
6 APPENDIX

This appendix provides the mathematical proofs of the theoretical results and additional experi-
ment results of our paper "Neuron Merging: Compensating for Pruned Neurons," accepted at 34th
Conference on Neural Information Processing Systems (NeurIPS 2020).

6.1 Fully Connected Layer with Bias

The overall derivation is the same as Section 3.1. The difference is that we decompose the weights
after concatenating the bias vector at the end of the weight matrix. Let xBi = [x>i |1]> ∈ RNi+1, and
WB

i = [W>
i |bi]> ∈ R(Ni+1)×Ni+1 .

Our goal is to maintain the activation vector of the (i+ 1)-th layer, which is

ai+1 = W>
i+1f(W

>
i xi + bi) = W>

i+1f((W
B
i )
>xBi ), (10)

where f is an activation function. Then, we decompose WB
i into two matrices, YB

i ∈ R(Ni+1)×Pi+1 ,
and ZBi ∈ RPi+1×Ni+1 , where 0 < Pi+1 ≤ Ni+1. Therefore, WB

i ≈ YB
i Z

B
i . Then Eq. 10 is

approximated as,
ai+1 ≈W>

i+1f((Z
B
i )
>(YB

i )
>xBi ). (11)

If f is ReLU and Zi satisfies the condition of Theorem 1,

ai+1 ≈W>
i+1(Z

B
i )
>f((YB

i )
>xBi )

= (ZBi Wi+1)
>f((Ypruned

i )>xi + bprunedi ),
(12)

where YB
i = [(Ypruned

i )>|bprunedi ]>. Ypruned
i and bprunedi denote the new weight and bias for

the merged model, respectively. After merging, bias vector is detached from the weight matrix as the
original model. Therefore, the number of neurons in the (i + 1)-th layer is reduced from Ni+1 to
Pi+1, and the corresponding entries of the bias vector are removed as well.

6.2 Proof of Theorem 1

Theorem 1. Let Z ∈ RP×N , v ∈ RP . Then,

f(Z>v) = Z>f(v), for all v ∈ RP ,

if and only if Z has only non-negative entries with at most one strictly positive entry per column.

Proof.

f(Z>v) = f(Z>)f(v) (13a)

= Z>f(v). (13b)

Let zpn denote the (p, n) element of Z, and vp denote the p-th element of v. We also denote the n-th
column vector of Z as zn. Eq. 13b is satisfied if and only if all the entries zpn are non-negative.
Claim 1.1. If Z has only non-negative entries with at most one strictly positive entry per column,
then Eq. 13a also holds.
Proof of Claim 1.1. Let us define I(n) as the row-index of the strictly positive entry in zn, or 1 if
zn = 0.

Z>v =
(
zI(n)nvI(n)

)>
.

f(Z>v) =
(
max(zI(n)nvI(n), 0)

)>
=
(
zI(n)nmax(vI(n), 0)

)>
= Z>f(v).

We used the fact that zI(n)n is non-negative in the above equation.

Claim 1.2. If there exists a column with more than one strictly positive entry, then Eq. 13a does not
hold in general.
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Proof of Claim 1.2. Without loss of generality, say z1 has K positive entries, z11, · · · , zK1, where
2 ≤ K ≤ P , and 0 otherwise. Also, we can assume that z11 ≥ z21 ≥ · · · ≥ zK1 > 0. Suppose one
v which is,

v = (vp)
> =


−1, 1 ≤ p < K
1
2 , p = K

0, K < p ≤ P.
Then the first entry of f(Z>v) is equal to 0. However, the first entry of f(Z>)f(v) is equal to zK1/2
which is not zero. Therefore, f(Z>v) 6= f(Z>)f(v).

�

6.3 Proof of Corollary 1.1

Corollary 1.1. Let Z ∈ RP×N , X ∈ RP×H×W . Then,
f(X ×1 Z

>) = f(X )×1 Z
>, for all X ∈ RP×H×W ,

if and only if Z has only non-negative entries with at most one strictly positive entry per column.

Proof. According to Kolda and Bader [11], the definition of n-mode product is multiplying each
mode-n fiber of tensor X by the matrix U. The idea can also be expressed in terms of unfolded
tensors:

Y = X ×n U⇔ Y(n) = UX(n), (14)
where X(n) denotes mode-n matricization of tensor X .

LetM = f
(
X ×1 Z

>). If we re-expressM referring to Eq. 14,

M(1) = f
(
Z>X(1)

)
= f

(
Z>
)
f
(
X(1)

)
(15a)

= Z>f
(
X(1)

)
. (15b)

Therefore,M = f(X )×1 Z
>. Claim 1.1 and Claim 1.2 can be generalized to prove that Eq. 15a

and Eq. 15b holds.

�

6.4 Proof of Equation 6a

Equation 6a.
(
Yi ×1 Z

>
i

)
~ Xi = (Yi ~ Xi)×1 Z

>
i .

Proof. For simple notation, subscript i is omitted.[(
Y ×1 Z

>)~ X ]
αβγ

=

N∑
c=1

K∑
h=1

K∑
w=1

[
Y ×1 Z

>]
αchw

Xc(h+β−1)(w+γ−1)

=

N∑
c=1

K∑
h=1

K∑
w=1

(
P∑
δ=1

YδchwZ>αδ

)
Xc(h+β−1)(w+γ−1)

=

N∑
c=1

K∑
h=1

K∑
w=1

P∑
δ=1

YδchwZ>αδXc(h+β−1)(w+γ−1).

(16)

[
(Y ~ X )×1 Z

>]
αβγ

=

P∑
δ=1

[Y ~ X ]δβγZ
>
αδ

=

P∑
δ=1

(
N∑
c=1

K∑
h=1

K∑
w=1

YδchwXc(h+β−1)(w+γ−1)

)
Z>αδ

=

N∑
c=1

K∑
h=1

K∑
w=1

P∑
δ=1

YδchwZ>αδXc(h+β−1)(w+γ−1).

(17)
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Therefore, (
Y ×1 Z

>)~ X = (Y ~ X )×1 Z
>.

�

6.5 Proof of Equation 7a

Equation 7a. Wi+1 ~
(
f (Yi ~ Xi)×1 Z

>
i

)
= (Wi+1 ×2 Zi)~ f (Yi ~ Xi)

Proof. For simple notation, let W ′ = Wi+1, N
′ = Ni+1 and subscript i is omitted. Also, let

X ′ = f(Y ~ X ),[
W ′ ~

(
f (Y ~ X )×1 Z

>)]
αβγ

=
[
W ′ ~

(
X ′ ×1 Z

>)]
αβγ

=

N ′∑
c=1

K∑
h=1

K∑
w=1

W ′αchw
[
X ′ ×1 Z

>]
c(h+β−1)(w+γ−1)

=

N ′∑
c=1

K∑
h=1

K∑
w=1

W ′αchw

(
P∑
δ=1

X ′δ(h+β−1)(w+γ−1)Z
>
cδ

)

=

N ′∑
c=1

K∑
h=1

K∑
w=1

P∑
δ=1

W ′αchwX ′δ(h+β−1)(w+γ−1)Z
>
cδ.

(18)

[(W ′ ×2 Z)~ f (Y ~ X )]αβγ = [(W ′ ×2 Z)~ X ′]αβγ

=

P∑
δ=1

K∑
h=1

K∑
w=1

[W ′ ×2 Z]αδhw X
′
δ(h+β−1)(w+γ−1)

=

P∑
δ=1

K∑
h=1

K∑
w=1

 N ′∑
c=1

W ′αchwZδc

X ′δ(h+β−1)(w+γ−1)

=

N ′∑
c=1

K∑
h=1

K∑
w=1

P∑
δ=1

W ′αchwX ′δ(h+β−1)(w+γ−1)Z
>
cδ.

(19)

Therefore,
W ′ ~

(
f (Y ~ X )×1 Z

>) = (W ′ ×2 Z)~ f (Y ~ X ) .
�

6.6 Image Classification Results on ImageNet

In Table 4, we present the test results of VGG-16 and ResNet-34 on ImageNet. We prune only the
last convolution layer of VGG-16 as most of the parameters come from fully connected layers. For
ResNet-34, we prune all convolution layers in equal proportion. Due to the large scale of the dataset,
the initial accuracy right after the pruning drops rapidly as the pruning ratio increases. However, our
merging recovers the accuracy in all cases, showing our idea is also effective even for large-scale
datasets like ImageNet.

6.7 Effect of Hyperparameter t

In this section, we analyze the effect of the hyperparameter t in the case of ResNet-56. The average
cosine similarity between filters of ResNet is lower than that of over-parameterized models. Thus, it
is more sensitive to the hyperparameter t, which is used as the minimum cosine similarity threshold
of compensated filters.

Fig. 5(a) shows the distribution of the maximum cosine similarity, which is the value between each
filter and the nearest one. The variance and the median value of the maximum cosine similarity tend
to decrease toward the back layers of ResNet-56. In the back layers, the cosine similarity values
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Table 4: Performance comparison of pruning and merging for VGG-16 and ResNet-34 on ImageNet
dataset without fine-tuning. ‘Param. #’ denotes absolute parameter number of pruned/merged models.
For VGG, ‘Last-{}%’ denotes the pruning ratio of the last convolution layer.

Pruning
Ratio Criterion Top 1 Acc. Top 5 Acc. Param. #

Prune Merge Acc. ↑ Prune Merge Acc. ↑
VGG-16 73.36% 91.51% 138M

Last-50%
l1-norm 57.00% 61.18% 4.18% 81.05% 84.90% 3.85%

85Ml2-norm 56.85% 60.82% 3.98% 81.41% 84.90% 3.49%
l2-GM 54.96% 60.54% 5.58% 79.79% 84.81% 5.01%

Last-60%
l1-norm 47.70% 53.78% 6.08% 73.61% 80.44% 6.83%

55Ml2-norm 47.99% 54.13% 6.13% 74.45% 80.74% 6.29%
l2-GM 47.23% 53.12% 5.88% 73.67% 80.22% 6.55%

Last-70%
l1-norm 34.75% 43.26% 8.51% 60.06% 71.62% 11.56%

64Ml2-norm 35.15% 43.99% 8.84% 60.86% 72.49% 11.63%
l2-GM 36.18% 43.57% 7.39% 62.04% 72.18% 10.14%

ResNet-34 73.31% 91.42% 21M

10%
l1-norm 62.08% 66.30% 4.22% 84.85% 87.35% 2.50%

19Ml2-norm 63.71% 66.77% 3.07% 85.78% 87.63% 1.85%
l2-GM 61.79% 66.58% 4.79% 84.46% 87.53% 3.07%

20%
l1-norm 40.66% 53.95% 13.29% 67.32% 78.66% 11.34%

17Ml2-norm 42.80% 55.37% 12.57% 68.65% 79.59% 10.93%
l2-GM 43.47% 55.70% 12.23% 69.12% 79.75% 10.63%

30%
l1-norm 12.52% 35.56% 23.04% 29.43% 61.07% 31.64%

15Ml2-norm 17.06% 37.43% 20.37% 35.84% 62.63% 26.79%
l2-GM 15.81% 36.05% 20.24% 33.45% 61.29% 27.84%

(a) Maximum cosine similarity distribution (b) Relationship between t and accuracy

Figure 5: Cosine similarity analysis of ResNet-56 on CIFAR-10. (a) is the boxplot of the maximum
cosine similarity of filters within each layer. The x-axis represents the position of the layer in the
model. For example, ‘1-1’ indicates the first pruned layer in the first residual block. (b) is the
relationship between the cosine threshold t and accuracy under different pruning ratios: 30%, 40%,
and 50%. λ is set to 1 to select filters based on the cosine similarity only.

are mostly distributed between 0.1 and 0.3. This level of cosine similarity might seem too low to
be meaningful. Nevertheless, the highest accuracy is obtained when all the filters with the cosine
similarity over 0.15 are compensated for, as shown in Fig. 5(b). This trend appears in all three pruning
ratios. As the pruning ratio increases, both the accuracy gain and fluctuation are more prominent.
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