1

22

23
24
25

26
27
28
29
30
31
32

Suppl. Material: Exploiting weakly supervised visual
patterns to learn from partial annotations

Anonymous Author(s)
Affiliation
Address

email

1 Additional Results

1.1 Synthetically generated partially annotated datasets

1.1.1 Knowledge-graph based partially annotated dataset generation

The knowledge graph used for the MS COCO panoptic segmentation dataset results [7] in Appendix B.

1.2 Real partially annotated datasets

In this section, we discuss results on the LVIS dataset [6]. LVIS dataset has 57K training and 5K test
images with 1200 categories. The label categories are categorized into three categories based on their
frequencies. We use the two highest frequency ones which result in 776 label categories. We use
3332 images from the training set for our validation set while maintaining the same label distribution.

Experimental details. We followed the same network (ResNeXt101 pretrained on ImageNet) and
optimization strategies as used in [14]. The networks have been trained using the sgd optimizer with
an initial learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. The learning rate is
decreased by a factor of 10 at the end of 10" and 20" epochs. We use a batch size of 24 with the
input image dimension as 224 x 224. The networks are trained for 36 epochs. During testing we
choose the model which has the highest mAP score on the validation dataset.

Results. We report the performance of the models on the test set of the LVIS benchmark in Tab. 1.
Since the all the labels for the test images are not annotated, we only evaluate the performance of
our model on the set of annotated labels. Hence false positive can happen only if a positively
annotated label is predicted as a negative class. Similarly, false negative can happen only if
a negatively annotated label is predicted as a positive class. We observe that our approach
performs significantly better compared to the baseline models by a margin of ~2%.

1.3 Partial label annotations when training models across multiple datasets

One of the common scenarios where datasets are partially annotated is when we have multiple
datasets. Let us consider two datasets as shown in Fig. 1. We observe the following sources of partial
label annotations.

1. Missing instance: This problem occurs when a thing/stuff is visually present in the image,
but any visual concept related to that thing/stuff was not defined while that dataset was
annotated. Let’s say that the label TENNIS is present in both datasets, while PERSON, TENNIS
RACKET is present only in Ds. If the image in Fig. 1 (b) is present in D;, it will be labeled
as tennis. However, if the image in Fig. 1 (c) is present in D, it will be labeled as TENNIS,
PERSON, TENNIS RACKET. In this case, while each of the latter categories are present
visually in Dy, they can be considered as negative during training. However, they would be
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Training Strategy | NE | wNE [3] | FE LS | SE-I (Ours) | SE-L (Ours) | SE (Ours)
mAP 19.14 | 2245 [22.18(22.56 22.51 23.76 24.11

Table 1: LVIS results
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Figure 1: Types of partial label annotations

considered as positives in D,. This discrepancy could result in sub-optimal performance,
especially when this is a frequently occurring phenomena.

2. Fine-grained mismatch problem: This problem occurs when a parent label (e.g. person) is
present in both D; and D, datasets, but the child label(s) (e.g. MAN, GIRL) is present only
in one of the datasets, say Ds. For example, if the image in Fig. 1 (a) is present only in D1,
it would be labeled as PERSON. But if the image in Fig. 1 (b) is present in D5, it would be
labeled as PERSON, MAN. This discrepancy in labeling could affect the embedding space to
get confused whether labels like PERSON, MAN, GIRL are related to the same visual concept
or not.

Thus even if the datasets are fully and correctly annotated, partial labels can still occur while
training across multiple datasets. Learning paradigms such as lifelong learning, continual learning,
incremental learning have been developed to keep training a model on increasing label sets.However,
incremental learning approaches suffer from the catastrophic forgetting problem [4, 5, 11, 12, 13].
Even current state of the art approaches have a forgetting rate of 10 — 15%. We study the partial
annotation problem here and use the baselines described in the paper and our training approach
to analyze this problem from the multi-dataset training perspective. One of the key differences of
this approach compared to incremental learning approaches is that we do use all the images across
all datasets, which is more expensive in terms of memory used to train our network. We do not
propose this approach as an incremental learning approach, but provide a new “oracle” baseline for
the incremental learning approaches.

We use the CIFAR100 [8] and MS COCO panoptic segmentation [7] datasets for this purpose.

1.3.1 Multi-label CIFAR dataset

We used the CIFAR-100 dataset [8] for this purpose. There are 20 super-classes, each of which have
5 children, forming a total of 100 classes. We added more labels to this structure to replicate a similar
hierarchy structure such as RKGv2. The root of the tree sub-divides into two children, NATURAL and
THINGS. Their sub-trees are shown in Fig. 9 in Appendix A. We defined the subsets in the manner as
shown in Tab. 2. The common classes to both datasets are LARGE_MAN-MADE_OUTDOOR_THINGS
and PEOPLE and its leaf classes, i.e., images of these classes are labeled just as is for both datasets.
Second row has the images belonging to the sub-tree corresponding to the left class being labeled
as the right-class for the Dataset 1. The third row has the similar thing, but for Dataset 2. Roughly
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Common super—classes LARGE_MAN-MADE_OUTDOOR_THINGS, PEOPLE

Missing super-classes in Dataset 1 VEHICLES_1 — VEHICLES
VEHICLES_2 — VEHICLES

HOUSEHOLD_ELECTRICAL_DEVICES — HOUSEHOLD_ITEMS

FLOWERS — NATURAL

Missing super-classes in Dataset 2 FRUIT_AND._VEGETABLES — NATURAL

Table 2: Subset class groups for multi-label CIFAR-100 dataset.

Wide ResNet DenseNet
Scenario Validation Test Validation Test
mAP meanF1 mAP meanF1 mAP meanF1 mAP meanF1

Oracle 0.7686 | 0.7717 | 0.7638 | 0.7483 || 0.7789 | 0.7739 | 0.7818 | 0.7538

FE 0.6743 | 0.70006 | 0.6789 | 0.6713 0.6618 | 0.7101 | 0.6972 | 0.6847
NE 0.6551 | 0.6789 | 0.6529 | 0.6515 0.6955 | 0.7153 | 0.6982 | 0.6868
wNE 0.6712 | 0.6885 | 0.6553 | 0.6546 0.7074 | 0.71140 | 0.7020 | 0.6827
LS 0.6896 | 0.7052 | 0.6868 | 0.6748 0.7124 | 0.7165 | 0.7113 | 0.6887
SE-I 0.7135 | 0.7202 | 0.7017 | 0.6878 0.7427 | 0.7440 | 0.7332 | 0.7101
SE-L 0.7536 | 0.7428 | 0.7533 | 0.7114 0.7749 | 0.7546 | 0.7851 | 0.7322
SE 0.7766 | 0.7570 | 0.7729 | 0.7228 0.7914 | 0.7690 | 0.7909 | 0.7360
Table 3: Mean AP and Mean F1 score on the Validation and Test sets of Multi-label CIFAR-100

Dataset 1 have 3x more data as the Dataset 2, with a total of 45k images across both. The validation
and test sets have Sk and 10k image respectively.

Experimental Details. We experimented on 40-layer Wide Resnets and DenseNets, with wide factor
of 4 and growth rate of 40 respectively. We use the same training schemes as in the original Wide
Resnet and DenseNet papers.

Results. We show the mean F1 scores on the validation and test sets in Tab. 3.

In Fig. 2, we analyze the performance based on different categories of how the labels are annotated
in our CIFAR100 subset datasets. The temperature based model corresponds to our proposed SE
approach. The different label categorizations are defined above.
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Figure 2: Subset Category-wise performance on CIFAR100 test set
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1.3.2 MS-COCO panoptic segmentation dataset

In this section, we show results on the MS-COCO panoptic segmentation dataset [10, 7] which
includes 80 thing categories and 53 stuff categories. for this purpose. To build the knowledge graph,
we start from the one defined in [1]. We add some additional parent labels such as ROOM, MAN-MADE,
ORGANISM, DEVICE and NATURAL. The final knowledge graph is shown in Appendix B. The final
number of all classes in the dataset is 164.

We divide the classes in a way such that the number of labels in Dataset 1 is 57 and the number
of labels in Dataset 2 is 139 while having 32 labels in common. The category specific pie charts
which show the categorization of labels are shown in Fig. 3. This results in 46 labels being correctly
annotated, i.e., the number of images that contain these labels match the oracle scenario. In this
setting, there are 93 labels that suffer from the missing instance problem and 23 labels suffer from
the fine-grained mismatch problem. The label-wise statistics are shown in Fig. 4. The number of
training images in the Datasets 1 and 2 is ~ 67K (58%) and ~ 48K (42%) respectively.
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Figure 5: Subset Category-wise performance on MS COCO test set

Overall Results. We followed the same network (ResNeXt101 pretrained on ImageNet) and opti-
mization strategies as used in [14, 3]. We plot the mean F1 scores on the validation set as a function
of epochs in Fig. 5(a). Using our proposed SE approach improves the performance over naive
full-exposure and no-exposure settings (and also the oracle model!).

Quantitative results on different types of missing label problems. In Fig. 5, we analyze the
performance based on different categories of how the labels are annotated in our MS COCO subset
datasets. The labels which are correctly annotated in both subsets (Correct Annotations) have the
best performance.

Performance vs fraction of missing labels. In Fig. 6, we plot the label-wise difference of the
AP performance of our approach compared with that of the ORACLE, FULL EXPOSURE and NO
EXPOSURE settings. Red represents labels with the missing instance problem, green indicates the
labels with the fine-grained mismatch problem and blue represents the labels which are correctly
annotated. Within each categorization, the labels are sorted based on the improvement in the
performance of our approach. The darkest color coding of the bar represents lesser noise in the
label annotation, while the brightest color coding indicates more noise in the label annotations. We
observe that as the fraction of noisy annotations increase, the performance of ORACLE and the NO
EXPOSURE settings are better than ours. Hence when the noisy annotations are less, using fully
exposed label space with some temperature parameter helps the overall performance. For fine-grained
labels, we perform better than the no-exposure setting for most categories.

Performance vs #oracle annotations. In Fig. 7, we plot the label-wise difference in performances
where the brightness of the color bars vary based on the # oracle annotations. For the ORACLE and
NO EXPOSURE settings, we observe that our approach works better for labels which have lesser #
number of annotations. As the number of annotations increase, we are similar to the baseline settings.

References

[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In
CVPR, pages 1209-1218, 2018.

[2] Francisco M Castro, Manuel J Marin-Jiménez, Nicolds Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In ECCV, pages 233-248, 2018.


http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_f1.png
http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_ap.png

118
119

120
121

122
123

124
125

126
127

128
129

130

131
132

133
134

135
136

137
138

139
140

Full Exposure Oracle

No Exposure

AP

Figure 6: MS COCO Label-wise Performance (Sorted by the AP score). Increasing color brightness
of the bars indicate increasing fraction of missing annotations.

(3]

(4]

(5]

(6]

(7]

(8]

(91
(10]

(11]

[12]

(13]

(14]

Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classification
with partial labels. In CVPR, 2019.

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128 — 135, 1999.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks, 2013.

Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance segmentation.
In CVPR, 2019.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dolldr. Panoptic segmentation.
In CVPR, pages 9404-9413, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE TPAMI, 40(12):2935-2947, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll4r,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109-165. Elsevier, 1989.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jiirgen Schmidhuber.
Compete to compute. In NIPS, pages 2310-2318. 2013.

Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan L Yuille, and Mohammad Rastegari. FElastic:
Improving cnns with dynamic scaling policies. In CVPR, pages 2258-2267, 2019.


http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_frac_0_20_Oracle.png
http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_frac_0_20_Full_Exposure.png
http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_frac_0_20_No_Exposure.png

Oracle

Full Exposure

No Exposure

Figure 7: MS COCO Label-wise Performance (Sorted by the AP score). Increasing color brightness
of the bars indicate increasing # oracle annotations.


http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_oracle_freq_0_20_Oracle.png
http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_oracle_freq_0_20_Full_Exposure.png
http://u040d49ea6b9b57.ant.amazon.com/labels/doc/figs/coco/subset_category_labelwise_ap_oracle_freq_0_20_No_Exposure.png

141

142

A CIFAR Knowledge Graph
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Figure 8: CIFAR100 Knowledge Graph
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Figure 9: MS-COCO Knowledge Graph
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