, adding the additional flexibility to allow for M 6= I does not seem to result in any
significant penalties, even when M is in fact I .
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Figure 7: Comparison of singe-step estimation against Euclidean Algorithms 1 and 2 when the true distance
metric is I . Regularization parameters: �1 = 2, �2 = 0.002, �3 = 0.001,↵ = 1.

Figure 8: Median WER error, normalized Kendall’s Tau distance, and interpolated median for top 5, 10, and 20

items for single-step and alternating estimation. Regularization parameters: �(0)
1 = 2, �(0)

2 = 0.002, �(0)
3 =

0.0001,↵(0) = 1; �(k)
1 = 2

3 , �
(k)
2 = 1

15 , �
(k)
3 = 7

1500 ,↵
(k) = 1

2 for k � 1.

Additional results for alternating estimate For the alternating estimation experiment found in
Section 4.1, we also quantify algorithm performance via the WER error, normalized Kendall’s Tau
distance, and fraction of top 5, 10 and 20 items correctly identified. The median (or interpolated
median) and 25% and 75% quantiles are reported in Fig. 8. In the intermediate regime (between
40 and 200 comparisons), the alternating estimate generally improves the WER error and fraction
of top K items identified. The normalized Kendall’s Tau distance remains relatively the same for
all comparisons, but the improvement in the fraction of top K items indicates that the algorithm
improves in identifying the which items are close to the ideal point.

C Data Pre-processing

Unranked Candidates dataset pre-processing The Unranked Candidates dataset is originally
comprised of 3, 789 total applicants, with 191 admitted with fellowship, 530 admitted without
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Table 1: Feature interactions and corresponding eigenvalues for the Unranked Candidates dataset for
NF = 33, NA = 33, ND = 34 and 3333 comparisons. Regularization parameters: �1 = 1

650 , �2 =
1

6500 , �3 = 2
65 · 10�6,↵ = 1.

Feature interactions in cM .

�1 = 1991 0.909 GRE writing � 0.392 GPA
�2 = 1971 0.919 GPA + 0.393 GRE writing
�3 = 1178 0.982 LoR
�4 = 861 0.942 GRE quant � 0.310 GRE verbal
�5 = 286 0.942 GRE verbal + 0.319 GRE quant

fellowship, and 3068 denied candidates. Ten raw features are associated with each candidate (Self-
reported GRE analytical writing, self-reported GRE verbal, self-reported GRE quantitative, official
GRE analytical writing, official GRE verbal, official GRE quantitative, GPA, and up to three scored
letters of recommendation). Some candidates have missing entries for some of the ten raw features.
Depending on which features are used to generate input data for the algorithm, we remove candidates
with relevant missing data. If GRE scores are used, for each candidate, we take the official GRE
scores to be the true GRE scores. If the official GRE scores are missing, then we take the self-reported
scores. The raw GPA scores are already normalized on a 0 to 4 scale, but the normalization resulted
in some unusable entries. If the GPA feature is used, we only keep candidates with GPAs between
1 and 4. The LoR score is computed as described in Section 4.2. In all, there are 3305 candidates
with no missing entries (176 admitted with fellowship, 455 admitted candidates, and 2674 denied
candidates).

Ranked Candidates dataset pre-processing The Ranked Candidates dataset originally contains
89 candidates with four raw features (GRE analytical writing, GRE verbal, GRE quantitative, and
GPA). For this dataset, there is only one GRE score available to us, so there is pre-processing needed
to discern between self-reported and offiical. There is one candidate with missing raw features who is
discarded, leaving us with 88 usable candidates.

D Additional Experimental Results

Additional results for Unranked Candidates dataset As reported in Section 4.2, the ideal point
and metric is learned using a set of 100 candidates (NF = 33, NA = 33, and ND = 34) and all
possible comparisons (3333). The significant feature interactions are reported in Table 1, along with
the corresponding eigenvalues. The weighted difference and sum of GPA and GRE writing score are
the top two feature interactions and are almost equally important, followed by the LoR score and
the weighted difference between GRE quantitative and verbal scores. The most insignificant feature
interaction is the weighted sum of the quantitative and verbal scores.

Using the same number of candidates and comparisons, we also learn feature interactions and ideal
points for pairs of features. For all pairs of features aside from GRE verbal vs. GRE quantitative
(presented in Section 4.2), we display the level sets for the learned metric in Fig. 9. We again note
that learning the ideal point with inherently restrictive features leads to unexpected behavior. In
many cases, the ideal point value falls well outside of the allowed range for many of the features.
For example in the GRE quantitative vs. GPA pair, the ideal GPA is 35, which is much larger than
4. In these cases, the fact that the ideal value is higher than the maximum allowed values indicates
that the larger the score, the better. This is consistent with our expectation that the optimal set of
features should be the maximum value for all possible features. Many pairs of features do not have
meaningful learned interactions, but pairs of features such as GRE writing vs. GPA do have some
meaningful interaction.

Additional results for Ranked Candidates dataset For the Ranked Candidates dataset, we also
record the the normalized Kendall’s Tau distance for the top 11 candidates. We choose to evaluate
the ranking of the top 11 candidates because these candidates are the ones most likely to be admitted.
The median normalized Kendall’s Tau distance and 25% and 75% quantiles can be found in 10. As
the number of comparisons increases, we are able to extremely accurately predict the exact ranking
of the top 11 candidates.
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Figure 9: Level sets for pairs of features for Unranked Candidates dataset.
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Figure 10: Normalized Kendall’s Tau distance for top 11 ranked candidates identified. Regularization
parameters: �1 = 7

6002 , �2 = 1
6002 , �3 = 2

6002 · 10�4,↵ = 1.

The learned metric using all 2610 comparisons does not exhibit any meaningful feature interactions.
GPA and GRE writing are the top two features with roughly equal eigenvalues, followed by GRE
quantitative. The GRE verbal score is the least significant feature. This is consistent with our expected
order of significance of features for candidates.

E Optimization parameter tuning

The reported parameters for the synthetic and real-world data experiments were obtained through
manual tuning. We did not perform an exhaustive search over parameter combinations for any of the
synthetic or real-world data experiments. The reported parameters appear to be very specific, but this
is due to a change in notation, and hence a re-normalization of parameters. We have found that the
algorithm is relatively robust to parameter values and defer developing a method for picking optimal
or near optimal parameters to future work.
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