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Figure 1: Graph likelihood of
GPGBNs as a function of iteration
with various network depths.

First of all, we thank all the reviewers for their valuable comments and suggestions.1

To Reviewer 1: i) For SIG-VAE, the memory cost is theoretically (K + J) times2

larger than the most basic VGAE, where K and J represents the sampling numbers3

of SIVI [32] in each iteration. With the official release, SIG-VAE takes nearly 0.7G4

(K = 1, J = 1), 4.4G (K = 5, J = 10), and 10.6G (K = 15, J = 20) RAM5

cost on Cora (the smallest dataset with 2708 nodes). Following this trend, SIG-6

VAE is estimated to take at least 600G RAM on Cora with their original setting7

(K = 150, J = 2000), which is a normally unaffordable memory. By contrast, a 3-8

layer WGCAE, which takes only 1.3G RAM, has achieved a comparable link prediction9

performance and outperformed SIG-VAE on both node clustering and classification10

tasks, showing the proposed WGCAE is more efficient than SIG-VAE. ii) Thanks for11

pointing out these references, we will carefully investigate them and comprehensively discuss their relations to our12

work. We will fix the listed typos in our revision. iii) For an intuitive quantitative comparison of network modeling, we13

estimate three GPGBNs with different depths T ∈ {1, 2, 3} on 20news dataset and exhibit the likelihood of adjacency14

matrix as a function of iterations. As shown in Fig. 1 here, increasing the network depth in general improves the quality15

of adjacency matrix fitting, showing the benefit of capturing document relations with a hierarchical structure. Moreover,16

we will provide more visualized GPGBNs with different depths in our revision.17

To Reviewers 2&4 (Novelty): As claimed in our contributions, we propose the first hierarchical relational topic model18

(RTM) named GPGBN, and successfully illustrate the connections at different semantic levels. Moreover, our work19

provides a novel solution to combine the RTM and graph autoencoders, firstly adopting the GCN to estimate the20

posteriors of the latent representations of RTMs (note related theoretical proofs [44] have only recently been proposed).21

Moving beyond deterministic projecting, the uncertainty and sparseness provided by Weibull reparameterization22

effectively alleviate overfitting of GCN and further improve the performance in a hierarchical fashion.23
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Figure 2: Gibbs sampling of variables selected
from u(1) and u(2) as a function of iteration.

To Reviewer 2: i) Gibbs sampling is applicable when there exist local24

conjugacies for latent variables, whose conditional distributions will then25

become tractable and simple to sample from, even though the posterior of26

the joint distribution of these variables is often intractable. Gibbs sampling27

uses a Markov chain to sample the latent variables in turn to iteratively28

approach the true posteriors. In Fig. 2, we show the trace plot of a random29

dimension of u(1) and that of u(2) from a 3-layer GPGBN, suggesting30

the Markov chain under the proposed Gibbs sampler converges faster31

and mixes well. ii) That is a nice idea. We note a full matrix for U32

could provide extra flexibility to model stochastic equivalence/disassortativity (e.g., in protein-protein interaction33

network), while a diagonal one is more suitable to model an assortative relational network exhibiting homophily34

(e.g., co-author network) but not necessarily stochastic equivalence. Similar conclusion can be found in [34] and we35

will add a discussion in Appendix. iii) Actually, the Weibull inference network only approximates the posterior of36

latent document representation θ and can’t directly improve the performance. However, moving beyond treating the37

importance of document content and relations equally like GPGBN, WGCAE is a VAE-like model that can be trained38

via optimizing the loss function, where we can introduce a trade-off parameter β to control the focus of the model. By39

adjusting β, WGCAE can provide more expressive latent representations for down-stream tasks and we have discussed40

this phenomenon in Section 5.3.41 Table 1: Topic-coherence comparisons on 20news.
Topic layers hardware christian guns space graphics

LDA [11] 0.530 0.561 0.491 0.538 0.564
PFA [33] 0.494 0.560 0.483 0.520 0.555

AVITM [45] 0.434 0.495 0.422 0.451 0.483
DPFA [19] 0.581 0.604 0.535 0.562 0.575
PGBN [20] 0.607 0.615 0.550 0.578 0.583

GPGBN 0.638 0.641 0.602 0.623 0.613

To Reviewer 3: We clarify that the proposed WGCAE is a basic42

VGAE-like model, which has a significant improvement compared to43

the original VGAE on various graph analytics tasks. Other relevant44

improvement techniques, such as SIVI [32] and GAT [27], can poten-45

tially be incorporated into our models to further improve the model46

performance; we leave these further extensions for future study.47

To Reviewer 4: i) We’d like to emphasize that we have compared with many GCN-based methods in our experiments,48

including node clustering (2nd block of Table 1), link prediction (Table 2), and node classification (Table 4 in Appendix).49

As far as we know, VGAE could be the most popular GCN-based method for network modeling and other variants like50

SIG-VAE, S-VGAE, and NF-VGAE have all been included in our comparison. We are also glad to compare with other51

VGAEs (if any) for network modeling. ii) Thanks for your suggestions, we have included topic-coherence comparison52

between hierarchical topics learned by PGBN and GPGBN in Appendix, showing that the words among the topics53

learned by GPGBN are more relevant (or co-occurrence) than those learned by PGBN. Moreover, we also add additional54

topic-model baselines including LDA, PFA, AVITM [45], and DPFA for topic-coherence comparisons as shown in55

Table. 1, indicating the benefit of introducing hierarchical graph regularization. We will put these results in our revision.56

[44] Zhao L, Akoglu L. Connecting Graph Convolutional Networks and Graph-Regularized PCA. In ICML, 2020.57

[45] Srivastava, A. and Sutton, C. Autoencoding variational inference for topic models. In ICLR, 2017.58


