Supplementary Document to the Paper ''Efficient
Variational Inference for Sparse Deep Learning with
Theoretical Guarantee'

Jincheng Bai Qifan Song
Department of Statistics Department of Statistics
Purdue University Purdue University
West Lafayette, IN 47906 West Lafayette, IN 47906
baid4b@purdue.edu gfsonglpurdue.edu
Guang Cheng

Department of Statistics
Purdue University
West Lafayette, IN 47906
chengg@purdue.edu

In this document, the detailed proofs for the theoretical results are provided in the first section, along
with additional numerical results presented in the second section.

1 Proofs of theoretical results

1.1 Proof of Lemma 4.1

As a technical tool for the proof, we first restate the Lemma 6.1 in Chérief-Abdellatif and Alquier
(2018) as follows.

Lemma 1.1. For any K > 0, the KL divergence between any two mixture densities Zle WGy, and
ZkK=1 Wk, is bounded as

K

K K
KL( Y wigkll D wdi) < KL(wl|@) + Y wpKL(gx||3),
k=1 k=1 k=1

where KL(w||w) = Zszl wy, log

Wg
ﬁ/k‘ °
Proof of Lemma 4.1

Proof. Tt suffices to construct some ¢* () € Q, such that w.h.p,
KL(g*(0)[|m(0N)) +J 1n(Po, Pe)q™ (0)(d9)
S
<Cyinr¥ + C{nirelf | fo — foll% + Cinr¥,

where Cy, C are some positive constants if lim n(r¥ + £*) = oo, or any diverging sequences if
limsupn(r + &}) # .

Recall 0* = argmingeo (1, p,s+ 5 |[fo — fol|%, then ¢*(#) € Q can be constructed as
KL(g*(0)||7(0|\)) < Cynrk, )

f@ o — fol 2™ (0)(d0) < 1. @)
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We define ¢*(0) as follows, fori =1,...,T":

074|’YZ ~ Y N(Q;kv n) (1 - 71*)60’
7 ~ Bern(¢), (3)
oF =1(0] #0),

—1
* —
where a2 = £-log 1(3pN)(QBN)_2(L+1){(p+ 1+ pn1) + @y + (231\?71)2} .

To prove (1), denote I'”" as the set of all possible binary inclusion vectors with length T, then ¢*(6)
and m(0|\) could be written as mixtures

T
0) = ) 10y =) [ [ 3N (62, 02) + (1 = 70)do,
i=1

~yel'T

and

T
70N = > 7 | [#N(0,08) + (1= 7)o,
i=1

~yel'T

where 7(7) is the probability for vector v under prior distribution 7. Then,
KL(q*(9)|Iﬂ(9|A))
<log 5+ 3, 1(7=7" KL{H% 0F,02) + (1= 7)o H% (0,03) + (1 = 7)d0 |

~yel'T
T
=1 - E KL v*N (0 1—~5)é N 1—~F)6
=log —— 7% T VEN(0F, 07) + (1= 7)ol N (0,05)) + (1 —7)do
A (1 =) =
1 o2 +6%2 1
Lk - n 2 .
=s log()\)—i—(T )log )+ E %{ log( n)+72 2}
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s* s* 8n
< Ve + 5 B2+ 21 (—1 N)(2BN 2L+2{ 1
(Co + Dy + - B + —-log( — log(3pN)( ) (p+1+ o

1 2
T @BNE 1 T @BN 12 })

B * *
<(Co +2)nr}) + 78* + (L +1)s*1og(2BN) + % loglog(3BN) + % log(sﬁ*ﬁ)

<(Co +3)nrk + (L +1)s*log N + s* log(m /%)
s
<Cynr¥, for sufficiently large n,

where Cy and C' are some fixed constants. The first inequality is due to Lemma 1.1 and the second
inequality is due to Condition 4.4.

Furthermore, by Appendix G of Chérief-Abdellatif (2020), it can be shown

f 1fo — fox|a* (6)(d0)
®

<8a2 1og(3BN)(23N)2L+2{(p Y14
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Noting that

(o, o) = 5 (1Y = Fa OB~ 1Y ~ o(X)IR)

= %‘Q(HY = fo(X) + fo(X) = fo(X)II3 — 1Y = fo(X)]I3)

= o (17o(X) = foXOIB + XY — fo(X), fo(X) ~ fo(X)),
Denote

Ry = fufe X)|13¢* (0) (d),
Ry = f@@/ — Jo(X). fo(X) — Fo(X))g* (6)(d6).

Since || fo(X) — fo(X)|I5 < nllfo — foll3 < nllfo — fox 1% + nllfox — foll%
Ri < nrj +”Hf9*—f0”oo

Noting that Y — fo(X) = € ~ N(0,021), then

Ra = [ Gax) = foX0)a0)@0) = 7 [ (o) = Fo(X))a"(0)(d0) ~ N0 50,

where ¢y = || §o (fo(X) — fo(X))q*(0)(d)||3 < Ry due to Cauchy-Schwarz inequality. Therefore,
R2 = Op(v/R1), and w.h.p., Ro < CyR4, where CY is some positive constant if lim n(r} +£%) = oo
or C{, is any diverging sequence if lim sup n(r} + £*) s oo. Therefore,

| 1o, Poya" 0)(d8) = Ra/20 + Rafa? <(2Cy + s + 1 fon — foll2) /207
e
<Ci(nr + || fox — foll%)), whip.,
which concludes this lemma together with (1). O
1.2 Proof of Lemma 4.2

Under Condition 4.1 - 4.2, we have the following lemma that shows the existence of testing functions
over ©,, = O(L, p, s,,), where (L, p, s,,) denotes the set of parameter whose Ly norm is bounded
by s,.

Lemma 1.2. Let ¥ = Mn’l/Q\/(L +1)s*log N + s*log(pr/n/s*) log’ (n) for any § > 1 and

some large constant M. Let s, = s* log%_1

Cy > 0, Cy > 1/3, such that

n. Then there exists some testing function ¢ € [0, 1] and

exp{—Cne¥?},
exp{—Cand?*(Py, Py)}.

EPO ((rb)

sup EPe(l - ¢)
POE]:(vavsn)
d(Py,Py)>c¥

<
<

Proof. Due to the well-known result (e.g., Le Cam (1986), page 491 or Ghosal and Van Der Vaart
(2007), Lemma 2), there always exists a function ¢ € [0, 1], such that

]EP(J (11[}) < exp{fndQ (P91 ) PO)/2}7
Epe (1 - w) < exp{_nd2(P91 ) PO)/2}7
for all Py € F(L,p, s,) satisfying that d(Py, Py,) < d(Fo, Py, )/18.

Let K = N(g%/19, F(L,p, sn),d(-,-)) denote the covering number of set (L, p, s,), i.¢., there ex-
ists K Hellinger-balls with radius £} /19, that completely cover F (L, p, s,,). For any 6 € F(L,p, s,,)



(W.O.L.G, we assume P, belongs to the kth Hellinger ball centered at Py, ), if d(Py, Py) > €, then
we must have that d( Py, Py, ) > (18/19)e* and there exists a testing function v, such that

Ep, (Y1) < exp{—nd*(Py,, P)/2}
< exp{—(182/192/2)ne¥?},
Ep, (1 — 1) < exp{—nd*(Py,, Py)/2}
< exp{—n(d(Py, Py) — &};/19)%/2}
< exp{—(182/19?/2)nd?(Py, Py)}.

Now we define ¢ = maxy_1 .. x . Thus we must have
Epy(¢) < ), Ep, (r) < K exp{—(18/19°/2)nei?}
k

< exp{—(18%/19%/2)ne¥? — log K}.
Note that
log K = log N(e*/19, F(L, p, ), d(-,-))
<log N(V80.c%/19, F(L,p, sn), | - | )

38
— (L4 1)(N +1)2+D
\/éase;';( ) ) )

1
Co(sp log o + splog(L+1) + s,(L +1)log N)

n
sn(L + 1) lognlog N < s*(L + 1)log N log® n
ne¥? /4, for sufficiently large n, 4)

< (8p + 1) log(

N

<
<

where Cj is some positive constant, the first inequality is due to the fact

1
d*(Py, Pp) < 1— eXp{—@Hfo — foll%}

and £¥ = o(1), the second inequality is due to Lemma 10 of Schmidt-Hieber (2017)!, and the last
inequality is due to s, log(1/e¥*) = s, logn. Therefore,

Ep,(¢) < Y Po(vx) < exp{—Cine}?},
k

for some C; = 182/19%/2 — 1/4. On the other hand, for any 6, such that d(Py, Py) = ¥, say Py
belongs to the kth Hellinger ball, then we have

Ep,(1—¢) <Ep,(1 — i) < exp{—Cond®(Py, Pp)},

where Cy = 182/19%/2. Hence we conclude the proof. O

Lemma 1.3 restates the Donsker and Varadhan’s representation for the KL divergence, whose proof
can be found in Boucheron et al. (2013).

Lemma 1.3. For any probability measure . and any measurable function h with e € Ly (),
o [ tan) = sup | [motan) ~ kLol
P

Proof of Lemma 4.2

! Although Schmidt-Hieber (2017) only focuses on ReLU network, its Lemma 10 could apply to any
1-Lipchitz continuous activation function.



Proof. Denote ©,, as the truncated parameter space {6 : ZZT 1 1(6; # 0) < s, }, where s, is defined
in Lemma 1.2. Noting that

| eweraoiw- | @wmaedns | Eemaos, ©
0e© €O, 0eO¢,
it suffices to find upper bounds of the two components in RHS of (5).

We start with the first component. Denote 7 () to be the truncated prior 7(6) on set O, i.e.,
7(0) = w(0)1(0 € ©,,)/7(©,,), then by Lemma 1.2 and the same argument used in Theorem 3.1 of
Pati et al. (2018), it could be shown

f n(Py, Py)7(0)d0 < e“omn”  wh.p. (6)
On

for some Cy > 0, where log n(Py, Py) = 1,(Py, Py) + 2d*(Py, Py). We further denote the (6)
restricted on ©,, as ¢(6), i.e., ¢(0) = q(0)1(0 € ©,,)/q(0;,), then by Lemma 1.3 and (6), w.h.p.,

o f d?( Py, Po)3(0)do = = J d*(Py, Po)i(0)d6
34(95) Jo,, 3 Je, o
<Cneg? + KLAO)|F0) ~ [ 1P P)(0)a5.
6’”
Furthermore,
s 1 q0) ™(On)
KL(q(0)||7(8)) = f log —=q(0)d0 + log —
OO = 56,5 Jyeo, B 701" + 1% 50,
1 1 J ) . 7(On)
= T — = log —=q(0)df + log — ,
70,0 OO =565 heo, ¢ @)% % 5o,
and similarly,
_ 1 . 1 _
L" L (Po, POI(0)d = =5 J@ 1 (P, Po)3(6)d6 — mf (P0 P00
Combining the above two equations together, we have
— f d*(Py, Py)q(0)d0 < Cne? + KL(G(0)||7(0)) — j Ln(Pa, Po)d(0)do
3¢(On) O, On
1
=Cne*? + = (KL q(0)||m (0 —J In(Po, P A9d9>
e (@(0)l|m(6)) . (P, Po)q(6) (8)
1 q(0) - 7(On)
— = log —=q(0)d0 — 1, (Py, Py)q(0)do | + log = .
& ( | g Lgrde — | (i o ) e
The second component of (5) trivially satisfies that §,_g. d*(Py, Po)q(0)d0 < §, . q(0)d0 =
q(©%). Thus, together with (8), we have that w.h.p.,
JdQ(Pg,Po)a(a)dH < 33(0,)Cek? + 3 (KL( q(0)||m(0) f 1. (P, Po)q (H)dG)
©))
3 ~ 3 () 34(On), m(On)
— Py, P — log —= 1 °).
o Jo B 00+ 7 [ g Zaa0)a0 + 20t tog T 1 (6%)

The second term in the RHS of (9) is bounded by C’(r% + £*) w.h.p., due to Lemma 4.1, where C”
is either positive constant or diverging sequence depending on whether n(r} + £*) diverges.



The third term in the RHS of (9) is bounded by

: j (P, P)i(0)d0

n

2n02 J .

:27303 l—z Z(Ei X (fo(X3) = fo(X:)) = 2 (fo(Xi) = fe(Xi))Z] §(6)do

@c

zmz{ QZQJ = fo(X:))a(0)do - fLZ folX ))25(9)d0}.

Conditional on X;’s, —2>7" | ¢ {g. (fO(Xi — fo(X;))q(0)do follows a normal distribution

N(0,V?), where V2 = 402 3" | S@c fo(Xi) — fo(X3))q(0)dh)?* < 40? S@e 1 (fo(X5) —
fo(X;))?q(0)dh. Thus conditional on X;’s, the thlrd term in the RHS of (9) is bounded by

3
2no?

€

V2
[N(o, V2 — 402] . (10

Noting that (0, V) = O,(M,, V) for any diverging sequence M,,, (10) is further bounded, w.h.p.,
by
3 Vv? 3
—(M,)V — —) < M2
2no? (M 4052) 2no? TeMn

Therefore, the third term in the RHS of (9) can be bounded by £*? w.h.p. (by choosing M2 = nei?).
The fourth term in the RHS of (9) is bounded by
3 7(0) .

3. ac 3 o Teloa(l/a :
nJ log @q(e)de —a(ey, )log = a(en) < le(opl)[ log(1/z)] = O(1/n).

Similarly, the fifth term in the RHS of (9) is bounded by O(1/n).
For the last term in the RHS of (9), by Lemma 1.5 in below, w.h.p., §(©¢) < &*2.

Combine all the above result together, w.h.p.,

3
[ raos < a2+ 2 (xu@eso) - [ e raow) + owm).
<)
where C is some constant. O

Lemma 1.4 (Chernoff bound for Poisson tail). Let X ~ poi()\) be a Poisson random variable. For
any x > M,
(eX)Te >

Lemma 1.5. If A < T~ 'Yexp{—Mnr}/s,} for any positive diverging sequence M — o, then
w.h.p., (O¢) = O(e*?).

P(X >2) <

Proof. By Lemma 4.1, we have that w.h.p.,

KLGOIO) + || (B B)i(0)d0 = ik {KLGO)I=OW) + [ 1P Po)a(0)@0)}
<Cnr} (Note that r¥ = £¥)

where C is either a constant or any diverging sequence, depending on whether nr diverges. By the
similar argument used in the proof of Lemma 4.1,

Lt mitorio < o ([ 100 - acolBaeas) + 2)



where Z is a normal distributed N (0, 02¢)), where ¢, < co = §g [[fo(X) — fo(X)[[3G(0)(d6).
Therefore, — §g 1,,(Po, Py)q(6)do = (1/20 )[—co + Op(y/co)], and KL(q(0)||w(8]|N)) < Cnr +
(1/202)[—co + Op(y/0)]. Since Cnr} — oo, we must have w.h.p., KL(g(0)||7(8|\)) < Cnr¥ /2.
On the other hand,

T

KL(q(0)]|(0]A)) = ZK (@(6:)[7(6:|1)) Z qOyi)llm (il A))

-
Il
—
s

(11)
~ qvi=1) .
= Z [q(% = 1)log TX=~ )4 q(vi = 0)log

Let us choose A\g = 1/T,and A = {i : g(y; = 1) = Ao}, then the above inequality (11) implies that
Yiea d(vi = 1)1log(Xo/\) < Cnr} /2. Noting that A < T~ ' exp{—Mnr} /s, }, it further implies
Z'LGA q(vi =1) < s5p/M < sp.

Under distribution g, by Bernstein inequality,

s2/8
PT(E i = 28,/3) < Pr 2 Vi = S$n/2 + 2 E(vi)) < exp (_Z E[’Yé] s /6)
€A 7 n

€A €A ieA

2/8 >
=exp | — Sn < exp (—cs -0 6;!<2
< Diead(vi=1)+s,/6 (—csn) (en”)

for some constant ¢ > 0, where the last inequality holds since log(1/e*?) = O(logn) < s,.

Under distribution g, >, 4 i is stochastically smaller than Bin(T, \g). Since " — oo, then by
Lemma 1.4,

Z i = $n/3) < Pr(Bin(T, \o) = $,/3) — Pr(poi(1) = s,/3)
it A

=0(exp{—c's,}) = O(¥?)
for some ¢’ > 0. Trivially, it implies that w.h.p, Pr(>, v = s,,) = O(e}?) for VB posterior g.

1.3 Main theorem

Theorem 1.1. Under Conditions 4.1-4.2, 4.4 and set —log A = log(T)+[(L+1) log N +log +/np]
for any constant § > 0, we then have that w.h.p.,

f 0 (Py, P0)a(0)d8 < C=** 1 C'(r% + %),
e

where C'is some positive constant and C' is any diverging sequence. If || fo| o < F, and we truncated
the VB posterior on O = {0 : | follw < F'}, i.e., Grocgl(f € OF), then, w.h.p.,

. Cx2 4 O/ + £8)
LF Exlfo(X) — o(X) P (0)an < 2ol

where Cr = [1 — exp(—4F?/802)]/4F?, and G(OF) is the VB posterior mass of O r.

Proof. The convergence under squared Hellinger distance is directly result of Lemma 4.1 and 4.2, by
simply checking the choice of ) satisfies required conditions. The convergence under Lo distance
relies on inequality d?(Py, Py) = CrEx|fo(X) — fo(X)|? for Cr = [1 — exp(—4F?/802)] /AF?
when both fy and f are bounded by F'. Then, w.h.p,

L Ex|fo(X) — fo(X)Pdr(6)d0 < c;ffe @2 (Py, Po)r (0)d6

Cep + Ok + €3)
Crq(©r) '

1
<——— | d%(Py, Py))q(60)do <
Crq(©F) f@ (Fo, Fo)4(6)



2 Additional experimental results

2.1 Comparison between Bernoulli variable and the Gumbel softmax approximation

Denote «y; ~ Bern(¢;) and ; ~ Gumbel-softmax(¢;, 7), then we have that

®i U;
+ lo
I—¢  Pl-u

i = gr (i, u;) = (1 + exp(—m/T))_l7 where 7; = log ,  u; ~U(0,1),

i = g(di,u;) = 1(u; < ¢;) where u; ~U(0,1).

Fig 1 demonstrates the functional convergence of g, towards g as 7 goes to zero. In Fig 1(a), by
fixing ¢;(= 0.9), we show g, converges to g as a function of u;. Fig 1 (b) demonstrates that g,
converges to g as a function of a; = log(¢;/(1 — ¢;)) when u;(= 0.2) is fixed. These two figures
show that as 7 — 0, g, — ¢. Formally, Maddison et al. (2017) rigorously proved that 7; converges
to y; in distribution as 7 approaches 0.

— grwitht=1

gr with T=0.5
—— g with t=0.1
—— g¢ with T=0.01
0.6 0.6 ---- g

0.4 —— grwitht=1 0.4
g with T=0.5
0.2 —— g Witht=0.1 02

—— gy with 7=0.01

0.0 9 00

0.0 0.2 0.4 0.6 0.8 10 -100 -7.5 -50 -25 0.0 2.5 5.0 75 10.0
ui Q;

(a) Fix ¢; = 0.9. (b) Fix u; = 0.2.

Figure 1: The convergence of g, towards g as 7 approaches 0.

2.2 Algorithm implementation details for the numerical experiments

Initialization As mentioned by Sgnderby et al. (2016) and Molchanov et al. (2017), training sparse
BNN with random initialization may lead to bad performance, since many of the weights could be
pruned too early. In our case, we assign each of the weights and biases a inclusion variable, which
could reduce to zero quickly in the early optimization stage if we randomly initialize them. As a
consequence, we deliberately initialize ¢; to be close to 1 in our experiments. This initialization
strategy ensures the training starts from a fully connected neural network, which is similar to start
training from a pre-trained fully connected network as mentioned in Molchanov et al. (2017). The
other two parameters p; and o; are initialized randomly.

Other implementation details in simulation studies We set K = 1 and learning rate = 5 x 1073
during training. For Simulation I, we choose batch size m = 1024 and m = 128 for (A) and (B)
respectively, and run 10000 epochs for both cases. For simulation II, we use m = 512 and run 7000
epochs. Although it is common to set up an annealing schedule for temperature parameter 7, we don’t
observe any significant performance improvement compared to setting 7 as a constant, therefore we
choose 7 = 0.5 in all of our experiments. The optimization method used is Adam.

The implementation details for UCI datasets and MNIST can be found in Section 2.5 and 2.6
respectively.

2.3 Toy example: linear regression

In this section, we aim to demonstrate that there is little difference between the results using inverse-
CDF reparameterization and Gumbel-softmax approximation via a toy example.

Consider a linear regression model:

Y,-:XiTBJrei, & ~N(0,1), i=1,...,n,



We simulate a dataset with 1000 observations and 200 predictors, where 859 = 100 = B150 = 10,
Brs = B12s = —10 and B; = 0 for all other j.

A spike-and-slab prior is imposed on § such that
Bilvj ~1N(0,08) + (1 = 7;)d0,  7; ~ Bern(\),
forj =1,...,200, where g = 5 and A = 0.03. The variational distribution ¢(/3)Q is chosen as

Bilvi ~ N (s, 03) + (1 —7;)80, v ~ Bern(¢;).

We use both Gumbel-softmax approximation and inverse-CDF reparameterization for the stochastic
optimization of ELBO, and plot posterior mean E; 3 (5;|v;) (blue curve) against the true value
(red curve). Figure 2 shows that inverse-CDF reparameterization exhibits only slightly higher error
in estimating zero coefficients than the Gumbel-softmax approximation, which indicates the two
methods has little difference on this toy example.

10 10
5 5
© T
© O 0
el Q
5 -5
—— estimated value —— estimated value
~10 +  true value -10 +  true value
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
index index
(a) Gumbel-softmax reparametrization (b) Inverse-CDF reparametrization

Figure 2: Linear regression

2.4 Teacher student networks

The network parameter 6 for the sparse teacher network setting (B) is set as following: W =
Wit = Wije = Wair = Waio = 25, Wigr = Wiggs = Waor = Wago = 1.5, W51 =
3and W3 01 = 2};b={b11 =bo1 =bz1 =1land by o = byo = —1}.

Figure 3 displays the simulation result for simulation I under dense teacher network (A) setting.
Unlike the result under sparse teacher network (B), the testing accuracy seems monotonically increases
as \ increases (i.e., posterior network gets denser). However, as shown, the increasing of testing
performance is rather slow, which indicates that introducing sparsity has few negative impact to the
testing accuracy.

Coverage rate In this paragraph, we explain the details of how we compute the coverage rate
values of Bayesian intervals reported in the main text. A fixed point (xg*), cee xé*))’ is prespecified,

and let (1) ... 2(1090) be 1000 equidistant points from —1 to 1. In each run, we compute the
Bayesian credible intervals of response means (estimated by 600 Monte Carlo samples) for 1000
different input z’s: (z(1), xg*), e ,:E,(,*)), ooy (2(1000)) xé*), . ,:c,(,*)). It is repeated by 60 times
and the average coverage rate (over all different 2’s and 60 runs) is reported. Similarly, we replace
x;*) (or a:é*)) by (9 (i = 1,...,1000), and compute their average coverage rate. The complete
coverage rate results are shown in Table 1. Note that Table 1 in the main text shows 95% coverage of
x3 for (A) and 95% coverage of x; for (B).

2.5 Real data regression experiment: UCI datasets

We follow the experimental protocols of Herndndez-Lobato and Adams (2015), and choose five
datasets for the experiment. For the small datasets "Kin8nm", "Naval", "Power Plant" and "wine", we
choose a single-hidden-layer ReLU network with 50 hidden units. We randomly select 90% and 10%
for training and testing respectively, and this random split process is repeated for 20 times (to obtain
standard deviations for our results). We choose minibatch size m = 128, learning rate = 10~3 and
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Figure 3: (a) A = {1072%9,1071°0,107109/10750,10720, 107, Aot }. (b) A = {Aopt, 0.1,0.3,0.5,
0.7,0.9,0.99}. (c) The structure of the target dense teacher network.

Table 1: Coverage rates for teacher networks.

90 % coverage (%) 95% coverage (%)

Method 1 2 3 1 T2 T3

SVBNN 938 +284 931+493 931+29 979+101 979+1.69 97.5+1.71
“g’ VBNN 858 +£2.51 824+262 863+188 927+283 913+261 9144243
8 VD 61.3+240 600+279 649+6.17 749+179 7T1.8+233 764 +4.75

HS-BNN 83.1+1.67 80.0+121 769+1.70 88.1+1.13 84.1+148 83.5+0.78
® SVBNN 923 +861 94.6+537 983+000 964+473 97.7+3.71 100+ 0.00
2 VBNN 86.7+ 109 87.0+11.3 933+0.00 90.7+8.15 91.9+921 96.7+0.00
;}& VD 652 +0.08 637+658 659+083 755+7.81 746+779 76.6+ 040

HS-BNN 59.0 £8.52 594 +438 56.6+2.06 67.0+£854 682+3.62 665+1.86

run 500 epochs for "Naval", "Power Plant" and "Wine", 800 epochs for "Kin8nm". For the large
dataset "Year", we use a single-hidden-layer ReLU network with 100 hidden units, and the evaluation
is conducted on a single split. We choose m = 256, learning rate = 10~ and run 100 epochs. For
all the five datasets, X is chosen as Aope: log(A;) = log(T) +0.1[(L + 1) log N + log y/np], which
is the same as other numerical studies. We let 02 = 2 and use grid search to find o, that yields the
best prediction accuracy. Adam is used for all the datasets in the experiment.

We report the testing squared root MSE (RMSE) based on fH (defined in the main text) with H = 30,

and also report the posterior network sparsity § = ZiT=1 ¢;/T. For the purpose of comparison,
we list the results by Horseshoe BNN (HS-BNN) (Ghosh and Doshi-Velez, 2017) and probalistic
backpropagation (PBP) (Hernandez-Lobato and Adams, 2015). Table 2 demonstrates that our method
achieves best prediction accuracy for all the datasets with a sparse structure.

Table 2: Results on UCI regression datasets.

Test RMSE Posterior sparsity(%)
Dataset n(p) SVBNN HS-BNN PBP SVBNN
Kin8nm 8192 (8) 0.08 + 0.00 0.08 +0.00 0.10 + 0.00 64.5 + 1.85
Naval 11934 (16) 0.00 £0.00 0.00 +0.00 0.01 £0.00 82.9 £+ 1.31
Power Plant 9568 (4) 401 +£0.18 4.03+0.15 4.12+0.03 56.6 + 3.13
Wine 1599 (11) 0.62 £0.04 0.63+0.04 0.64 +0.01 59.9 +£4.92
Year 515345 (90) 8.87 £+ NA  9.26 + NA 8.88 + NA 20.8 + NA
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2.6 Real data classification experiment: MNIST dataset

The MNIST data is normalized by mean equaling 0.1306 and standard deviation equaling 0.3081.
For all methods, we choose the same minibatch size m = 256, learning rate = 5 X 10~3 for our
method and 3 x 10~ for the others, total number of epochs is 400 and the optimization algorithm is
RMSprop. AGP is pre-specified at 5% sparsity level.

Sparse BNN predictive dist. DNN predictive dist.
1.00 100
£ 075 Z o075
g 0.50 g 050
g 025 g 025
000 4123456780 000 5 1o3456780
class class
Sparse BNN predictive dist. DNN predictive dist.
1.00 1.00
£ 075 £ 075
§ 0.50 § 0.50
g 025 = g 025
000 4123456780 000 o 123456780
class cass
Sparse BNN predictive dist DNN predictive dist.
1.00 1.00
2075 2 o715
g 0.50 g 050
g 025 £ 025
000 1% 3456780 000 h 123456780
class class
(a) Overlaid images (on the last column) (b) Predictive distribution for overlaid images

Figure 4: Top row of (b) exhibits the predictive distribution for the top overlaid image, which is made
by 5 and 6; Middle row of (b) exhibits the predictive distribution for the middle overlaid image, which
is made by 2 and 3; Bottom row of (b) exhibits the predictive distribution for the bottom overlaid
image, which is made by 2 and 7.

Besides the testing accuracy reported in the main text, we also examine our method’s ability of uncer-
tainty quantification for MNIST classification task. We first create ambiguous images by overlaying
two examples from the testing set as shown in Figure 4 (a). To perform uncertainty quantification
using our method, for each of the overlaid images, we generate 6, from the VB posterior ¢(6) for
h =1,...,100, and calculate the associated predictive probability vector fy, () € R where z is

the overlaid image input, and then use the estimated posterior mean f(x) = 2;11031 fo,, (2)/100 as the
Bayesian predictive probability vector. As a comparison, we also calculate the predictive probability
vector for each overlaid image using AGP as a frequentist benchmark. Figure 4 (b) shows frequentist
method gives almost a deterministic answer (i.e., predictive probability is almost 1 for certain digit)
that is obviously unsatisfactory for this task, while our VB method is capable of providing knowledge
of certainty on these out-of-domain inputs, which demonstrates the advantage of Bayesian method in
uncertainty quantification on the classification task.

2.7 Illustration of CNN: Fashion-MNIST dataset

In this section, we perform an experiment on a more complex task, the Fashion-MNIST dataset. To
illustrate the usage of our method beyond feedforward networks, we consider using a 2-Conv-2-FC
network: The feature maps for the convolutional layers are set to be 32 and 64, and the filter size are
5 x 5 and 3 x 3 respectively. The paddings are 2 for both layers and the it has a 2 x 2 max pooling
for each of the layers; The fully-connected layers have 64 x 8 x 8 neurons. The activation functions
are all ReLUs. The dataset is prepocessed by random horizontal flip. The batchsize is 1024, learning
rate is 0.001, and Adam is used for optimization. We run the experiment for 150 epochs.

We use both SVBNN and VBNN for this task. In particular, the VBNN, which uses normal prior and
variational distributions, is the full Bayesian method without compressing, and can be regarded as the
baseline for our method. Figure 5 exhibits our method attains higher accuracy as epoch increases and
then decreases as the sparisty goes down. Meanwhile, the baseline method - full BNN suffers from
overfitting after 80 epochs.
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Figure 5: Fashion-MNIST experiment.
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