
Appendix

A Inference in the Deconvolutional Generative Model

A.1 Generative model

We choose the deconvolutional generative model (DGM) [25] as the generative feedback in CNN-F.
The graphical model of the DGM is shown in Figure 2 (middle). The DGM has the same architecture
as CNN and generates images from high level to low level. Since low level features usually have
higher dimension than high level features, the DGM introduces latent variables at each level to
account for uncertainty in the generation process.

Let y ∈ RK be label, K is the number of classes. Let x ∈ Rn be image and h ∈ Rm be encoded
features of x after k convolutional layers. In a DGM with L layers in total, g(`) ∈ RC×H×W denotes
generated feature map at layer `, and z(`) ∈ RC×H×W denotes latent variables at layer `. We use zR
and zP to denote latent variables at a layer followed by ReLU and MaxPool respectively. In addition,
we use (·)(i) to denote the ith entry in a tensor. Let W (`) and b(`) be the weight and bias parameters
at layer ` in the DGM. We use (·)(∗ᵀ) to denote deconvolutional transpose in deconvolutional layers
and (·)ᵀ to denote matrix transpose in fully connected layers. In addition, we use (·)↑ and (·)↓ to
denote upsampling and downsampling. The generation process in the DGM is as follows:

y ∼ p(y) (8)
g(L− 1) = W (L)ᵀy (9)

zP (L− 1)(i) ∼ Ber

(
eb(L−1)·g(L−1)

(i)
↑

eb(L−1)·g(L−1)
(i)
↑ + 1

)
(10)

g(L− 2) = W (L− 1)(∗ᵀ){g(L− 1)↑ � zP (L− 1)} (11)
...

zR(`)(i) ∼ Ber

(
eb(`)·g(`)

(i)

eb(`)·g(`)(i) + 1

)
(12)

g(`− 1) = W (`)(∗ᵀ){zR(`)� g(`)} (13)
...

x ∼ N (g(0), diag(σ2)) (14)

In the above generation process, we generate all the way to the image level. If we choose to stop at
layer k to generate image features h, the final generation step is h ∼ N (g(k), diag(σ2)) instead of
(14). The joint distribution of latent variables from layer 1 to L conditioning on y is:

p({z(`)}`=1:L|y) = p(z(L)|y)ΠL−1
`=1 p(z(`)|{z(k)}k≥`, y)

= Softmax

(
L∑
`=1

〈b(`), z(`)� g(`)〉
)

(15)

where Softmax(η) = exp(η)∑
η exp(η) with η =

∑L
`=1〈b(`), z(`)� g(`)〉.

A.2 Proof for Theorem 2.1

In this section, we provide proofs for Theorem 2.1. In the proof, we use f to denote the feedforward
feature map after convolutional layer in the CNN of the same architecture as the DGM, and use (·)a
to denote layers after nonlinear operators. Let v be the logits output from fully-connected layer of the
CNN. Without loss of generality, we consider a DGM that has the following architecture. We list the
corresponding feedforward feature maps on the left column:

12

g(0) = W (1)(∗ᵀ)ga(1)

Conv f(1) = W (1) ∗ x+ b(1) ga(1) = g(1)� zR(1)

ReLU fa(1) = σAdaReLU(f(1)) g(1) = W (2)(∗ᵀ)ga(2)

Conv f(2) = W (2) ∗ fa(1) + b(2) ga(2) = g(2)↑ � zP (2)

Pooling fa(2) = σAdaPool(f(2)) g(2) = W (3)ᵀv
FC v = W (3)fa(2)

We prove Theorem 2.1 which states that CNN with σAdaReLU and σAdaPool is the generative classifier
derived from the DGM by proving Lemma A.1 first.

Definition A.1. σAdaReLU and σAdaPool are nonlinear operators that adaptively choose how to activate
the feedforward feature map based on the sign of the feedback feature map.

σAdaReLU(f) =

{
σReLU(f), if g ≥ 0

σReLU(−f), if g < 0
σAdaPool(f) =

{
σMaxPool(f), if g ≥ 0

−σMaxPool(−f), if g < 0
(16)

Definition A.2 (generative classifier). Let v be the logits output of a CNN, and p(x, y, z) be the joint
distribution specified by a generative model. A CNN is a generative classifier of a generative model
if Softmax(v) = p(y|x, z).

Lemma A.1. Let y be the label and x be the image. v is the logits output of the CNN that has the
same architecture and parameters as the DGM. g(0) is the generated image from the DGM. α is a
constant. η(y, z) =

∑L
`=1〈b(`), z(`)� g(`)〉. Then we have:

αyᵀv = g(0)ᵀx+ η(y, z) (17)

Proof.
g(0)ᵀx+ η(y, z)

={W (1)(∗ᵀ){g(1)� zR(1)}}ᵀx+ (zR(1)� g(1))ᵀb(1) + (zP (2)� g(2)↑)
ᵀb(2)

=(zR(1)� g(1))ᵀ{W (1)(∗ᵀ)x+ b(1)}+ (zP (2)� g(2)↑)
ᵀb(2)

=g(1)ᵀ(zR(1)� f(1)) + (zP (2)� g(2)↑)
ᵀb(2)

={W (2)(∗ᵀ){g(2)↑ � zP (2)}}ᵀ(zR(1)� f(1)) + (zP (2)� g(2)↑)
ᵀb(2)

={g(2)↑ � zP (2)}ᵀ{W (2) ∗ (zR(1)� f(1)) + b(2)}
=(W (3)ᵀy)ᵀ↑{zP (2)� f(2)}
=α(W (3)ᵀy)ᵀ(zP (2)� f(2))↓
=αyᵀW (3)(zP (2)� f(2))↓
=αyᵀv

Remark. Lemma A.1 shows that logits output from the corresponding CNN of the DGM is propor-
tional to the inner product of generated image and input image plus η(y, z). Recall from Equation
(14), since the DGM assumes x to follow a Gaussian distribution centered at g(0), the inner product
between g(0) and x is related to log p(x|y, z). Recall from Equation (15) that conditionoal distribu-
tion of latent variables in the DGM is parameterized by η(y, z). Using these insights, we can use
Lemma A.1 to show that CNN performs Bayesian inference in the DGM.
In the proof, the fully-connected layer applies a linear transformation to the input without any bias
added. For fully-connected layer with bias term, we modify η(y, z) to η′(y, z):

η′(y, z) = η(y, z) + yᵀb(3)
The logits are computed by

v = W (3)(f(2)� z(2)) + b(3)
Following a very similar proof as of Lemma A.1, we can show that

αyᵀv = gᵀ(0) + η′(y, z) (18)

With Lemma A.1, we can prove Theorem 2.1. Here, we repeat the theorem and the assumptions on
which it is defined:

13

Assumption 2.1. (Constancy assumption in the DGM)

A. The generated image g(k) at layer k of DGM satisfies ||g(k)||22 = const.
B. Prior distribution on the label is a uniform distribution: p(y) = const.
C. Normalization factor in p(z|y) for each category is constant:

∑
z e

η(y,z) = const.

Theorem 2.1. Under Assumption 2.1, and given a joint distribution p(h, y, z) modeled by the DGM,
p(y|h, z) has the same parametric form as a CNN with σAdaReLU and σAdaPool.

Proof. Without loss of generality, assume that we generate images at a pixel level. In this case, h = x.
We use p(x, y, z) to denote the joint distribution specified by the DGM. In addition, we use q(y|x, z)
to denote the Softmax output from the CNN, i.e. q(y|x, z) = yᵀev∑K

i=1 e
v(i)

. To simplify the notation,

we use z instead of {z(`)}`=1:L to denote latent variables across layers.

log p(y|x, z)
= log p(y, x, z)− log p(x, z)

= log p(x|y, z) + log p(z|y) + log p(y)− log p(x, z)

= log p(x|y, z) + log p(z|y) + const. (∗)

=− 1

2σ2
||x− g(0)||22 + log Softmax(η(y, z)) + const.

=
1

σ2
g(0)ᵀx+ log Softmax(η(y, z)) + const. (Assumption 2.1.A)

=
1

σ2
g(0)ᵀx+ log

eη(y,z)∑
z e

η(y,z)
+ const.

=
1

σ2
g(0)ᵀx+ η(y, z) + const. (Assumption 2.1.C)

=αyᵀv + const. (Lemma A.1)

=α(log q(y|x, z) + log

K∑
i=1

ev
(i)

) + const.

=α log q(y|x, z) + const. (∗∗)
We obtain line (∗) for the following reasons: log p(y) = const. according to Assumption 2.1.B, and
log p(x, z) = const. because only y is variable, x and z are given. We obtained line (∗∗) because
given x and z, the logits output are fixed. Therefore, log

∑K
i=1 e

v(i) = const.. Take exponential on
both sides of the above equation, we have:

p(y|x, z) = βq(y|x, z) (19)

where β is a scale factor. Since both q(y|x, z) and p(y|x, z) are distributions, we have
∑
y p(y|x, z) =

1 and
∑
y q(y|x, z) = 1. Summing over y on both sides of Equation (19), we have β = 1. Therefore,

we have q(y|x, z) = p(y|x, z).

We have proved that CNN with σAdaReLU and σAdaPool is the generative classifier derived from the
DGM that generates to layer 0. In fact, we can extend the results to all intermediate layers in the
DGM with the following additional assumptions:

Assumption A.1. Each generated layer in the DGM has a constant `2 norm: ||g(`)||22 = const., ` =
1, . . . , L.

Assumption A.2. Normalization factor in p(z|y) up to each layer is constant:
∑
z e

η(y,{z(j)}j=`:L) =
const., ` = 1, . . . , L.

Corollary A.1.1. Under Assumptions A.1, A.2 and 2.1.B, p(y|f(`), {z(j)}j=`:L) in the DGM has
the same parametric form as a CNN with σAdaReLU and σAdaPool starting at layer `.

14

A.3 Proof for Proposition 2.1.B

In this section, we provide proofs for Proposition 2.1.B. In the proof, we inherit the notations that
we use for proving Theorem 2.1. Without loss of generality, we consider a DGM that has the same
architecture as the one we use to prove Theorem 2.1.

Proposition 2.1.B. Under Assumption 2.1, MAP estimate of z(`) conditioned on h, y and {z(j)}j 6=`
in the DGM is:

ẑR(`) = 1(σAdaReLU(f(`)) ≥ 0) (20)
ẑP (`) = 1(g(`) ≥ 0)� arg max

r×r
(f(`)) + 1(g(`) < 0)� arg min

r×r
(f(`)) (21)

Proof. Without loss of generality, assume that we generate images at a pixel level. In this case, h = x.
Then we have

arg max
z(`)

log p(z(`)|{z(j)}j 6=`, x, y)

= arg max
z(`)

log p({z(j)}j=1:L, x, y)

= arg max
z(`)

log p(x|y, {z(j)}j=1:L) + log p({z(j)}j=1:L|y) + log p(y)

= arg max
z(`)

log p(x|y, {z(j)}j=1:L) + η(y, z) + const. (Assumption 2.1.C and 2.1.B)

= arg max
z(`)

1

σ2
g(0)ᵀx+ η(y, z) + const. (Assumption 2.1.A)

Using Lemma A.1, the MAP estimate of zR(`) is:
ẑR(`) = arg max

zR(`)

(zR(`)� g(`))ᵀf(`)

= 1(σAdaReLU(f(`)) ≥ 0)
The MAP estimate of zP (`) is:

ẑP (`) = arg max
zP (`)

(zP (`)� g(`)↑)
ᵀf(`)

= 1(g(`) ≥ 0)� arg max
r×r

(f(`)) + 1(g(`) < 0)� arg min
r×r

(f(`))

A.4 Incorporating instance normalization in the DGM

Inspired by the constant norm assumptions (Assumptions 2.1.A and A.1), we incorporate instance
normalization into the DGM. We use (·) = (·)

||·||2 to denote instance normalization, and (·)n to denote
layers after instance normalization. In this section, we prove that with instance normalization, CNN
is still the generative classifier derived from the DGM. Without loss of generality, we consider a
DGM that has the following architecture. We list the corresponding feedforward feature maps on the
left column:

g(0) = W (1)(∗ᵀ)ga(1)

Conv f(1) = W (1) ∗ x ga(1) = gn(1)� zR(1)

Norm fn(1) = f(1) gn(1) = g(1)

ReLU fa(1) = σAdaReLU(fn(1) + b(1)) g(1) = W (2)(∗ᵀ)ga(2)

Conv f(2) = W (2) ∗ fa(1) ga(2) = gn(2)↑ � zP (2)

Norm fn(2) = f(2) gn(2) = g(2)

Pooling fa(2) = σAdaPool(fn(2) + b(2)) g(2) = W (3)ᵀv
FC v = W (3)fa(2)

15

Assumption A.3. Feedforward feature maps and feedback feature maps have the same `2 norm:
||g(`)||2 = ||f(`)||2, ` = 1, . . . , L

||g(0)||2 = ||x||2
Lemma A.2. Let y be the label and x be the image. v is the logits output of the CNN that has the
same architecture and parameters as the DGM. g(0) is the generated image from the DGM, and g(0)

is normalized g(0) by `2 norm. α is a constant. η(y, z) =
∑L
`=1〈b(`), z(`)� g(`)〉. Then we have

αyᵀv = g(0)
ᵀ
x+ η(y, z) (22)

Proof.
g(0)

ᵀ
x+ η(y, z)

={W (1)(∗ᵀ){gn(1)� zR(1)}}ᵀ x

||g(0)||2
+ (zR(1)� g(1))ᵀb(1) + (zP (2)� g(2)↑)

ᵀb(2)

=(zR(1)� gn(1))ᵀ{W (1)(∗ᵀ)x}+ (zR(1)� g(1))ᵀb(1) + (zP (2)� g(2)↑)
ᵀb(2) (Assumption A.3)

=g(1)ᵀ{zR(1)� (fn(1) + b(1))}+ (zP (2)� g(2)↑)
ᵀb(2) (Assumption A.3)

={W (2)(∗ᵀ){gn(2)↑ � zP (2)}}ᵀ(zR(1)� f(1)) + (zP (2)� g(2)↑)
ᵀb(2)

={gn(2)↑ � zP (2)}ᵀ{W (2) ∗ (zR(1)� f(1))}+ (zP (2)� g(2)↑)
ᵀb(2)

=g(2)ᵀ{zP (2)� (fn(2) + b(2))} (Assumption A.3)

=(W (3)ᵀy)ᵀ↑{zP (2)� f(2)}
=α(W (3)ᵀy)ᵀ(zP (2)� f(2))↓
=αyᵀW (3)(zP (2)� f(2))↓
=αyᵀv

Theorem A.3. Under Assumptions A.3 and 2.1.B and 2.1.C, and given a joint distribution p(h, y, z)
modeled by the DGM with instance normalization, p(y|h, z) has the same parametric form as a CNN
with σAdaReLU, σAdaPool and instance normalization.

Proof. The proof of Theorem A.3 is very similar to that of Theorem 2.1 using Lemma A.2. Therefore,
we omit the detailed proof here.

Remark. The instance normalization that we incorporate into the DGM is not the same as the
instance normalization that is typically used in image stylization [35]. The conventional instance
normalization computes output y from input x as y = x−µ(x)

σ(x) , where µ and σ stands for mean and
standard deviation respectively. Our instance normalization does not subtract the mean of the input
and divides the input by its `2 norm to make it have constant `2 norm.

A.5 CNN-F on ResNet

We can show that CNN-F can be applied to ResNet architecture following similar proofs as above.
When there is a skipping connection in the forward pass in ResNet, we also add a skipping connection
in the generative feedback. CNN-F on CNN with and without skipping connections are shown in
Figure 8.

B Additional experiment details

B.1 Standard training on Fashion-MNIST

Experimental setup We use the following architecture to train CNN-F: Conv2d(32, 3× 3), In-
stancenorm, AdaReLU, Conv2d(64, 3× 3), Instancenorm, AdaPool, Reshape, FC(128), AdaReLU,
FC(10). The instance normalization layer we use is described in Appendix A.4. All the images are
scaled between [−1,+1] before training. We train both CNN and CNN-F with Adam [13], with
weight decay of 0.0005 and learning rate of 0.001.
We train both CNN and CNN-F for 30 epochs using cross-entropy loss and reconstruction loss at
pixel level as listed in Table 1. The coefficient of cross-entropy loss and reconstruction loss is set to be

16

FC

ReLU

IN

Conv

ReLU

IN

Conv

𝑥

FC

𝑣

IN

ReLU

Conv

IN

ReLU

Conv

𝑔(0)

𝑣

…

FC

ReLU

IN

Conv2

Conv1

ReLU

IN

ReLU

IN

Conv2

ReLU

IN

FC

IN

ReLU

Conv2

IN

ReLU

Conv1

IN

ReLU

Conv2

IN

ReLU

…
VGG/Allconv/…

ResNet

Figure 8: CNN-F on CNN with and without skipping connections.

1.0 and 0.1 respectively. We use the projected gradient descent (PGD) method to generate adversarial
samples within L∞-norm constraint, and denote the maximum L∞-norm between adversarial images
and clean images as ε. The step size in PGD attack is set to be 0.02. Since we preprocess images to
be within range [−1,+1], the values of ε that we report in this paper are half of their actual values to
show a relative perturbation strength with respect to range [0, 1].

Adversarial accuracy against end-to-end attack Figure 9 shows the results of end-to-end (e2e)
attack. CNN-F-5 significantly improves the robustness of CNN. Since attacking the first forward
pass is more effective than end-to-end attack, we report the adversarial robustness against the former
attack in the main text. There are two reasons for the degraded the effectiveness of end-to-end attack.
Since σAdaReLU and σAdaPool in the CNN-F are non-differentiable, we need to approximate the gradient
during back propagation in the end-to-end attack. Furthermore, to perform the end-to-end attack, we
need to back propagate through unrolled CNN-F, which is k times deeper than the corresponding
CNN, where k is the number of iterations during evaluation.

0.0 0.025 0.05 0.075 0.1
epsilon

0

20

40

60

80

100

Ac
cu

ra
cy

91.1

54.6

36.6
26.4

20.4

81.2
71.5

64.6
58.7

53.7

CNN
CNN-F-5

(a) Standard training. Testing w/ FGSM.

0.0 0.025 0.05 0.075 0.1
epsilon

0

20

40

60

80

100

Ac
cu

ra
cy

91.1

39.3

6.0
0.3 0.0

81.2
69.8

57.7

44.9
33.8

CNN
CNN-F-5

(b) Standard training. Testing w/ PGD-40.

Figure 9: Adversarial robustness on Fashion-MNIST against end-to-end attack. CNN-F-k
stands for CNN-F trained with k iterations; PGD-c stands for a PGD attack with c steps. CNN-F
achieves higher accuracy on MNIST than CNN for under both standard training and adversarial
training. Each accuracy is averaged over 4 runs and the error bar indicates standard deviation.

17

B.2 Adversarial training

Fashion-MNIST On Fashion-MNIST, we use the following architecture: Conv2d(16, 1× 1), Instan-
cenorm, AdaReLU, Conv2d(32, 3× 3), Instancenorm, AdaReLU, Conv2d(32, 3× 3), Instancenorm,
AdaReLU, AdaPool(2× 2), Conv2d(64, 3× 3), Instancenorm, AdaReLU, AdaPool(2× 2), Reshape,
FC(1000), AdaReLU, FC(128), AdaReLU, FC(10). The intermediate reconstruction losses are added
at the two layers before AdaPool. The coefficients of adversarial sample cross-entropy losses and
reconstruction losses are set to 1.0 and 0.1, respectively. We scaled the input images to [-1,+1]. We
trained with PGD-7 attack with step size 0.071. We report half of the actual ε values in the paper
to show a relative perturbation strength with respect to range [0, 1]. To train the models, we use
SGD optimizer with learning rate of 0.05, weight decay of 0.0005, momentum of 0.9 and gradient
clipping with magnitude of 0.5. The batch size is set to be 256. We use polynomial learning rate
scheduling with power of 0.9. We trained the CNN-F models with one iteration for 200 epochs using
the following hyper-parameters: online update step size 0.1, ind 2 (using two convolutional layers to
encode images to feature space), clean coefficients 0.1.

CIFAR-10 On CIFAR-10, we use Wide ResNet (WRN) [39] with depth 40 and width 2. The
WRN-40-2 architecture consists of 3 network blocks, and each of them consists of 3 basic blocks
with 2 convolutional layers. The intermediate reconstruction losses are added at the layers after
every network block. The coefficients of adversarial sample cross-entropy losses and reconstruction
losses are set to 1.0 and 0.1, respectively. We scaled the input images to [-1,+1]. We trained with
PGD-7 attack with step size 0.02. We report half of the actual ε values in the paper to show a relative
perturbation strength with respect to range [0, 1]. To train the models, we use SGD optimizer with
learning rate of 0.05, weight decay of 0.0005, momentum of 0.9 and gradient clipping with magnitude
of 0.5. The batch size is set to be 256. We use polynomial learning rate scheduling with power of
0.9. We trained the models for 500 epochs with 2 iterations. For the results in Table 3, we trained the
models using the following hyper-parameters: online update step size 0.1, ind 5, clean coefficients
0.05. In addition, we perform an ablation study on the influence of hyper-parameters.

Which layer to reconstruct to? The feature space to reconstruct to in the generative feedback
influences the robustness performance of CNN-F. Table 4 list the adversarial accuracy of CNN-F
with different ind configuration, where “ind” stands for the index of the basic block we reconstruct
to in the first network block. For instance, ind=3 means that we use all the convolutional layers
before and including the third basic block to encode the input image to the feature space. Note that
CNN-F models are trained with two iterations, online update step size 0.1, and clean cross-entropy
loss coefficient 0.05.

Table 4: Adversarial accuracy on CIFAR-10 over 3 runs. ε = 8/255.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN-F (ind=3, last) 78.94± 0.16 46.03± 0.43 60.48± 0.66 68.43± 0.45 64.14± 0.99 65.01± 0.65 46.03± 0.43
CNN-F (ind=4, last) 78.69± 0.57 47.97± 0.65 56.40± 2.37 69.90± 2.04 58.75± 3.80 65.53± 0.85 47.97± 0.65
CNN-F (ind=5, last) 78.68± 1.33 48.90± 1.30 49.35± 2.55 68.75± 1.90 51.46± 3.22 66.19± 1.37 48.90± 1.30

CNN-F (ind=3, avg) 79.89± 0.26 45.61± 0.33 67.44± 0.31 68.75± 0.66 70.15± 2.21 64.85± 0.22 45.61± 0.33
CNN-F (ind=4, avg) 80.07± 0.52 47.03± 0.52 63.59± 1.62 70.42± 1.42 65.63± 1.09 65.92± 0.91 47.03± 0.52
CNN-F (ind=5, avg) 80.27± 0.69 48.72± 0.64 55.02± 1.91 71.56± 2.03 58.83± 3.72 67.09± 0.68 48.72± 0.64

Cross-entropy loss coefficient on clean images We find that a larger coefficient of the cross-
entropy loss on clean images tends to produce better end-to-end attack accuracy even though sacrific-
ing the first attack accuracy a bit (Table 5). When the attacker does not have access to intermediate
output of CNN-F, only end-to-end attack is possible. Therefore, one may prefer models with higher
accuracy against end-to-end attack. We use cc to denote the coefficients on clean cross-entropy. Note
that CNN-F models are trained with one iteration, online update step size 0.1, ind 5.

Table 5: Adversarial accuracy on CIFAR-10 over 3 runs. ε = 8/255.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN-F (cc=0.5, last) 82.14± 0.07 45.98± 0.79 59.16± 0.99 72.13± 2.99 59.53± 2.92 67.27± 0.35 45.98± 0.79
CNN-F (cc=0.1, last) 78.19± 0.60 47.65± 1.72 56.93± 9.20 66.51± 1.10 61.25± 4.23 64.93± 0.70 47.65± 1.72
CNN-F (cc=0.05, last) 78.68± 1.33 48.90± 1.30 49.35± 2.55 68.75± 1.90 51.46± 3.22 66.19± 1.37 48.90± 1.30

CNN-F (cc=0.5, avg) 83.15± 0.29 44.60± 0.53 68.76± 1.04 72.34± 3.54 68.80± 1.18 67.53± 0.48 44.60± 0.53
CNN-F (cc=0.1, avg) 80.06± 0.65 46.77± 1.38 63.43± 7.77 69.11± 0.77 66.25± 4.40 65.56± 1.08 46.77± 1.38
CNN-F (cc=0.05, avg) 80.27± 0.69 48.72± 0.64 55.02± 1.91 71.56± 2.03 58.83± 3.72 67.09± 0.68 48.72± 0.64

18

