
A Proof of Theorem 4.1

In this appendix, we provide the Proof of Theorem 4.1 which is omitted from the main text due to
the space limitation. We should point out that the choice of our potential function works best for
a combination of k matroids and ` = k knapsacks. When the number of matroid and knapsack
constraints is not equal, we can always add redundant constraints so that k is the maximum of the
two numbers. For this reason, in the rest of this proof, we assume ` = k.

For this proof, we first show that removing elements a ∈ S with δS,a ≤ 0 could only decrease the
potential function φ(S).
Lemma A.1. Suppose that S is a current solution such that γ(S) < 1 and a ∈ S is such that
δS,a ≤ 0. Then, we always have φ(S − a) ≤ φ(S) with γ(S − a) < 1.

Proof. First note that by removing an element, the total cost of knapsacks can only decrease, so we
still have γ(S′) < 1, as cost of elements is non-negative in all knapsacks. Consider the change in
the potential function:

φ(S′)− φ(S) =
Ω− (k + 1)f(S′)

1− γ(S′)
− Ω− (k + 1)f(S)

1− γ(S)
(From Eq. (2))

=
((Ω− (k + 1)f(S′))(1− γ(S))− (Ω− (k + 1)f(S))(1− γ(S′)))

(1− γ(S))(1− γ(S′))
(5)

By submodularity, we have f(S′) = f(S − a) ≥ f(S) − wS,a, as for a ∈ S, we have wS,a =
f(S∩ [a])−f(S∩ [a−1]). Also, from the linearity of knapsack costs, we have γ(S′) = γ(S−a) =
γ(S)− γa. Therefore, by applying f(S′) ≥ f(S)− wS,a and γ(S′) = γ(S)− γa to the right side
of Eq. (5), we get:

φ(S′)− φ(S) ≤ ((Ω− (k + 1)f(S) + (k + 1)wS,a)(1− γ(S))− (Ω− (k + 1)f(S))(1− γ(S) + γa))

(1− γ(S))(1− γ(S′))

=
((k + 1)wS,a(1− γ(S))− (Ω− (k + 1)f(S))γa)

(1− γ(S))(1− γ(S′))

=
δS,a

(1− γ(S))(1− γ(S′))
≤ 0 . (δS,a ≤ 0 and γ(S) ≤ 1)

After removing all elements a ∈ S with δS,a ≤ 0, we obtain a new solution S such that δa > 0 for
all a ∈ S. In the next step, we require to include a new element in order to decrease the potential
function the most. The following lemma provides an algorithmic procedure to achieve this goal.
Recall that we denote the i-th matroid constraint byMi = (N, Ii).

Lemma A.2. Assume OPT = f(S∗) ≥ Ω, and S is the current solution such that S ∈ ∩ki=1Ii,
f(S) < 1

k+1Ω, and γ(S) < 1. Assume that for each a ∈ S, δS,a > 0. Given b /∈ S, let Jb = {i ∈
[k] : S + b /∈ Ii}, and ai(b) = argmin{δS,a : a ∈ S and S − a + b ∈ Ii} for each i ∈ Jb. Then
there is b /∈ S such that

δS,b −
∑
i∈Jb

δS,ai(b) ≥
1

|S∗| (1− γ(S))(Ω− (k + 1)f(S)) .

Proof. To prove this lemma, we first state the following well-known result for exchange properties
of matroids.

Lemma A.3 ([42], Corollary 39.12a). LetM = (N , I) be a matroid and let S, T ∈ I with |S| =
|T |. Then there is a perfect matching π between S \ T and T \ S such that for every e ∈ S \ T , the
set (S \ {e}) ∪ {π(e)} is an independent set.

Let S∗ be an optimal solution with OPT = f(S∗) ≥ Ω. Let us assume that S̃i, S̃∗i are bases ofMi

containing S and S∗, respectively. By Lemma A.3, there is a perfect matching Mi between S̃i \ S̃∗i
and S̃∗i \ S̃i such that for any e ∈ Mi, S̃i∆e ∈ Ii. For each b ∈ S∗ and i ∈ Jb (defined as above,

12

Jb denotes the matroids in which we cannot add b without removing something from S), let mi(b)
denote the endpoint in S of the edge matching b in Mi. This means that S −mi(b) + b ∈ Ii.
Since for each i ∈ Jb, we pick ai(b) to be an element of S minimizing δS,a subject to the condition
S−a+ b ∈ Ii, and mi(b) is a possible candidate for ai, we have δS,ai(b) ≤ δS,mi(b). Consequently,
it is sufficient to bound δS,b −

∑
i∈Jb δS,mi(b) to prove the lemma.

Since each a ∈ S is matched exactly once in each matching Mi, we obtain that each a ∈ S appears
as mi(b) at most k times for different i ∈ [k] and b ∈ S∗. Note that it could appear less than k times
due to the fact that it might be matched to elements in S̃∗i \ S∗. Let us define Tb for each b ∈ S∗
to contain {mi(b) : i ∈ Jb} plus some arbitrary additional elements of S, so that each element of S
appears in exactly k sets Tb. Since δS,a > 0 for all a ∈ S, we have

δS,b −
∑
a∈Tb

δS,a ≤ δS,b −
∑
i∈Jb

δS,mi(b) ≤ δS,b −
∑
i∈Jb

δS,ai(b) .

Hence it is sufficient to prove that δS,b−
∑
a∈Tb δS,a ≥

1
|S∗| (1− γ(S))(Ω− (k+ 1)f(S)) for some

b ∈ S∗. Let us choose a random b ∈ S∗ and compute the expectation E[δS,b −
∑
a∈Tb δS,a]. First,

since each element of S∗ is chosen with probability 1
|S∗| , we obtain

E[wS,b] =

∑
b∈S∗ wS,b

|S∗| ≥
∑
b∈S∗ f(b | S)

|S∗| ≥ f(S∗ | S)

|S∗| =≥ Ω− f(S)

|S∗| ,

by monotonicity and submodularity of function f . Similarly, since S∗ is a feasible solution, we have

E[γb] =
1

|S∗|
∑
b∈S∗

γb ≤
k

|S∗| .

Concerning the contribution of the items in Tb, we obtain,

E[
∑
a∈Tb

wS,a] =
1

|S∗|
∑
b∈S∗

∑
a∈Tb

wS,a =
k

|S∗|
∑
a∈S

wS,a =
k

|S∗|f(S) ,

using the fact that each a ∈ S appears in exactly k sets Tb. Similarly,

E[
∑
a∈Tb

γa] =
1

|S∗|
∑
b∈S∗

∑
a∈Tb

γa =
k

|S∗|γ(S) .

All together, we obtain

E[δS,b −
∑
a∈Tb

δS,a] = E

[
(k + 1) · (1− γ(S)) · (wS,b −

∑
a∈Tb

wS,a)

− (Ω− (k + 1) · f(S)) · (γb −
∑
a∈Tb

γai)

]

≥ k + 1

|S∗| · (1− γ(S)) · (Ω− f(S)− k · f(S))− 1

|S∗| · (Ω− (k + 1) · f(S)) · (k − k · γ(S))

=
1

|S∗| · (1− γ(S)) · (Ω− (k + 1) · f(S)) .

Since the expectation is at least 1
|S∗| · (1− γ(S)) · (Ω− (k+ 1) · f(S)), there must exist an element

b ∈ S∗ for which the expression is at least the same amount, which proves the lemma.

Now, we bound the maximum required number of iterations to converge to a solution whose value
is sufficiently high. Let r = |S∗| and OPT = f(S∗) for the optimal solution S∗. In Algorithm 1, we
start from S = ∅ and repeat the following: As long as δS,a < 0 for some a ∈ S, we remove a from
S. If there is no such a ∈ S, we find b /∈ S such that δS,b −

∑
i∈Jb δS,ai(b) ≥

1
|S∗| (1− γ(S))(Ω−

(k + 1)f(S)) (see Lemma A.2); we include element b in S and remove set Jb from S.

13

Lemma A.4. BARRIER-GREEDY, after at most r log(1/ε) iterations, returns a set S such that
f(S) > 1−ε

k+1Ω. Furthermore, at least one of the two sets S or S − b is feasible, where b is the last
element added to S.

Proof. At the beginning of the process, we have φ(∅) = Ω. Our goal is to show that φ(S) decreases
sufficiently fast, while we keep the invariant 0 ≤ γ(S) < 1.

We know that, from the result of Lemma A.1, removing elements a ∈ S with δS,a ≤ 0 can only
decrease the value of φ(S). We ignore the possible gain from these steps. When we include a new
element b and remove {ai(b) : i ∈ Jb} from S, we get from Lemma A.2:

δS,b −
∑
i∈Jb

δS,ai(b) ≥
1

|S∗| · (1− γ(S)) · (Ω− (k + 1) · f(S)) .

Next, let us relate this to the change in φ(S). We denote the modified set by S′ = (S + b) \ {ai(b) :
i ∈ Jb}. First, by submodularity and the definition of wS,a, we know that

f(S′) ≥ f(S) + wS,b −
∑
i∈Jb

wS,ai(b) .

We also have
γ(S′) = γ(S) + γb −

∑
i∈Jb

γai(b) .

First, let us consider what happens when γ(S′) ≥ 1. This means that γb−
∑
i∈Jb γai(b) ≥ 1−γ(S).

Since we know that δS,b −
∑
i∈Jb δS,ai(b) ≥ 0, this means (by the definitions of δS,b and δS,ai(b))

that
(k + 1) · (wS,b −

∑
i∈Jb

wS,ai(b)) ≥ Ω− (k + 1) · f(S) .

In other words, f(S′) ≥ f(S) + wS,b −
∑
i∈Jb wS,ai ≥

1
k+1Ω. Note that S′ might be infeasible,

but S′ − b is feasible (since S was feasible), so in this case we are done.

In the following, we assume that γ(S′) < 1. Then the potential change is

φ(S′)− φ(S)

≤
(
Ω− (k + 1)

(
f(S) + wS,b −

∑
i∈Jb wS,ai(b)

))
(1− γ(S))

(1− γ(S))(1− γ(S′))

−
(Ω− (k + 1)f(S))

(
1− γ(S)− γb +

∑
i∈Jb γai(b)

)
(1− γ(S))(1− γ(S′))

=

(
(k + 1)(−wS,b +

∑
i∈Jb wS,ai(b))(1− γ(S))− (Ω− (k + 1)f(S))(−γb +

∑
i∈Jb γai(b))

)
(1− γ(S))(1− γ(S′))

=
(−δS,b +

∑
i∈Jb δS,ai(b))

(1− γ(S))(1− γ(S′))
≤ − 1

|S∗|
Ω− (k + 1)f(S)

1− γ(S′)

= −1

r

1− γ(S)

1− γ(S′)
φ(S) ,

using Lemma A.2. We infer that

φ(S′) ≤
(

1− 1

r
· 1− γ(S)

1− γ(S′)

)
φ(S) .

By induction, if we denote by St the solution after t iterations,

φ(St) ≤
t∏
i=1

(
1− 1

r
· 1− γ(Si−1)

1− γ(Si)

)
φ(S0) ≤ e−

1
r

∑t
i=1

1−γ(Si−1)

1−γ(Si) φ(S0) .

Here, we use the arithmetic-geometric-mean inequality:

1

t

t∑
i=1

1− γ(Si−1)

1− γ(Si)
≥
(

t∏
i=1

1− γ(Si−1)

1− γ(Si)

)1/t

=

(
1− γ(S0)

1− γ(St)

)1/t

≥ 1 .

14

Therefore, we can upper bound the potential function at the iteration t:

φ(St) ≤ e−
t
r ·

1
t

∑t
i=1

1−γ(Si−1)

1−γ(Si) φ(S0) ≤ e− tr φ(S0) = e−
t
r Ω .

For t = r log 1
ε , we obtain φ(St) = Ω−(k+1)f(St)

1−γ(St)
≤ εΩ (and 0 ≤ γ(St) < 1), which implies

f(St) ≥ 1−ε
k+1Ω.

Now, we have all the required materials to prove Theorem 4.1.

Proof of Theorem 4.1 The for loop for estimating OPT is repeated 1
ε log r times. Consider the

value of Ω such that (1 − ε)OPT ≤ Ω ≤ OPT . We perform the local search procedure: In each
iteration, we check all possible candidates b ∈ N \S and find the best swap ai for each matroidMi

where a swap is needed (the set of indices Jb). This requires checking the membership oracles for
Mi and the values δai for each potential swap. This takes O(rkn) calls to the membership oracle.
Finally, we choose the elements b /∈ S and ai ∈ S so that δS,b −

∑
i∈Jb δS,ai is maximized. Note

that, in each iteration of the while loop, we need to compute δS,a for all elements a ∈ N only once
and store them; then we can use these precomputed values to find the best candidate b. Therefore,
in each iteration, algorithm needs to make O(n) calls to the evaluation oracle to find b. Also, Line 8
of 1 needs O(r2) calls to the evaluation oracle. To sum-up, each iteration of the while loop (Line 5)
requiresO(n+r2) calls to the evaluation oracle andO(rkn) calls to the membership oracle. Due to
Lemma A.2, the best swap satisfies δS,b−

∑
i∈Jb δS,ai ≥

1
r (1−γ(S))(Ω−(k+1)f(S)). Following

this swap, we need to recompute the values of δS,a for a ∈ S and remove all elements with δS,a ≤ 0.
Considering Lemma A.4, it is sufficient to prove that we terminate within O(r log 1

ε) iterations of
the local search procedure. Therefore, the algorithm terminates with O(nr+r

3

ε log r log 1
ε) calls to

the evaluation oracle and O(nkr
2

ε log r log 1
ε) calls to the membership oracle. In the end, we have a

set S such that f(S) ≥ 1−ε
k+1Ω (as the result of Lemma A.4). It is possible that S is infeasible, but

both S − b and b are feasible (where b is the last-added element), and by submodularity one of them
has an objective value of at least 1−ε

2k+2Ω.

B The BARRIER-GREEDY++ Algorithm

B.1 The Pseudocode for BARRIER-GREEDY++

In this section, we detail BARRIER-GREEDY++ in Algorithm 2.

Algorithm 2 BARRIER-GREEDY++

Input: f : 2N → R+, membership oracles for k matroidsM1 = (N , I1), . . . ,Mk = (N , Ik),
and ` knapsack-cost functions ci : N → [0, 1].

Output: A set S ⊆ N satisfying S ∈ ⋂ki=1 Ii and ci(S) ≤ 1 ∀i.
1: for each feasible pair of elements {a′, a′′} do
2: g(S) , f(S ∪ {a′, a′′})− f({a′, a′′}).
3: Decrease the knapsack capacities by ci,a′ + ci,a′′ .
4: N ′ ← N \ ({a′, a′′} ∪ {a | g(a) > 1

2f({a′, a′′})) and contracts all matroidsMi(Ni, Ii) by
set {a′, a′′}.

5: Run Algorithm 1 on the reduced instance g : 2N
′ → R+, to obtain a solution Sa′,a′′ .

6: return the best of Sa′,a′′ ∪ {a′, a′′} over all feasible pairs {a′, a′′} (If there is no feasible pair
of elements, just return the most valuable singleton).

B.2 Proof of Theorem 4.2

Proof. Since we enumerate over O(n2) pairs of elements, the running time is O(n2) times the
running time of Algorithm 1.

Consider an optimal solution S∗ and a greedy ordering of its elements with respect to f . Also,
consider the run of the algorithm, when a′, a′′ are the first two elements of S∗ in the greedy ordering.

15

Note that if all optimal solutions have only one element, it means there is no feasible pair, due to
the monotonicity of f . In this case, we just return the best singleton, which is optimal. All elements
of S∗ following a′, a′′ in the greedy ordering have a marginal value of at most 1

2f({a′, a′′}), by
the greedy choice of a′, a′′. Therefore, these elements are still present in the reduced instance.
Furthermore, since S∗ \ {a′, a′′} is a feasible solution in the reduced instance, Algorithm 1 always
finds a solution: if the produced set S by Algorithm 1 is feasible, then the solution is returned at
Line 10 of that algorithm with a guarantee:

g(S) ≥ 1− ε
k + 1

g(S∗ \ {a′, a′′}) =
1− ε
k + 1

(OPT − f({a′, a′′})) .

However, the set S could be potentially infeasible and the solution then is returned at Line 12 of
Algorithm 1. In this case, we know that S − b is feasible in the reduced instance where b is the
last-added element, and hence S − b + a′ + a′′ is feasible in the original instance. Also, g(b) ≤
1
2f({a′, a′′}), otherwise bwould not be present in the reduced instance. By submodularity, the value
of S − b+ a′ + a′′ is at least

f(S − b+ a′ + a′′) = f({a′, a′′}) + g(S − b) ≥ f({a′, a′′}) + g(S)− g({b})

≥ f({a′, a′′}) +
1− ε
k + 1

(OPT − f({a′, a′′}))− 1

2
f({a′, a′′})

≥ 1− ε
k + 1

OPT .

Since S + a′ + a′′ or S − b+ a′ + a′′ is one of the considered solutions, we are done.

C The Generalization to k-matchoids

In this section, we show that our algorithms could be extended to k-matchoids, a more general class
of constraints. To achieve this goal, we need to slightly modify the BARRIER-GREEDY algorithm
to make it suitable for the k-matchoid constraint. More specifically, for each element b ∈ S, we use
EXCHANGECANDIDATE to find a set Ub ⊆ S such that (S \ Ub) + b satisfies the k-matchoid con-
straint where exchanges are done with elements with the minimum values of δS,a. The pseudocode
of EXCHANGECANDIDATE is given as Algorithm 3.

Algorithm 3 EXCHANGECANDIDATE (S, b)

1: Let U ← ∅.
2: for i = 1 to m do
3: if (S + b) ∩Ni 6∈ Ii then
4: Let Ai ← {a ∈ S | ((S − a+ b) ∩Ni) ∈ I`}.
5: Let ai ← arg mina∈A` δS,a.
6: Add ai to U .
7: return U .

In order to guarantee the performance of our proposed algorithms under the k-matchoid constraint,
we provide the following lemma which is the equivalent of Lemma A.2 for k-matchoid.

Lemma C.1. Assume OPT = f(S∗) ≥ Ω, and S is the current solution that satisfies the k-matchoid
constraintM(N , I) with f(S) < 1

k+1Ω, and γ(S) < 1. Then there is b /∈ S such that

δS,b −
∑
i∈Jb

δS,ai(b) ≥
1

|S∗| (1− γ(S))(Ω− (k + 1)f(S)) .

Proof. For the sake of simplicity of analysis, we assume that every element a ∈ N belongs to
exactly k out of them ground setsNi (i ∈ [m]) of the matroids definingN . To make this assumption
valid, for every element a ∈ N that belongs to the ground sets of only k′ < k out of the mmatroids,
we add a to k − k′ additional matroids as an element whose addition to an independent set always
keeps the set independent. It is easy to observe that the addition of a to these matroids does not
affect the behavior of our Algorithms.

16

Let us assume that S̃i, S̃∗i are bases of Mi containing S ∩ Ni and S∗ ∩ Ni, respectively. By
Lemma A.3, there is a perfect matching Πi between S̃i\S̃∗i and S̃∗i\S̃i such that for any e ∈ Πi we
have S̃i∆e ∈ Ii. For each b ∈ S∗ and i ∈ Jb where we define Jb = {i ∈ [m] | (S + b) ∩Ni 6∈ Ii},
let πi(b) denote the endpoint in S of the edge matching b in Πi. This means that S−πi(b) + b ∈ Ii.
Since for each i ∈ Jb, we pick ai(b) to be an element of S minimizing δS,a subject to the condition
S − a+ b ∈ Ii, and πi(b) is a possible candidate for ai, we have δS,ai(b) ≤ δS,πi(b). Consequently,
it is sufficient to bound δS,b −

∑
i∈Jb δS,πi(b) to prove the lemma. Since each a ∈ S is matched

at most once in each matching Πi, we obtain that each a ∈ S appears as πi(b) at most k times for
different i ∈ [m] and b ∈ S∗. Note that it could appear less than k times. We can then define Tb for
each b ∈ S∗ to contain {πi(b) : i ∈ Jb} plus some arbitrary additional elements of S, so that each
element of S appears in exactly k sets Tb. By providing this exchange property for k-matchoids, the
rest of the proof is the same as proof of Lemma A.2.

From the result of Lemma C.1 and Theorems 4.1 and 4.2, we conclude the following corollaries
for maximizing a monotone and submodular function subject to a k-matchoid and ` knapsack con-
straints.

Corollary C.2. BARRIER-GREEDY (Algorithm 1) provides a 2(k + 1 + ε)-approximation for the
problem of maximizing a monotone submodular function subject to k-matchoid and ` knapsack
constraints (for ` ≤ k).

Corollary C.3. BARRIER-GREEDY++ (Algorithm 2) provides a (k + 1 + ε)-approximation for
the problem of maximizing a monotone submodular function subject to k-matchoid and ` knapsack
constraints (for ` ≤ k).

D The BARRIER-HEURISTIC Algorithm

In Section 4, we proposed BARRIER-GREEDY with the following property: it needs to consider
only sets S where the sum of all the k knapsacks is at most 1 for them, i.e., sets S such that
γ(S) =

∑k
i

∑
a∈S ci,a ≤ 1. For scenarios with more than one knapsack, while BARRIER-GREEDY

theoretically produces a highly competitive objective value, there might be feasible solutions such
that they fill the capacity of all knapsacks, i.e., γ(S) could be very close to k for them. Unfortu-
nately, our proposed algorithms fail to find these kinds of solutions. In this section inspired by our
theoretical results, we design a heuristic algorithm (called BARRIER-HEURISTIC) that overcomes
this issue. More specifically, this algorithm is very similar to BARRIER-GREEDY with two slight
modifications: (i) Instead of Eq. (4), we use a new formula to calculate the importance of an element
a with respect to the potential function:

δS,a = (k + 1)(λ− γ(S))wS,a − (Ω− (k + 1)f(S))γa , (6)

where 1 ≤ λ ≤ k. This modification allows us to include sets with γ(S) > 1 for the outcome of
algorithms as δS,a could still be non-negative for them. (ii) The BARRIER-GREEDY is designed in
a way such that for a solution S, we have γ(S) ≤ 1. This fact consequently implies that the set
S satisfies all the knapsack constraints; therefore, by the algorithmic design, we can guarantee that
knapsacks are not violated. On the other hand, in Eq. (6) for values λ > 1, set S may violate one or
more of the knapsack constraints. For this reason, we need to choose the element b from a set N ′
such that for all b ∈ N ′ the set (S \ Ub) + b is feasible; and if this set N ′ is empty, i.e., there is no
such element b, we stop the algorithm and return the solution (see Line 7 of Algorithm 4)). For the
sake of completeness, we provide a detailed description of BARRIER-HEURISTIC in Algorithm 4.

In Appendix D, inspired by our theoretical results, we proposed an algorithm with a better perfor-
mance in applications with more than one knapsack. Recall we defined a modified formula for δS,a
in Eq. (6):

δS,a = (k + 1)(λ− γ(S))wS,a − (Ω− (k + 1)f(S))γa ,

where 1 ≤ λ ≤ k. We explained that this new choice of δS,a allows the BARRIER-HEURISTIC algo-
rithm to choose subsets whose their weights fill almost all the ` knapsacks. BARRIER-HEURISTIC,
with the objective of maximizing a monotone and submodular function f subject to the intersection
of a k-matchoid and ` knapsack constraints, is given as Algorithm 4.

17

Algorithm 4 BARRIER-HEURISTIC

Input: f : 2N → R≥0, membership oracles for a k-matchoid set system (N , I), and ` knapsack-
cost functions ci : N → [0, 1].

Output: A set S ⊆ N satisfying S ∈ I and ci(S) ≤ ∀i.
1: M ← maxj∈N f({j})
2: Λ← {(1 + ε)i | M/(1+ε) ≤ (1 + ε)i ≤ rM} as potential estimates of OPT
3: for Ω ∈ Λ do
4: S ← ∅.
5: for Iteraton number from 1 to r log 1

ε do
6: N ′ ← {b ∈ N \ S | (S \ Ub) + b satisfies all knapsacks}, where Ub ←

EXCHANGECANDIDATE(S, b).
7: if N ′ = ∅ then break.
8: b ← argmaxb∈N ′

(
δS,b −

∑
a∈Ub δS,a

)
for δS,a = (k + 1)(λ − γ(S))wS,a − (Ω − (k +

1)f(S))γa.
9: S ← (S \ Ub) + b, where Ub ← EXCHANGECANDIDATE(S, b).

10: while ∃a ∈ S such that δS,a ≤ 0 do Remove a from S.
11: SΩ ← S
12: return argmaxΩ∈Λf(SΩ)

E Supplementary Experiments

In Appendix E.1, we evaluate the performance of algorithms on a vertex cover application over
real-world networks. In Appendix E.2, we evaluate the performance of algorithms on a Twitter data
summarization task. Finally, in Appendix E.3, we consider a movie recommendation application.

E.1 Vertex Cover

In this experiment, we compare BARRIER-GREEDY with Greedy, Density Greedy, Fast and FAN-
TOM. We define a monotone and submodular function over vertices of a directed real-world graph
G = (V,E). Let’s w : V → R≥0 denotes a weight function on the vertices of graph G. For
a given vertex set S ⊆ V , assume N(S) is the set of vertices which are pointed to by S, i.e.,
N(S) , {v ∈ V | ∃u ∈ S such that (u, v) ∈ E}. We define f : 2V → R≥0 as follows:

f(S) =
∑

u∈N(S)∪S

wu ,

and we assign to each vertex u a weight of one. In this set of experiments, our objective is to
maximize function f subject to the constraint that we have an upper limit m on the total number
of vertices we choose, as well as an upper limit mi on the number of vertices from each social
communities. For the simplicity of our evaluations, we use a single value for all mi. This constraint
is the intersection of a uniform matroid and a partition matroid. To assign vertices to different
communities, we use the Louvain method [3]6. Besides, for each graph, we reduce the total number
of communities to five by merging smaller communities. For a knapsack constraint c, we set the
cost of each vertex u as c(u) ∝ 1 + max{0, d(u) − q}, where d(u) is the out-degree of node u
in graph G(V,E). We normalize the costs such that the average cost of each element is 1/20, i.e.,∑

u∈V c(u)

|V | = 1/20. With this normalization, we expect the average size of the largest set which
satisfies the knapsack constraint is roughly close to 20. In our experiment, we use real-world graphs
from [30] and run the algorithms for varying knapsack budgets. We also set m = 15,mi = 6 and
q = 6.

In Appendix E.1, we see the evaluations for two graphs: Facebook ego network and EU Email
exchange network. From these experiments, it is evident that BARRIER-GREEDY outperforms the
other specialized algorithms for this problem in terms of both objective value and computational
complexity. We also observe that the performance of Greedy is slightly worse than Fast and FAN-
TOM. We should point out that the running times of Greedy and Density Greedy are the two smallest,

6Available for download from: https://sourceforge.net/projects/louvain/

18

https://sourceforge.net/projects/louvain/

as these two algorithms do not make any adjustments to make them suitable for the constraints of
this application and obviously they do not provide any theoretical guarantees.

0.2 0.4 0.6 0.8 1.0

Knapsack budget

300

400

500

600

700

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(a) Facebook network

0.2 0.4 0.6 0.8 1.0

Knapsack budget

400

500

600

700

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(b) EU Email

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(c) Facebook network

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0.0

0.5

1.0

1.5

2.0

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(d) EU Email

Figure 3: Vertex cover over real graphs: We compare algorithms for varying knapsack budges based
on objective value and number of calls to the Oracle.

E.2 Twitter Text Summarization

As of January 2019, six of the top fifty Twitter accounts are dedicated primarily to news reporting.
In this application, we want to produce representative summaries for Twitter feeds of several news
agencies with the following Twitter accounts (also known as “handles”): @CNNBrk, @BBCSport,
@WSJ, @BuzzfeedNews, @nytimes, and @espn. Each of these handles has millions of followers.
Naturally, such accounts commonly share the same headlines and it would be very valuable if we
could produce a summary of stories that still relays all the important information without repetition.

In this application, we use the Twitter dataset from [23], where the keywords from each tweet are
extracted and weighted proportionally to the number of retweets the post received. To capture diver-
sity in a selected set of tweets, similar to the approach of Kazemi et al. [23], we define a monotone
and submodular function f defined over a ground setN of tweets, where we take the square root of
the value assigned to each keyword. Each tweet e ∈ N consists of a positive value vale denoting its
number of retweets and a set of `e keywords We = {we,1, · · · , we,`e} from the set of all existing
keywords W . For a tweet e, the score of a word w ∈ We is defined by score(w, e) = vale. If
w /∈ We, we define score(w, e) = 0. The function f , for a set S ⊆ N of tweets, is defined as
follows:

f(S) =
∑
w∈W

√∑
e∈S

score(w, e) .

A feasible summary should have at most five tweets from each one of the accounts with an upper
limit of 15 on the total number of tweets. Again, this constraint is the intersection of a uniform
matroid and a partition matroid. Also, it should satisfy existing knapsack constraints. For the first
knapsack c1, the cost of each tweet e is weighted proportionally to the difference between the time
of e and January 1, 2019, i.e., c1(e) ∝ |01/01/2019−T(e)|. The goal of this knapsack is to provide
a summary that mainly captures the events happened around the beginning of the year 2019. For
the second knapsack c2 the cost of tweet e is proportional to the length of each tweet |We| which
enables us to provide shorter summaries. Each unit of knapsack budget is equivalent to roughly 10
months for c1 and 26 keywords for c2, respectively.

In Figs. 4a and 4c, we compare algorithms under only one knapsack constraint. Similar to the trends
in the previous experiments, we observe that BARRIER-GREEDY provides the best utilities, where
its number of Oracle calls is competitive with respect to Fast. In Figs. 4b and 4d, we report the
experimental results subject to two knapsacks c1 and c2. We see that BARRIER-HEURISTIC returns
the solutions with the highest objective values with a fewer number of calls to the Oracle with
respect to Fast. We should emphasize that both Greedy and Density Greedy algorithms, due to their
simplicity and lack of theoretical guarantees, have the lowest computational complexities. We also
can observe, while the time complexity of FANTOM increases with higher budgets, computational
costs remain almost fixed for both our algorithm and FAST. Finally, by comparing the scenarios
with one and two knapsacks, it is evident that having more knapsacks reduces objective values
and computational complexity. The main reason for this phenomenon is that by imposing more
constraints the size of all feasible sets decreases.

19

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

1000

2000

3000

4000

5000

6000

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(a) One knapsack c1

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

1000

2000

3000

4000

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(b) Two knapsacks c1 and c2

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

1

2

3

4

5

6

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(c) One knapsack c1

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

1

2

3

4

5

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(d) Two knapsacks c1 and
c2

Figure 4: Twitter text summarization: We compare algorithms based on varying knapsack budget.
For knapsacks we have c1(e) = |01/01/2019− T(e)| and c2(e) = |We|.

E.3 Movielens Recommendation System

In the final application, our objective is to recommend a set of diverse movies to a user. For design-
ing our recommender system, we use ratings from MovieLens dataset [18], and apply the method
proposed by Lindgren et al. [32] to extract a set of attributes for each movie. For this experiment, we
consider a subset of this dataset which contains 1793 movies from the three genres of Adventure,
Animation, and Fantasy. For a ground set of movies N , assume vi represents the feature vector of
the i-th movie. Following the same approach we used in Section 5.1, we define a similarity ma-
trix M such that Mij = e−λ·dist(vi,vj), where dist(vi, vj) is the euclidean distance between vectors
vi, vj ∈ N . The objective of each algorithm is to select a subset of movies that maximizes the
following monotone and submodular function: f(S) = log det(I + αMS), where I is the identity
matrix.

The user specifies an upper limit m on the number of movies for the recommended set, as well as an
upper limitmi on the number of movies from each one of the three genres. This constraint represents
a k-matchoid independence system with k = 4, because a single movie may be identified with
multiple genres and the constraint over the genres is not a partition matroid anymore. In addition to
this k-matchoid constraint, we consider three different knapsacks. For the first knapsack c1, the cost
assigned to each movie is proportional to the difference between the maximum possible rating in
the iMDB (which is 10) and the rating of the particular movie—here the goal is to pick movies with
higher ratings. For the second and third knapsacks c2 and c3, the costs of each movie are proportional
to the absolute difference between the release year of the movie and the year 1990 and year 2004.
The implicit goal of these knapsack constraints is to pick movies with a release year which is as
close as possible to these years. More formally, for a movie v ∈ N , we have: c1(v) = 10− ratingv ,
c2(v) = |1990− yearv|, and c3(v) = |2004− yearv|. Here, ratingv and yearv , respectively, denote
the IMDb rating and the release year of movie v. We normalize the knapsacks such that the average
cost of each movie is 1/10, i.e.,

∑
v∈N ci(V)

|N | = 1/10. For simplicity, we use a single value mi = 20

for all genres, and we set λ = 0.1.

In Figs. 5a and 5c, we evaluate the algorithms for varying the maximum number of allowed movies
in the recommendation. For the knapsacks, we consider c1 and c2. In this experiment, we set the
knapsack budget to 1/4. In Figs. 5b and 5d, we compare algorithms based on different values of
the knapsack budget, where we consider all the three knapsack constraints. In both of these set-
tings, we again confirm that BARRIER-HEURISTIC, with a very modest computational complexity,
outperform state-of-the-art algorithms in terms of the quality of recommended movies.

20

5 10 15 20 25 30

Maximum number of allowed movies

10

15

20

25

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(a) Two knapsacks

0.2 0.4 0.6 0.8 1.0

Knapsack budget

10

20

30

40

O
b

je
ct

iv
e

va
lu

e

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(b) Three knapsacks

5 10 15 20 25 30

Maximum number of allowed movies

0.0

0.5

1.0

1.5

2.0

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(c) Two knapsacks

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

1

2

3

4

5

6

N
u

m
b

er
of

O
ra

cl
e

C
al

ls

×106

Barrier

Greedy

Density-Greedy

Fast

FANTOM

(d) Three knapsacks

Figure 5: Movie recommendation: We compare the performance of algorithms over the Movielens
dataset. In (a) and (c), we set the knapsack budget to 1/4. In (b) and (d), we set the maximum
cardinality of a feasible solution to 30. We set λ = 0.1.

21

	Introduction
	Related Work
	Preliminaries and Notation
	The Barrier Function and Our Algorithms
	The Barrier-Greedy Algorithm
	The Barrier-Greedy++ Algorithm

	Experimental Results
	Video Summarizing Application
	More than One Knapsack

	Conclusion
	Proof of Theorem 4.1
	The Barrier-Greedy++ Algorithm
	The Pseudocode for Barrier-Greedy++
	Proof of Theorem 4.2

	The Generalization to k-matchoids
	The Barrier-Heuristic Algorithm
	Supplementary Experiments
	Vertex Cover
	Twitter Text Summarization
	Movielens Recommendation System

