
A Riemannian Manifold

Definition 3 (Manifold) [36] LetM be a set. If there exists a set of coordinate systems A forM
satisfying the conditions below, (M, A) is called an n-dimensional C∞ differentiable manifold, or
simply manifold.

1. Each element φ of A is a one-to-one mapping fromM to some open subset of Rn;

2. For all φ ∈ A, given any one-to-one mapping ψ fromM to Rn, the following holds:

ψ ∈ A⇔ ψ ◦ φ−1is a C∞ diffeomorphism;

By C∞ diffeomorphism, we mean that ψ ◦ φ−1 and its inverse φ ◦ψ−1 are both C∞ (infinitely many
times differentiable). Infinitely differentiable is not necessary actually, we may consider this notation
as ’sufficiently smooth’.

We will use TxM to denote the tangent space ofM at point x, and X,Y, Z to denote the vector
fields.

Definition 4 (Riemannian Metric and Riemannian Manifold) [37] Let M be a manifold,
C∞(M) be the comminicative ring of smooth functions onM, and C∞(TM) be the set of smooth
vector fields onM forming a module over C∞(M). A Riemannian metric g onM is a tensor field
g : C∞(TM) ⊗ C∞(TM) → C∞(M) such that for each x ∈ M, the restriction gx of g to the
tensor product TxM⊗ TxM with:

gx : (Xx, Yx)→ g(X,Y)(x)

is a real scalar product on the tangent space TxM. The pair (M, g) is called a Riemannian manifold.
The geometric properties of (M, g) which depend only on the metric g are said to be intrinsic or
metric properties.

One classical example is that the Riemannian manifold Em = (Rm, 〈, 〉Rm) is nothing but the
m-dimensional Euclidean space.

The Riemannian curvature tensor of a manifoldM is defined by

R(X,Y)Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y]Z

on vector fields X,Y, Z. For any two tangent vector ξ, η ∈ TxM, we use Ricx(ξ, η) to denote the
Ricci tensor evaluated at (ξ, η), which is defined to be the trace of the mapping TxM→ TxM given
by ζ → R(ζ, η)ξ.

We use Ric ≥ K to denote that a manifold’s Ricci curvature is bounded from below by K, in the
sense that Ricx(ξ, ξ) ≥ K|ξ|2 for all x ∈M, ξ ∈ TxM.

B Proof of Theorem 3

Theorem 3 Let (M, g) be a connected, complete Riemannian manifold with Riemannian volume
element dm and positive Ricci curvature. Assume that the heat kernel is Lipschitz continous. Let
pt, qt be two evolving PDFs induced by WGF for negative entropy as defined in Definition 2, their
corresponding probability measure are µt and νt. If d2

W (µ0,ν0) <∞, then pt(x) = qt(x) almost
everywhere as t→∞; furthermore,

∫
x∈M ‖p

t(x)− qt(x)‖2dm converges to 0 exponentially fast.

Proof We start by introducing the following lemma, which is Proposition 4.4 in [20].

Lemma 8 ([20]) Assume Ric ≥ K. Let (µtM)t≥0 and (νtM)t≥0 be two trajectories of the gradient
flow of negative entropy functional with initial distribution µ0

M and ν0
M, respectively, then

d2
W (µtM,ν

t
M) ≤ e−Ktd2

W (µ0
M,ν

0
M).

In particular, for a given initial value µ0
M, there is at most one trajectory of the gradient flow.

What we need to do is to extend the results of Lemma 8 from probability measures to probability
density functions. Following some previous work, we first define the projection operator.

12

Definition 5 (Projection Operator) [8] Let πi, πi,j denote the projection operators defined on the
product space X̄ := X1 × ...×XN respectively such that:

πi : (x1, ...,xN) 7→ xi ∈ Xi, π
i,j : (x1, ...,xN) 7→ (xi,xj) ∈ Xi ×Xj

if µ̄ ∈ P(X̄), the marginals of µ̄ are the probability measures

µi := πi#µ̄ ∈ P(Xi), µ
i,j := πi,j# µ̄ ∈ P(Xi ×Xj).

We then introduce the following lemma which utilize the projection operator.

Lemma 9 [8] Let Xi, i ∈ N, be a sequence of Radon separable metric spaces, µi ∈ P(Xi) and
αi(i+1) ∈ Γ(µi,µi+1), β1i ∈ Γ(µ1,µi), where Γ(µ,ν) denotes the 2-plan (i.e. transportation plan
between two distributions) with given marginals µ,ν. Let X̄∞ :=

∏
i∈NXi, with the canonical

product topology. Then there exist ν̄, µ̄ ∈ P(X̄∞) such that

πi,i+1
µ̄ = αi(i+1), π1,i

ν̄ = β1i, ∀i ∈ N. (9)

Now we are ready to prove the theorem.

We first construct a sequence of probability measures {ρt}t∈N, such that ρ2t = µtφφφ, ρ
2t+1 =

µtM, t ∈ N. Then, we choose αt(t+1) ∈ Γo(ρ
t,ρt+1), i.e. the optimal 2-plans given marginal

ρt,ρt+1. According to Lemma 9, we can find a probability measure µ̄ ∈ P(M̄∞) where M̄∞ :=∏
t∈NMt satisfying (9). Then the 2-Wasserstein distance can be written as:

d2
W (µtφφφ,µ

t
M) = d2

W (ρ2t,ρ2t+1) = d(π2t, π2t+1)L2(µ̄;M̄∞),

where d(·, ·)L2(µ̄;M̄∞) denotes the norm of L2 space.

According to Lemma 8,

d2
W (µtφφφ,µ

t
M) ≤ e−Ktd2

W (µ0
φφφ,µ

0
M),

which means:

d(π2t, π2t+1)L2(µ̄;X) ≤ e−Ktd2
W (µ0

φφφ,µ
0
M).

∫
M
‖ktφφφ − ktM‖2dm =

∫
M

(ktφφφ)2dm+

∫
M

(ktM)2dm− 2

∫
M
ktMk

t
φφφdm

≤
∫
M
ktφφφdµtφφφ +

∫
M
ktMdµtM

=

∫
M̄∞

(ktφφφ ◦ π2t)dµ̄+

∫
M̄∞

(ktM ◦ π2t+1)dµ̄

≤
∫
M̄∞

‖ktφφφ ◦ π2t + ktM ◦ π2t+1‖dµ̄

≤ (

∫
M̄∞

‖ktφφφ ◦ π2t + ktM ◦ π2t+1‖2dµ̄)1/2, by Jensen’s Inequality

≤ (

∫
M̄∞

L2
sup‖π2t − π2t+1‖2dµ̄)1/2

= Cd(π2t, π2t+1)L2(µ̄;M̄∞),C is a constant because of Lipschitz continuity

≤ Ce−Ktd2
W (µ0

φφφ,µ
0
M).

which completes the proof. Readers who are interested may also refer to Chapter 5.3 in [8] and proof
of Proposition 4.4 in [20] for more information.

13

C Proof of Theorem 4 and Theorem 5

Theorem 5 Let (M, g) be a complete Riemannian manifold without boundary or compact Rieman-
nian manifold with convex boundary ∂M. IfM has positive Ricci curvature bounded by K and its
dimension dim(M) ≥ 1. Let ktM(x) be the heat kernel of

∂kM(t,x0,x)

∂t
= 4xkM(t,x0,x),

∂ktM
∂n

= 0 on ∂M if applicable

where n denotes the outward-pointing unit normal to boundary ∂M. Then

ktM(x) ≥ Γ(dim(M)/2 + 1)

C(ε)(πt)dim(M)/2
exp(

π2 − π2dim(M)

(4− ε)Kt
)

for ∀x0,x ∈ M and small ε > 0, where C(ε) is a constant depending on ε > 0 and d such that
C(ε)→ 0 as ε→ 0, and Γ is the gamma function.

Proof We start by introducing the following lemma:

Lemma 10 [21] LetM be a complete Riemannian manifold without boundary or compact Rieman-
nian manifold with convex boundary ∂M. Suppose that the Ricci curvature ofM is non-negative.
Let ktM(x) = kM(t,x0,x) be the heat kernel of

∂kM(t,x0,x)

∂t
= 4xkM(t,x0,x),

∂ktM
∂n

= 0 on ∂M if applicable

Then, the heat kernel satisfies

kM(t,x0,x) ≥ C−1(ε)V −1[BM,x(
√
t)] exp(

−d2
M(x0,x)

(4− ε)t
)

for some constantC(ε) depending on ε > 0 and n such thatC(ε)→ 0 as ε→ 0, whereBM,x(
√
t) ⊆

M, denotes the geodesic ball with radius
√
t around x. Moreover, by symmetrizing,

kM(t,x0,x) ≥ C−1(ε)V −1/2[BM,x0
(
√
t)]V −1/2[BM,x(

√
t)] exp(

−d2
M(x0,x)

(4− ε)t
).

Lemma 10 comes from the Theorem 4.1 and Theorem 4.2 in [21]. Then we need to introduce the
definition of CD condition and Lemma 11.

Definition 6 (CD condition) [38] For Rimennian manifoldM, the curvature-dimension (CD) con-
dition CD(K, d) is satisfied if and only if the dimension of manifold is less or equal to d and Ricci
curvature is bounded from below by K.

Lemma 11 [38] For every metric measure space (M, dM,m) which satisfies the curvature-
dimension condition CD(K, d) for some real numbers K > 0 and d ≥ 1, the support of m is
compact and has diameter

L ≤ π
√
d− 1

K
,

where the diameter is defined as

L = sup
x,y∈M×M

dM(x,y).

Now we are ready to prove the Theorem.

Let (M, g) be a complete Riemannian manifold with positive Ricci curvature Ric ≥ K and dimen-
sion dim(M), then

Ric ≥ 0 = [dim(M)− 1] · 0
Because Euclidean Space can be seen as a manifold with constant sectional curvature 0. By Bishop-
Gromov inequality we have the following for manifold with non-negative Ricci curvature:

V [BM,x(r)] ≤ V [BRdim(M)(r)]

14

i.e. the volume of a geodesic ball with radius r around x is less than the ball with same radius in a
dim(M)-dimensional Euclidean space. According to the volume of n-ball, we have

V [BRdim(M)(r)] =
πdim(M)/2

Γ(dim(M)/2 + 1)
rdim(M)

Thus we have

V −1[BM,x(r)] ≥ Γ(dim(M)/2 + 1)

πdim(M)/2
r−dim(M)

Using Lemma 10, we have:

kM(t,x0,x) ≥ C−1(ε)
Γ(dim(M)/2 + 1)

πdim(M)/2tdim(M)/2
exp(

−d2
M(x0,x)

(4− ε)t
)

Using Lemma 11 and dM(x0,x) ≤ L ≤ π
√
dim(M)− 1

K
, we have:

kM(t,x0,x) ≥ Γ(dim(M)/2 + 1)

C(ε)πdim(M)/2tdim(M)/2
exp(

π2 − π2dim(M)

(4− ε)Kt
)

We now can conclude Theorem 5. The term exp(
π2 − π2dim(M)

(4− ε)Kt
) is increasing, and

Γ(dim(M)/2 + 1)

C(ε)πdim(M)/2tdim(M)/2
is decreasing polynomially. We can see that the lower bound of heat

kernel decrease to 0 polynomially with respect to t. Thus heat kernel value decrease to 0 at most
polynomially with respect to t.

Theorem 4 Let (M, g) be a complete Riemannian manifold without boundary or compact Rieman-
nian manifold with convex boundary ∂M. Assume it has positive Ricci curvature. dm denotes its
Riemannian volume element. Let ktM(x) be the heat kernel of

∂kM(t,x0,x)

∂t
= 4xkM(t,x0,x),

∂ktM
∂n

= 0 on ∂M if applicable

where n denotes the outward-pointing unit normal to boundary ∂M. Then
∫
x∈M ‖k

t
M(x)‖2dm

converges to 0 at most polynomially as t→∞, which is slower than
∫
x∈M ‖p

t(x)− ktM(x)‖2dm .

Proof For a given manifoldM, its Riemannian volume element doesn’t vary at different time t,
thus the lower bound of integral

∫
x∈M ‖k

t
M(x)‖2dm where ktM(x) = kM(t,x0,x) also decrease

polynomially because of Theorem 5. Then we can conclude Theorem 4.

D MMD and SMMD

In our proposed method for deep generative models, MMD is used as the objective function for the
generator, which is defined as:

MMD2(P,Q) =Exi,xj∼P(kφφφ(xi,xj)) + Eyi,yj∼Q(kφφφ(yi,yj))

− 2Exi∼P,yj∼Q(kφφφ(xi,yj)), (10)

where P,Q are probability distributions of the training data and the generated data, respectively.
MMD measures the difference between two distributions. Thus, we want it to be minimized.

Generator can also use SMMD [26] as the objective function, which is defined as:

SMMD2(P,Q) = σMMD2(P,Q)

σ = {ζ + Ex∈P [kφφφ(t,x,x)] +

d∑
i=1

Ex∈P

[
∂2kφφφ(t,y, z)

∂ yi ∂ zi
|(y,z)=(x,x)

]
}−1, (11)

where d is the dimensionality of the data, yi denotes the ith element of y, and ζ is a hyper-parameter.

15

E Algorithms

E.1 Algorithms for DGM with heat kernel learning

First of all, let’s introduce a similar objective function for kernel with form (2), which can be used to
replace (7).

Similarly to (6), for kernels with form (2), we have the following bound:

‖ptφφφ(y,x)− ptφφφ(y, z)‖ ≤ c1‖E{sin{(ωtψ1
)ᵀ
[
htφφφ(y)− htφφφ(x)

]
}}‖‖ωtψ1

‖‖∇xh
t
φφφ(x)‖F

+ c2‖E{sin{(ωtψ2,x,y)ᵀ
[
htφφφ(y)− htφφφ(x)

]
}}‖‖ωtψ2,x,y‖‖∇xh

t
φφφ(x)‖F

(12)

where c1 = ‖x− z ‖, c2 = ‖x− z ‖

[
‖ωtψ2,x,y‖+ ‖htφφφ(y)− htφφφ(x)‖

∥∥∂ωtψ2,x,y

∂htφφφ(x)

∥∥
F

]
Incorporating this bound into objective as (7), the optimization problem for learning kernel with form
(2) becomes:

min
φφφ

αH(µ̃tφφφ) + βd2
W (ν, µ̃tφφφ)− λEy 6=x

[
ptφφφ(y,x)

]
(13)

+ Ex∼P,y∼Q
[
γ1ksin(t,y,x) + γ2‖htφφφ(x)− htφφφ(y)‖

]
+ Exi,xj∼P

[
γ3ksin(t,xj ,xi) + γ4‖htφφφ(xi)− htφφφ(xj)‖

]
+ γ5Ex∼P,y 6=x

[
‖ωtψ1

‖+ ‖ωtψ2,x,y‖+ ‖
∂ωtψ2,x,y

∂htφφφ(x)
‖F

]
,

where ksin(t,y,x) = E{sin{(ωtψ1
)ᵀ
[
htφφφ(y)− htφφφ(x)

]
}}

+ E{sin{(ωtψ2,x,y)ᵀ
[
htφφφ(y)− htφφφ(x)

]
}},

Now we present the algorithm of DGM with heat kernel learning here.

Algorithm 2 Deep Generative Model with Heat Kernel Learning
Input: training data {xi} on manifoldMP , generator gθ, denote generated data as {yi}, kernel
parameterized by (1) or (2), all the hyper-parameters in (7), time step τ = α/2β.
for training epochs s do

for iteration j do
Sample {xi}ni=1 and {yi}ni=1.
Initialize function p0

φφφ, compute corresponding ν = µ̃0
φφφ by (3).

for k = 1 to m do
Compute µ̃kτφφφ by (3), solve (7) or (13). Update ν ← µ̃kτφφφ , where µ̃kτφφφ is computed by (3).

end for
end for
Sample {xi}ni=1 and {yi}ni=1. Update θ by minimizing MMD computed with (1) or (2).

end for

E.2 Some discussions

Instead of initializing the ν = µ̃0
φφφ by Equation (3), we can also simply initialize it to be 1/n, which

represents the discrete uniform distribution. In this case, we set the µtφφφ for time t to be

µtφφφ(x) =

∑n
j=1 p

t
φφφ(xj ,x)

n
∑n
j=1 p

0
φφφ(xj ,x)

,

where unknown constant αtM is also cancelled.

16

To approximate H(µ̃tφφφ), we may use either

H(µ̃tφφφ) ≈
n∑
i=1

µ̃tφφφ(xi) log µ̃tφφφ(xi)

or

H(µ̃tφφφ) ≈ 1

n

n∑
j=1

n∑
i=1

µ̃tφφφ(xi) log ptφφφ(xj ,xi).

In practice, these different implementations may need different hyper-parameter settings, and have
different performances. Furthermore, we observed that using unnormalized density estimation µtφφφ
instead of µ̃tφφφ also leads to competitive results.

F Experimental Results and Settings on Improved SVGD

We provide some experimental settings here. Our implementation is based on TensorFlow with a
Nvidia 2080 Ti GPU. To simplify the setting, the RBF-kernel is used in all layers except the last one,
which is learned by our method (1) with hφφφ a 2-layer neural network.In other words, we only learn
the parameter manifold for the last layer. Following [30], we run 20 trials on all the datasets except
for Protein and Year, where 5 trials are used. At each trial, we randomly choose 90% of the dataset as
the training set, and the rest 10% as the testing set. For large datasets like Year and Combined, we use
the Adam optimizer with a batch size of 1000, and use batch size of 100 for all other datasets. Before
every update of the BNN parameters, we run Algorithm 1 with m = 1; and 5 Adam update steps are
implemented to solve (4). For matrix-valued SVGD, We use the same experimental setting, except
that the number of update steps for solving (4) is chosen from {1, 2, 5, 10}, based on hyper-parameter
tuning.

We report the average test log-likelihood in Table 3, from which we can also see that our proposed
method improves model performance.

Table 3: Average test log-likelihood (↑) for UCI regression.

COMBINED CONCRETE KIN8NM PROTEIN WINE YEAR

SVGD −2.832± 0.009 −3.064± 0.034 0.964± 0.012 −2.846± 0.003 −0.997± 0.019 −3.577± 0.002
HK-SVGD (OURS) −2.827± 0.009 −3.015± 0.037 0.976± 0.007 −2.838± 0.004 −0.958± 0.021 −3.559± 0.001

MSVGD-A −2.824± 0.009 −3.150± 0.054 0.956± 0.011 −2.796± 0.004 −0.980± 0.016 −3.569± 0.001
MSVGD-M −2.817± 0.009 −3.207± 0.071 0.975± 0.011 −2.755± 0.003 −0.988± 0.018 −3.561± 0.002
HK-MSVGD-A (OURS) −2.815± 0.012 −3.011± 0.076 0.982± 0.011 −2.800± 0.001 −0.943± 0.016 −3.549± 0.002
HK-MSVGD-M (OURS) −2.814± 0.013 −3.157± 0.067 0.989± 0.009 −2.731± 0.004 −1.013± 0.019 −3.534± 0.001

Instead of using particles, we further improve our proposed HK-SVGD by introducing a parameter
generator, which takes Gaussian noises as inputs and outputs samples of parameter distribution for
BNNs. We use a 2-layer neural network to model this generator, 10 samples are generated at each
iteration. We denote the resulting model as HK-ISVGD, and compare it with vanilla SVGD and our
proposed HK-SVGD. Results on UCI regression are shown in Table 4 and Table 5. We can see that
introducing the parameter sample generator will lead to performance improvement on most of the
datasets.

Table 4: Average test RMSE (↓) for UCI regression with parameter generator.

COMBINED CONCRETE KIN8NM PROTEIN WINE YEAR

SVGD 4.088± 0.033 5.027± 0.116 0.093± 0.001 4.186± 0.017 0.645± 0.009 8.686± 0.010
HK-SVGD (OURS) 4.077± 0.035 4.814± 0.112 0.091± 0.001 4.138± 0.019 0.624± 0.010 8.656± 0.007
HK-ISVGD (OURS) 4.075± 0.035 4.824± 0.113 0.089± 0.001 4.094± 0.014 0.616± 0.009 8.611± 0.007

G Model Architectures and Some Experiments Settings on DGM

We provide some experimental details of image generation here. Our implementation is based on
TensorFlow with a Nvidia 2080 Ti GPU.

17

Table 5: Average test log-likelihood (↑) for UCI regression with parameter generator.

COMBINED CONCRETE KIN8NM PROTEIN WINE YEAR

SVGD −2.832± 0.009 −3.064± 0.034 0.964± 0.012 −2.846± 0.003 −0.997± 0.019 −3.577± 0.002
HK-SVGD (OURS) −2.827± 0.009 −3.015± 0.037 0.976± 0.007 −2.838± 0.004 −0.958± 0.021 −3.559± 0.001
HK-ISVGD (OURS) −2.826± 0.008 −3.073± 0.052 0.989± 0.008 −2.823± 0.003 −0.943± 0.018 −3.565± 0.001

For CIFAR-10 and STL-10, we test them on 2 architectures: DC-GAN based [39] and ResNet based
architectures [40, 41]. The DC-GAN based architecture contains a 4-layer convolutional neural
network (CNN) as the generator, with a 7-layer CNN representing htφφφ in (1) and (2). In the ResNet
based architecture, the generator and htφφφ are both 10-layer ResNet. For ImageNet, we use the same
ResNet based architecture as CIFAR-10 and STL-10. For CelebA, the generator is a 10-layer ResNet,
while htφφφ is a 4-layer CNN.

For CIFAR-10, STL-10 and ImageNet, spectral normalization is used, while we scale the weights
after spectral normalization by 2 on CIFAR-10 and STL-10. We set β1 = 0.5, β2 = 0.999 for the
Adam optimizer and m = 1, n = 64 in Algorithm 2. Only one step Adam update is implemented for
solving (7). Output dimension of htφφφ is set to be 16. For all the experiments with kernel (2), both f tψ1

and f tψ2
are parameterized by 2-layer fully connected neural networks.

For CelebA, we scale the kernel learning objective, i.e. (7), by σ in (11) as SMMD. Spectral
regularization [26] is used. We set β1 = 0.5, β2 = 0.9 for the Adam optimizer and m = 1, j = 5,
n = 64 in Algorithm 2. Only one step Adam update is implemented for solving (7). Output dimension
of htφφφ is set to be 1, because scaled objective with htφφφ dimension larger than 1 is time consuming.

As for evaluation, CIFAR-10, STL-10 and ImageNet are evaluated on 100k generated images, while
CelebA is evaluated on 50k generated images due to the memory limitation.

H More Results on Image Generation

(a) HK (b) HK-DK

Figure 2: Generated images on CIFAR-10 (32× 32) with DC-GAN architecture.

18

(a) HK (b) HK-DK

Figure 3: Generated images on CIFAR-10 (32× 32) with ResNet architecture.

(a) HK (b) HK-DK

Figure 4: Generated images on STL-10 (48× 48) with DC-GAN architecture.

19

(a) HK (b) HK-DK

Figure 5: Generated images on STL-10 (48× 48) with ResNet architecture.

(a) HK (b) HK-DK

Figure 6: Generated images on ImageNet (64× 64).

20

(a) HK

Figure 7: Generated images on CelebA (160× 160).

21

