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In this document, the detailed proofs for the theoretical results are provided in the first section, along
with additional numerical results presented in the second section.

1 Proofs of theoretical results

1.1 Proof of Lemma 4.1

As a technical tool for the proof, we first restate the Lemma 6.1 in Chérief-Abdellatif and Alquier
(2018) as follows.

Lemma 1.1. For any K ą 0, the KL divergence between any two mixture densities
řK
k“1 wkgk and

řK
k“1 w̃kg̃k is bounded as

KLp
K
ÿ

k“1

wkgk||
K
ÿ

k“1

w̃kg̃kq ď KLpw||w̃q `
K
ÿ

k“1

wkKLpgk||g̃kq,

where KLpw||w̃q “
řK
k“1 wk log wk

w̃k
.

Proof of Lemma 4.1

Proof. It suffices to construct some q˚pθq P Q, such that w.h.p,

KLpq˚pθq||πpθ|λqq `
ż

Θ

lnpP0, Pθqq
˚pθqpdθq

ďC1nr
˚
n ` C

1
1n inf

θ
||fθ ´ f0||

2
8 ` C

1
1nr

˚
n,

where C1, C 11 are some positive constants if limnpr˚n ` ξ˚nq “ 8, or any diverging sequences if
lim supnpr˚n ` ξ

˚
nq ‰ 8.

Recall θ˚ “ arg minθPΘpL,p,s˚,Bq ||fθ ´ f0||
2
8, then q˚pθq P Q can be constructed as

KLpq˚pθq||πpθ|λqq ď C1nr
˚
n, (1)

ż

Θ

||fθ ´ fθ˚ ||28q
˚pθqpdθq ď r˚n. (2)
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We define q˚pθq as follows, for i “ 1, . . . , T :

θi|γ
˚
i „ γ˚i N pθ˚i , σ2

nq ` p1´ γ
˚
i qδ0,

γ˚i „ Bernpφ˚i q,

φ˚i “ 1pθ˚i ‰ 0q,

(3)

where a2
n “

s˚

8n log´1
p3pNqp2BNq´2pL`1q

!

pp` 1` 1
BN´1 q

2 ` 1
p2BNq2´1 `

2
p2BN´1q2

)´1

.

To prove (1), denote ΓT as the set of all possible binary inclusion vectors with length T , then q˚pθq
and πpθ|λq could be written as mixtures

q˚pθq “
ÿ

γPΓT

1pγ “ γ˚q
T
ź

i“1

γiN pθ˚i , σ2
nq ` p1´ γiqδ0,

and

πpθ|λq “
ÿ

γPΓT

πpγq
T
ź

i“1

γiN p0, σ2
0q ` p1´ γiqδ0,

where πpγq is the probability for vector γ under prior distribution π. Then,

KLpq˚pθq||πpθ|λqq

ď log
1

πpγ˚q
`

ÿ

γPΓT

1pγ “ γ˚qKL
!

T
ź

i“1

γiN pθ˚i , σ2
nq ` p1´ γiqδ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T
ź

i“1

γiN p0, σ2
0qq ` p1´ γiqδ0

)

“ log
1

λs˚
p1´ λqT´s˚ `

T
ÿ

i“1

KL
!

γ˚i N pθ˚i , σ2
nq ` p1´ γ

˚
i qδ0||γ

˚
i N p0, σ2

0qq ` p1´ γ
˚
i qδ0

)

“s˚ logp
1

λ
q ` pT ´ s˚q logp

1

1´ λ
q `

T
ÿ

i“1

γ˚i

!1

2
log

´σ2
0

σ2
n

¯

`
σ2
n ` θ

˚2
i

2
´

1

2

)

ďC0nr
˚
n `

s˚

2
σ2
n `

s˚

2
pB2 ´ 1q `

s˚

2
log

´σ2
0

σ2
n

¯

ďpC0 ` 1qnr˚n `
s˚

2
B2 `

s˚

2
log

´8n

s˚
logp3pNqp2BNq2L`2

!

pp` 1`
1

BN ´ 1
q2

`
1

p2BNq2 ´ 1
`

2

p2BN ´ 1q2

)¯

ďpC0 ` 2qnr˚n `
B2

2
s˚ ` pL` 1qs˚ logp2BNq `

s˚

2
log logp3BNq `

s˚

2
log

´ n

s˚
p2
¯

ďpC0 ` 3qnr˚n ` pL` 1qs˚ logN ` s˚ log
´

p

c

n

s˚

¯

ďC1nr
˚
n, for sufficiently large n,

where C0 and C1 are some fixed constants. The first inequality is due to Lemma 1.1 and the second
inequality is due to Condition 4.4.

Furthermore, by Appendix G of Chérief-Abdellatif (2020), it can be shown

ż

Θ

||fθ ´ fθ˚ ||28q
˚pθqpdθq

ď8a2
n logp3BNqp2BNq2L`2

!

pp` 1`
1

BN ´ 1
q2 `

1

p2BNq2 ´ 1
`

2

p2BN ´ 1q2

)

ď
s˚

n
ď r˚n.
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Noting that

lnpP0, Pθq “
1

2σ2
ε

p||Y ´ fθpXq||
2
2 ´ ||Y ´ f0pXq||

2
2q

“
1

2σ2
ε

p||Y ´ f0pXq ` f0pXq ´ fθpXqq||
2
2 ´ ||Y ´ f0pXq||

2
2q

“
1

2σ2
ε

p||fθpXq ´ f0pXq||
2
2 ` 2xY ´ f0pXq, f0pXq ´ fθpXqyq,

Denote

R1 “

ż

Θ

||fθpXq ´ f0pXq||
2
2q
˚pθqpdθq,

R2 “

ż

Θ

xY ´ f0pXq, f0pXq ´ fθpXqyq
˚pθqpdθq.

Since ||fθpXq ´ f0pXq||
2
2 ď n||fθ ´ f0||

2
8 ď n||fθ ´ fθ˚ ||28 ` n||fθ˚ ´ f0||

2
8,

R1 ď nr˚n ` n||fθ˚ ´ f0||
2
8.

Noting that Y ´ f0pXq “ ε „ N p0, σ2
ε Iq, then

R2 “

ż

Θ

εT pf0pXq ´ fθpXqqq
˚pθqpdθq “ εT

ż

Θ

pf0pXq ´ fθpXqqq
˚pθqpdθq „ N p0, cfσ2

ε q,

where cf “ ||
ş

Θ
pf0pXq ´ fθpXqqq

˚pθqpdθq||22 ď R1 due to Cauchy-Schwarz inequality. Therefore,
R2 “ Opp

?
R1q, and w.h.p., R2 ď C 10R1, whereC 10 is some positive constant if limnpr˚n`ξ

˚
nq “ 8

or C 10 is any diverging sequence if lim supnpr˚n ` ξ
˚
nq ‰ 8. Therefore,

ż

Θ

lnpP0, Pθqq
˚pθqpdθq “ R1{2σ

2
ε `R2{σ

2
ε ďp2C

1
0 ` 1qnpr˚n ` ||fθ˚ ´ f0||

2
8q{2σ

2
ε

ďC 11pnr
˚
n ` ||fθ˚ ´ f0||

2
8qq, w.h.p.,

which concludes this lemma together with (1).

1.2 Proof of Lemma 4.2

Under Condition 4.1 - 4.2, we have the following lemma that shows the existence of testing functions
over Θn “ ΘpL,p, snq, where ΘpL,p, snq denotes the set of parameter whose L0 norm is bounded
by sn.

Lemma 1.2. Let ε˚n “ Mn´1{2
b

pL` 1qs˚ logN ` s˚ logpp
a

n{s˚q logδpnq for any δ ą 1 and

some large constant M. Let sn “ s˚ log2δ´1 n. Then there exists some testing function φ P r0, 1s and
C1 ą 0, C2 ą 1{3, such that

EP0
pφq ď expt´C1nε

˚2
n u,

sup
PθPFpL,p,snq
dpPθ,P0qąε

˚
n

EPθ p1´ φq ď expt´C2nd
2pP0, Pθqu.

Proof. Due to the well-known result (e.g., Le Cam (1986), page 491 or Ghosal and Van Der Vaart
(2007), Lemma 2), there always exists a function ψ P r0, 1s, such that

EP0
pψq ď expt´nd2pPθ1 , P0q{2u,

EPθ p1´ ψq ď expt´nd2pPθ1 , P0q{2u,

for all Pθ P FpL,p, snq satisfying that dpPθ, Pθ1q ď dpP0, Pθ1q{18.

Let K “ Npε˚n{19,FpL,p, snq, dp¨, ¨qq denote the covering number of set FpL,p, snq, i.e., there ex-
istsK Hellinger-balls with radius ε˚n{19, that completely cover FpL,p, snq. For any θ P FpL,p, snq
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(W.O.L.G, we assume Pθ belongs to the kth Hellinger ball centered at Pθk ), if dpPθ, P0q ą ε˚n, then
we must have that dpP0, Pθkq ą p18{19qε˚n and there exists a testing function ψk, such that

EP0pψkq ď expt´nd2pPθk , P0q{2u

ď expt´p182{192{2qnε˚2
n u,

EPθ p1´ ψkq ď expt´nd2pPθk , P0q{2u

ď expt´npdpP0, Pθq ´ ε
˚
n{19q2{2u

ď expt´p182{192{2qnd2pP0, Pθqu.

Now we define φ “ maxk“1,...,K ψ. Thus we must have

EP0pφq ď
ÿ

k

EP0pψkq ď K expt´p182{192{2qnε˚2
n u

ď expt´p182{192{2qnε˚2
n ´ logKu.

Note that

logK “ logNpε˚n{19,FpL,p, snq, dp¨, ¨qq
ď logNp

?
8σεε

˚
n{19,FpL,p, snq, } ¨ }8q

ď psn ` 1q logp
38

?
8σεε˚n

pL` 1qpN ` 1q2pL`1qq

ď C0psn log
1

ε˚n
` sn logpL` 1q ` snpL` 1q logNq

ď snpL` 1q log n logN ď s˚pL` 1q logN log2δ n

ď nε˚2
n {4, for sufficiently large n, (4)

where C0 is some positive constant, the first inequality is due to the fact

d2pPθ, P0q ď 1´ expt´
1

8σ2
ε

||f0 ´ fθ||
2
8u

and ε˚n “ op1q, the second inequality is due to Lemma 10 of Schmidt-Hieber (2017)1, and the last
inequality is due to sn logp1{ε˚nq — sn log n. Therefore,

EP0
pφq ď

ÿ

k

P0pψkq ď expt´C1nε
˚2
n u,

for some C1 “ 182{192{2 ´ 1{4. On the other hand, for any θ, such that dpPθ, P0q ě ε˚n, say Pθ
belongs to the kth Hellinger ball, then we have

EPθ p1´ φq ď EPθ p1´ ψkq ď expt´C2nd
2pP0, Pθqu,

where C2 “ 182{192{2. Hence we conclude the proof.

Lemma 1.3 restates the Donsker and Varadhan’s representation for the KL divergence, whose proof
can be found in Boucheron et al. (2013).

Lemma 1.3. For any probability measure µ and any measurable function h with eh P L1pµq,

log

ż

ehpηqµpdηq “ sup
ρ

„
ż

hpηqρpdηq ´ KLpρ||µq


.

Proof of Lemma 4.2

1Although Schmidt-Hieber (2017) only focuses on ReLU network, its Lemma 10 could apply to any
1-Lipchitz continuous activation function.
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Proof. Denote Θn as the truncated parameter space tθ :
řT
i“1 1pθi ‰ 0q ď snu, where sn is defined

in Lemma 1.2. Noting that
ż

θPΘ

d2pPθ, P0qpqpθqdθ “

ż

θPΘn

d2pPθ, P0qpqpθqdθ `

ż

θPΘcn

d2pPθ, P0qpqpθqdθ, (5)

it suffices to find upper bounds of the two components in RHS of (5).

We start with the first component. Denote rπpθq to be the truncated prior πpθq on set Θn, i.e.,
rπpθq “ πpθq1pθ P Θnq{πpΘnq, then by Lemma 1.2 and the same argument used in Theorem 3.1 of
Pati et al. (2018), it could be shown

ż

Θn

ηpPθ, P0qrπpθqdθ ď eC0nε
˚2
n ,w.h.p. (6)

for some C0 ą 0, where log ηpPθ, P0q “ lnpPθ, P0q `
n
3 d

2pPθ, P0q. We further denote the pqpθq
restricted on Θn as qqpθq, i.e., qqpθq “ pqpθq1pθ P Θnq{pqpΘnq, then by Lemma 1.3 and (6), w.h.p.,

n

3pqpΘnq

ż

Θn

d2pPθ, P0qpqpθqdθ “
n

3

ż

Θn

d2pPθ, P0qqqpθqdθ

ďCnε˚2
n ` KLpqqpθq||rπpθqq ´

ż

Θn

lnpPθ, P0qqqpθqdθ.

(7)

Furthermore,

KLpqqpθq||rπpθqq “
1

pqpΘnq

ż

θPΘn

log
pqpθq

πpθq
pqpθqdθ ` log

πpΘnq

pqpΘnq

“
1

pqpΘnq
KLppqpθq||πpθqq ´

1

pqpΘnq

ż

θPΘcn

log
pqpθq

πpθq
pqpθqdθ ` log

πpΘnq

pqpΘnq
,

and similarly,
ż

Θn

lnpPθ, P0qqqpθqdθ “
1

pqpΘnq

ż

Θ

lnpPθ, P0qpqpθqdθ ´
1

pqpΘnq

ż

Θcn

lnpPθ, P0qpqpθqdθ.

Combining the above two equations together, we have

n

3pqpΘnq

ż

Θn

d2pPθ, P0qpqpθqdθ ď Cnε˚2
n ` KLpqqpθq||rπpθqq ´

ż

Θn

lnpPθ, P0qqqpθqdθ

“Cnε˚2
n `

1

pqpΘnq

ˆ

KLppqpθq||πpθqq ´
ż

Θ

lnpPθ, P0qpqpθqdθ

˙

´
1

pqpΘnq

˜

ż

Θcn

log
pqpθq

πpθq
pqpθqdθ ´

ż

Θcn

lnpPθ, P0qpqpθqdθ

¸

` log
πpΘnq

pqpΘnq
.

(8)

The second component of (5) trivially satisfies that
ş

θPΘcn
d2pPθ, P0qpqpθqdθ ď

ş

θPΘcn
pqpθqdθ “

pqpΘc
nq. Thus, together with (8), we have that w.h.p.,
ż

d2pPθ, P0qpqpθqdθ ď 3pqpΘnqCε
˚2
n `

3

n

ˆ

KLppqpθq||πpθqq ´
ż

Θ

lnpPθ, P0qpqpθqdθ

˙

`
3

n

ż

Θcn

lnpPθ, P0qpqpθqdθ `
3

n

ż

Θcn

log
πpθq

pqpθq
pqpθqdθ `

3pqpΘnq

n
log

πpΘnq

pqpΘnq
` pqpΘc

nq.

(9)

The second term in the RHS of (9) is bounded by C 1pr˚n ` ξ
˚
nq w.h.p., due to Lemma 4.1, where C 1

is either positive constant or diverging sequence depending on whether npr˚n ` ξ
˚
nq diverges.
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The third term in the RHS of (9) is bounded by

3

n

ż

Θcn

lnpPθ, P0qpqpθqdθ

“
3

2nσ2
ε

ż

Θcn

«

n
ÿ

i“1

ε2i ´
n
ÿ

i“1

pεi ` f0pXiq ´ fθpXiqq
2

ff

pqpθqdθ

“
3

2nσ2
ε

ż

Θcn

«

´2
n
ÿ

i“1

pεi ˆ pf0pXiq ´ fθpXiqq ´

n
ÿ

i“1

pf0pXiq ´ fθpXiqq
2

ff

pqpθqdθ

“
3

2nσ2
ε

#

´2
n
ÿ

i“1

εi

ż

Θcn

pf0pXiq ´ fθpXiqqpqpθqdθ ´

ż

Θcn

n
ÿ

i“1

pf0pXiq ´ fθpXiqq
2
pqpθqdθ

+

.

Conditional on Xi’s, ´2
řn
i“1 εi

ş

Θcn
pf0pXiq ´ fθpXiqqpqpθqdθ follows a normal distribution

N p0, V 2q, where V 2 “ 4σ2
ε

řn
i“1p

ş

Θcn
pf0pXiq ´ fθpXiqqpqpθqdθq

2 ď 4σ2
ε

ş

Θcn

řn
i“1pf0pXiq ´

fθpXiqq
2
pqpθqdθ. Thus conditional on Xi’s, the third term in the RHS of (9) is bounded by

3

2nσ2
ε

„

N p0, V 2q ´
V 2

4σ2
ε



. (10)

Noting that N p0, V 2q “ OppMnV q for any diverging sequence Mn, (10) is further bounded, w.h.p.,
by

3

2nσ2
ε

pMnV ´
V 2

4σ2
ε

q ď
3

2nσ2
ε

σ2
εM

2
n.

Therefore, the third term in the RHS of (9) can be bounded by ε˚2
n w.h.p. (by choosing M2

n “ nε˚2
n ).

The fourth term in the RHS of (9) is bounded by

3

n

ż

Θcn

log
πpθq

pqpθq
pqpθqdθ ď

3

n
pqpΘc

nq log
πpΘc

nq

pqpΘc
nq
ď

3

n
sup
xPp0,1q

rx logp1{xqs “ Op1{nq.

Similarly, the fifth term in the RHS of (9) is bounded by Op1{nq.

For the last term in the RHS of (9), by Lemma 1.5 in below, w.h.p., pqpΘc
nq ď ε˚2

n .

Combine all the above result together, w.h.p.,
ż

d2pPθ, P0qpqpθqdθ ď Cε˚2
n `

3

n

ˆ

KLppqpθq||πpθqq ´
ż

Θ

lnpPθ, P0qpqpθqdθ

˙

`Op1{nq,

where C is some constant.

Lemma 1.4 (Chernoff bound for Poisson tail). Let X „ poipλq be a Poisson random variable. For
any x ą λ,

P pX ě xq ď
peλqxe´λ

xx
.

Lemma 1.5. If λ ď T´1 expt´Mnr˚n{snu for any positive diverging sequence M Ñ 8, then
w.h.p., pqpΘc

nq “ Opε˚2
n q.

Proof. By Lemma 4.1, we have that w.h.p.,

KLppqpθq||πpθ|λqq `
ż

Θ

lnpP0, Pθqpqpθqdθ “ inf
qθPQ

!

KLpqpθq||πpθ|λqq `
ż

Θ

lnpP0, Pθqqpθqpdθq
)

ďCnr˚n pNote that r˚n — ξ˚nq

where C is either a constant or any diverging sequence, depending on whether nr˚n diverges. By the
similar argument used in the proof of Lemma 4.1,

ż

Θ

lnpP0, Pθqpqpθqdθ ď
1

2σ2
ε

ˆ
ż

Θ

||fθpXq ´ f0pXq||
2
2pqpθqpdθq ` Z

˙

6



where Z is a normal distributed N p0, σ2
ε c
1
0q, where c10 ď c0 “

ş

Θ
||fθpXq ´ f0pXq||

2
2pqpθqpdθq.

Therefore, ´
ş

Θ
lnpP0, Pθqpqpθqdθ “ p1{2σ

2
ε qr´c0 `Opp

?
c0qs, and KLppqpθq||πpθ|λqq ď Cnr˚n `

p1{2σ2
ε qr´c0 `Opp

?
c0qs. Since Cnr˚n Ñ 8, we must have w.h.p., KLppqpθq||πpθ|λqq ď Cnr˚n{2.

On the other hand,

KLppqpθq||πpθ|λqq “
T
ÿ

i“1

KLppqpθiq||πpθi|λqq ě
T
ÿ

i“1

KLppqpγiq||πpγi|λqq

“

T
ÿ

i“1

„

pqpγi “ 1q log
pqpγi “ 1q

λ
` pqpγi “ 0q log

pqpγi “ 0q

1´ λ



.

(11)

Let us choose λ0 “ 1{T , and A “ ti : pqpγi “ 1q ě λ0u, then the above inequality (11) implies that
ř

iPA pqpγi “ 1q logpλ0{λq ď Cnr˚n{2. Noting that λ ď T´1 expt´Mnr˚n{snu, it further implies
ř

iPA pqpγi “ 1q ď sn{M ă sn.

Under distribution pq, by Bernstein inequality,

Prp
ÿ

iPA

γi ě 2sn{3q ď Prp
ÿ

iPA

γi ě sn{2`
ÿ

iPA

Epγiqq ď exp

ˆ

´
s2
n{8

ř

iPA Erγ2
i s ` sn{6

˙

“ exp

ˆ

´
s2
n{8

ř

iPA pqpγi “ 1q ` sn{6

˙

ď exp p´csnq “ Opε˚2
n q

for some constant c ą 0, where the last inequality holds since logp1{ε˚2
n q “ Oplog nq ă sn.

Under distribution pq,
ř

iRA γi is stochastically smaller than BinpT, λ0q. Since T Ñ 8, then by
Lemma 1.4,

Prp
ÿ

iRA

γi ě sn{3q ď PrpBinpT, λ0q ě sn{3q Ñ Prppoip1q ě sn{3q

“Opexpt´c1snuq “ Opε˚2
n q

for some c1 ą 0. Trivially, it implies that w.h.p, Prp
ř

i γi ě snq “ Opε˚2
n q for VB posterior pq.

1.3 Main theorem

Theorem 1.1. Under Conditions 4.1-4.2, 4.4 and set´ log λ “ logpT q`δrpL`1q logN`log
?
nps

for any constant δ ą 0, we then have that w.h.p.,
ż

Θ

d2pPθ, P0qpqpθqdθ ď Cε˚2
n ` C 1pr˚n ` ξ

˚
nq,

where C is some positive constant and C 1 is any diverging sequence. If }f0}8 ă F , and we truncated
the VB posterior on ΘF “ tθ : }fθ}8 ď F u, i.e., pqF9pq1pθ P ΘF q, then, w.h.p.,

ż

ΘF

EX |fθpXq ´ f0pXq|
2
pqF pθqdθ ď

Cε˚2
n ` C 1pr˚n ` ξ

˚
nq

CF pqpΘF q

where CF “ r1´ expp´4F 2{8σ2
ε qs{4F

2, and pqpΘF q is the VB posterior mass of ΘF .

Proof. The convergence under squared Hellinger distance is directly result of Lemma 4.1 and 4.2, by
simply checking the choice of λ satisfies required conditions. The convergence under L2 distance
relies on inequality d2pPθ, P0q ě CFEX |fθpXq ´ f0pXq|

2 for CF “ r1´ expp´4F 2{8σ2
ε qs{4F

2

when both fθ and f0 are bounded by F . Then, w.h.p,
ż

ΘF

EX |fθpXq ´ f0pXq|
2
pqF pθqdθ ď C´1

F

ż

ΘF

d2pPθ, P0qpqF pθqdθ

ď
1

CF pqpΘF q

ż

Θ

d2pPθ, P0qpqpθqdθ ď
Cε˚2

n ` C 1pr˚n ` ξ
˚
nq

CF pqpΘF q
.
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2 Additional experimental results

2.1 Comparison between Bernoulli variable and the Gumbel softmax approximation

Denote γi „ Bernpφiq and rγi „ Gumbel-softmaxpφi, τq, then we have that

rγi :“ gτ pφi, uiq “ p1` expp´ηi{τqq
´1, where ηi “ log

φi
1´ φi

` log
ui

1´ ui
, ui „ Up0, 1q,

γi :“ gpφi, uiq “ 1pui ď φiq where ui „ Up0, 1q.

Fig 1 demonstrates the functional convergence of gτ towards g as τ goes to zero. In Fig 1(a), by
fixing φip“ 0.9q, we show gτ converges to g as a function of ui. Fig 1 (b) demonstrates that gτ
converges to g as a function of αi “ logpφi{p1´ φiqq when uip“ 0.2q is fixed. These two figures
show that as τ Ñ 0, gτ Ñ g. Formally, Maddison et al. (2017) rigorously proved that rγi converges
to γi in distribution as τ approaches 0.

(a) Fix φi “ 0.9. (b) Fix ui “ 0.2.

Figure 1: The convergence of gτ towards g as τ approaches 0.

2.2 Algorithm implementation details for the numerical experiments

Initialization As mentioned by Sønderby et al. (2016) and Molchanov et al. (2017), training sparse
BNN with random initialization may lead to bad performance, since many of the weights could be
pruned too early. In our case, we assign each of the weights and biases a inclusion variable, which
could reduce to zero quickly in the early optimization stage if we randomly initialize them. As a
consequence, we deliberately initialize φi to be close to 1 in our experiments. This initialization
strategy ensures the training starts from a fully connected neural network, which is similar to start
training from a pre-trained fully connected network as mentioned in Molchanov et al. (2017). The
other two parameters µi and σi are initialized randomly.

Other implementation details in simulation studies We setK “ 1 and learning rate “ 5ˆ10´3

during training. For Simulation I, we choose batch size m “ 1024 and m “ 128 for (A) and (B)
respectively, and run 10000 epochs for both cases. For simulation II, we use m “ 512 and run 7000
epochs. Although it is common to set up an annealing schedule for temperature parameter τ , we don’t
observe any significant performance improvement compared to setting τ as a constant, therefore we
choose τ “ 0.5 in all of our experiments. The optimization method used is Adam.

The implementation details for UCI datasets and MNIST can be found in Section 2.5 and 2.6
respectively.

2.3 Toy example: linear regression

In this section, we aim to demonstrate that there is little difference between the results using inverse-
CDF reparameterization and Gumbel-softmax approximation via a toy example.

Consider a linear regression model:

Yi “ XT
i β ` εi, εi „ N p0, 1q, i “ 1, . . . , n,
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We simulate a dataset with 1000 observations and 200 predictors, where β50 “ β100 “ β150 “ 10,
β75 “ β125 “ ´10 and βj “ 0 for all other j.

A spike-and-slab prior is imposed on β such that

βj |γj „ γjN p0, σ2
0q ` p1´ γjqδ0, γj „ Bernpλq,

for j “ 1, . . . , 200, where σ0 “ 5 and λ “ 0.03. The variational distribution qpβqQ is chosen as

βj |γj „ γjN pµj , σ2
j q ` p1´ γjqδ0, γj „ Bernpφjq.

We use both Gumbel-softmax approximation and inverse-CDF reparameterization for the stochastic
optimization of ELBO, and plot posterior mean E

pqpβqpβj |γjq (blue curve) against the true value
(red curve). Figure 2 shows that inverse-CDF reparameterization exhibits only slightly higher error
in estimating zero coefficients than the Gumbel-softmax approximation, which indicates the two
methods has little difference on this toy example.

(a) Gumbel-softmax reparametrization (b) Inverse-CDF reparametrization

Figure 2: Linear regression

2.4 Teacher student networks

The network parameter θ for the sparse teacher network setting (B) is set as following: W “

tW1,11 “ W1,12 “ W2,11 “ W2,12 “ 2.5,W1,21 “ W1,22 “ W2,21 “ W2,22 “ 1.5,W3,11 “

3 and W3,21 “ 2u; b “ tb1,1 “ b2,1 “ b3,1 “ 1 and b1,2 “ b2,2 “ ´1u.

Figure 3 displays the simulation result for simulation I under dense teacher network (A) setting.
Unlike the result under sparse teacher network (B), the testing accuracy seems monotonically increases
as λ increases (i.e., posterior network gets denser). However, as shown, the increasing of testing
performance is rather slow, which indicates that introducing sparsity has few negative impact to the
testing accuracy.

Coverage rate In this paragraph, we explain the details of how we compute the coverage rate
values of Bayesian intervals reported in the main text. A fixed point pxp˚q1 , . . . , x

p˚q
p q1 is prespecified,

and let xp1q, . . . , xp1000q be 1000 equidistant points from ´1 to 1. In each run, we compute the
Bayesian credible intervals of response means (estimated by 600 Monte Carlo samples) for 1000
different input x’s: pxp1q, xp˚q2 , . . . , x

p˚q
p q, . . . , pxp1000q, x

p˚q

2 , . . . , x
p˚q
p q. It is repeated by 60 times

and the average coverage rate (over all different x’s and 60 runs) is reported. Similarly, we replace
x
p˚q

2 (or xp˚q3 ) by xpiq (i “ 1, . . . , 1000), and compute their average coverage rate. The complete
coverage rate results are shown in Table 1. Note that Table 1 in the main text shows 95% coverage of
x3 for (A) and 95% coverage of x1 for (B).

2.5 Real data regression experiment: UCI datasets

We follow the experimental protocols of Hernández-Lobato and Adams (2015), and choose five
datasets for the experiment. For the small datasets "Kin8nm", "Naval", "Power Plant" and "wine", we
choose a single-hidden-layer ReLU network with 50 hidden units. We randomly select 90% and 10%
for training and testing respectively, and this random split process is repeated for 20 times (to obtain
standard deviations for our results). We choose minibatch size m “ 128, learning rate “ 10´3 and
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(a) λ ď λopt. (b) λ ě λopt. (c) Dense teacher network.

Figure 3: (a) λ “ t10´200, 10´150, 10´100, 10´50, 10´20, 10´5, λoptu. (b) λ “ tλopt, 0.1, 0.3, 0.5,
0.7, 0.9, 0.99u. (c) The structure of the target dense teacher network.

Table 1: Coverage rates for teacher networks.
90 % coverage (%) 95% coverage (%)

Method x1 x2 x3 x1 x2 x3

D
en

se

SVBNN 93.8 ˘ 2.84 93.1 ˘ 4.93 93.1 ˘ 2.96 97.9 ˘ 1.01 97.9 ˘ 1.69 97.5 ˘ 1.71
VBNN 85.8 ˘ 2.51 82.4 ˘ 2.62 86.3 ˘ 1.88 92.7 ˘ 2.83 91.3 ˘ 2.61 91.4 ˘ 2.43
VD 61.3 ˘ 2.40 60.0 ˘ 2.79 64.9 ˘ 6.17 74.9 ˘ 1.79 71.8 ˘ 2.33 76.4 ˘ 4.75
HS-BNN 83.1 ˘ 1.67 80.0 ˘ 1.21 76.9 ˘ 1.70 88.1 ˘ 1.13 84.1 ˘ 1.48 83.5 ˘ 0.78

Sp
ar

se

SVBNN 92.3 ˘ 8.61 94.6 ˘ 5.37 98.3 ˘ 0.00 96.4 ˘ 4.73 97.7 ˘ 3.71 100 ˘ 0.00
VBNN 86.7 ˘ 10.9 87.0 ˘ 11.3 93.3 ˘ 0.00 90.7 ˘ 8.15 91.9 ˘ 9.21 96.7 ˘ 0.00
VD 65.2 ˘ 0.08 63.7 ˘ 6.58 65.9 ˘ 0.83 75.5 ˘ 7.81 74.6 ˘ 7.79 76.6 ˘ 0.40
HS-BNN 59.0 ˘ 8.52 59.4 ˘ 4.38 56.6 ˘ 2.06 67.0 ˘ 8.54 68.2 ˘ 3.62 66.5 ˘ 1.86

run 500 epochs for "Naval", "Power Plant" and "Wine", 800 epochs for "Kin8nm". For the large
dataset "Year", we use a single-hidden-layer ReLU network with 100 hidden units, and the evaluation
is conducted on a single split. We choose m “ 256, learning rate “ 10´3 and run 100 epochs. For
all the five datasets, λ is chosen as λopt: logpλ´1

optq “ logpT q`0.1rpL`1q logN ` log
?
nps, which

is the same as other numerical studies. We let σ2
0 “ 2 and use grid search to find σε that yields the

best prediction accuracy. Adam is used for all the datasets in the experiment.

We report the testing squared root MSE (RMSE) based on pfH (defined in the main text) with H “ 30,
and also report the posterior network sparsity ps “

řT
i“1 φi{T . For the purpose of comparison,

we list the results by Horseshoe BNN (HS-BNN) (Ghosh and Doshi-Velez, 2017) and probalistic
backpropagation (PBP) (Hernández-Lobato and Adams, 2015). Table 2 demonstrates that our method
achieves best prediction accuracy for all the datasets with a sparse structure.

Table 2: Results on UCI regression datasets.
Test RMSE Posterior sparsity(%)

Dataset nppq SVBNN HS-BNN PBP SVBNN

Kin8nm 8192 (8) 0.08 ˘ 0.00 0.08 ˘ 0.00 0.10 ˘ 0.00 64.5 ˘ 1.85
Naval 11934 (16) 0.00 ˘ 0.00 0.00 ˘ 0.00 0.01 ˘ 0.00 82.9 ˘ 1.31
Power Plant 9568 (4) 4.01 ˘ 0.18 4.03 ˘ 0.15 4.12 ˘ 0.03 56.6 ˘ 3.13
Wine 1599 (11) 0.62 ˘ 0.04 0.63 ˘ 0.04 0.64 ˘ 0.01 59.9 ˘ 4.92
Year 515345 (90) 8.87 ˘ NA 9.26 ˘ NA 8.88 ˘ NA 20.8 ˘ NA
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2.6 Real data classification experiment: MNIST dataset

The MNIST data is normalized by mean equaling 0.1306 and standard deviation equaling 0.3081.
For all methods, we choose the same minibatch size m “ 256, learning rate “ 5 ˆ 10´3 for our
method and 3ˆ 10´3 for the others, total number of epochs is 400 and the optimization algorithm is
RMSprop. AGP is pre-specified at 5% sparsity level.

(a) Overlaid images (on the last column) (b) Predictive distribution for overlaid images

Figure 4: Top row of (b) exhibits the predictive distribution for the top overlaid image, which is made
by 5 and 6; Middle row of (b) exhibits the predictive distribution for the middle overlaid image, which
is made by 2 and 3; Bottom row of (b) exhibits the predictive distribution for the bottom overlaid
image, which is made by 2 and 7.

Besides the testing accuracy reported in the main text, we also examine our method’s ability of uncer-
tainty quantification for MNIST classification task. We first create ambiguous images by overlaying
two examples from the testing set as shown in Figure 4 (a). To perform uncertainty quantification
using our method, for each of the overlaid images, we generate θh from the VB posterior pqpθq for
h “ 1, . . . , 100, and calculate the associated predictive probability vector fθhpxq P R10 where x is
the overlaid image input, and then use the estimated posterior mean pfpxq “

ř100
h“1 fθhpxq{100 as the

Bayesian predictive probability vector. As a comparison, we also calculate the predictive probability
vector for each overlaid image using AGP as a frequentist benchmark. Figure 4 (b) shows frequentist
method gives almost a deterministic answer (i.e., predictive probability is almost 1 for certain digit)
that is obviously unsatisfactory for this task, while our VB method is capable of providing knowledge
of certainty on these out-of-domain inputs, which demonstrates the advantage of Bayesian method in
uncertainty quantification on the classification task.

2.7 Illustration of CNN: Fashion-MNIST dataset

In this section, we perform an experiment on a more complex task, the Fashion-MNIST dataset. To
illustrate the usage of our method beyond feedforward networks, we consider using a 2-Conv-2-FC
network: The feature maps for the convolutional layers are set to be 32 and 64, and the filter size are
5ˆ 5 and 3ˆ 3 respectively. The paddings are 2 for both layers and the it has a 2ˆ 2 max pooling
for each of the layers; The fully-connected layers have 64ˆ 8ˆ 8 neurons. The activation functions
are all ReLUs. The dataset is prepocessed by random horizontal flip. The batchsize is 1024, learning
rate is 0.001, and Adam is used for optimization. We run the experiment for 150 epochs.

We use both SVBNN and VBNN for this task. In particular, the VBNN, which uses normal prior and
variational distributions, is the full Bayesian method without compressing, and can be regarded as the
baseline for our method. Figure 5 exhibits our method attains higher accuracy as epoch increases and
then decreases as the sparisty goes down. Meanwhile, the baseline method - full BNN suffers from
overfitting after 80 epochs.
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(a) Accuracy. (b) Sparsity.

Figure 5: Fashion-MNIST experiment.

References
Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic

theory of independence. Oxford University press.

Chérief-Abdellatif, B.-E. (2020). Convergence rates of variational inference in sparse deep learning.
In Proceedings of the 37th International Conference on Machine Learning (ICML 2020), Vienna,
Austria.

Chérief-Abdellatif, B.-E. and Alquier, P. (2018). Consistency of variational bayes inference for
estimation and model selection in mixtures. Electronic Journal of Statistics, 12(2):2995–3035.

Ghosal, S. and Van Der Vaart, A. (2007). Convergence rates of posterior distributions for noniid
observations. The Annals of Statistics, 35(1):192–223.

Ghosh, S. and Doshi-Velez, F. (2017). Model selection in Bayesian neural networks via horseshoe
priors. arXiv preprint arXiv:1705.10388.

Hernández-Lobato, J. and Adams, R. (2015). Probabilistic backpropagation for scalable learning
of bayesian neural networks. In Proceedings of the 32nd International Conference on Machine
Learning (ICML 2015), Lille, France.

Le Cam, L. (1986). Asymptotic methods in statistical decision theory. Springer Science & Business
Media, New York.

Maddison, C., Mnih, A., and Teh, Y. W. (2017). The concrete distribution: A continuous relaxation of
discrete random variables. In International Conference on Learning Representations (ICLR 2017).

Molchanov, D., Ashukha, A., and Vetrov, D. (2017). Variational dropout sparsifies deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017),
pages 2498–2507.

Pati, D., Bhattacharya, A., and Yang, Y. (2018). On the statistical optimality of variational bayes. In
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS)
2018, Lanzarote, Spain.

Schmidt-Hieber, J. (2017). Nonparametric regression using deep neural networks with ReLU
activation function. arXiv:1708.06633v2.

Sønderby, C., Raiko, T., Maaløe, L., Sønderby, S., and Ole, W. (2016). How to train deep varia-
tional autoencoders and probabilistic ladder networks. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning (ICML 16), New York, NY.

12


	Proofs of theoretical results
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Main theorem

	Additional experimental results
	Comparison between Bernoulli variable and the Gumbel softmax approximation
	Algorithm implementation details for the numerical experiments
	Toy example: linear regression
	Teacher student networks
	Real data regression experiment: UCI datasets
	Real data classification experiment: MNIST dataset
	Illustration of CNN: Fashion-MNIST dataset


