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Abstract

MOBA games, e.g., Honor of Kings, League of Legends, and Dota 2, pose grand
challenges to Al systems such as multi-agent, enormous state-action space, complex
action control, etc. Developing Al for playing MOBA games has raised much
attention accordingly. However, existing work falls short in handling the raw game
complexity caused by the explosion of agent combinations, i.e., lineups, when
expanding the hero pool in case that OpenAl’s Dota Al limits the play to a pool of
only 17 heroes. As a result, full MOBA games without restrictions are far from
being mastered by any existing Al system. In this paper, we propose a MOBA
Al learning paradigm that methodologically enables playing full MOBA games
with deep reinforcement learning. Specifically, we develop a combination of novel
and existing learning techniques, including curriculum self-play learning, policy
distillation, off-policy adaption, multi-head value estimation, and Monte-Carlo
tree-search, in training and playing a large pool of heroes, meanwhile addressing
the scalability issue skillfully. Tested on Honor of Kings, a popular MOBA game,
we show how to build superhuman Al agents that can defeat top esports players.
The superiority of our Al is demonstrated by the first large-scale performance test
of MOBA Al agent in the literature.

1 Introduction

Artificial Intelligence for games, a.k.a. Game Al, has been actively studied for decades. We have
witnessed the success of Al agents in many game types, including board games like Go [30]], Atari
series [21]], first-person shooting (FPS) games like Capture the Flag [[15]], video games like Super
Smash Bros [6], card games like Poker [3], etc. Nowadays, sophisticated strategy video games
attract attention as they capture the nature of the real world [2]], e.g., in 2019, AlphaStar achieved the
grandmaster level in playing the general real-time strategy (RTS) game - StarCraft 2 [33].

As a sub-genre of RTS games, Multi-player Online Battle Arena (MOBA) has also attracted much
attention recently [38} 136, 2]]. Due to its playing mechanics which involve multi-agent competition
and cooperation, imperfect information, complex action control, and enormous state-action space,
MOBA is considered as a preferable testbed for Al research [29} 25]]. Typical MOBA games include
Honor of Kings, Dota, and League of Legends. In terms of complexity, a MOBA game, such as
Honor of Kings, even with significant discretization, could have a state and action space of magnitude
1020000 36, while that of a conventional Game Al testbed, such as Go, is at most 10260 [30]. MOBA
games are further complicated by the real-time strategies of multiple heroes (each hero is uniquely
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designed to have diverse playing mechanics), particularly in the 5 versus 5 (5v5) mode where two
teams (each with 5 heroes selected from the hero pool) compete against each otherﬂ

In spite of its suitability for Al research, mastering the playing of MOBA remains to be a grand
challenge for current Al systems. State-of-the-art work for MOBA 5v5 game is OpenAl Five for
playing Dota 2 [2]. It trains with self-play reinforcement learning (RL). However, OpenAl Five plays
with one major limitation ﬂ i.e., only 17 heroes were supported, despite the fact that the hero-varying
and team-varying playing mechanism is the soul of MOBA [38}129].

As the most fundamental step towards playing full MOBA games, scaling up the hero pool is
challenging for self-play reinforcement learning, because the number of agent combinations, i.e.,
lineups, grows polynomially with the hero pool size. The agent combinations are 4,900,896 (C19 x
Cfo) for 17 heroes, while exploding to 213,610,453,056 (C’ig X Cir’o) for 40 heroes. Considering the
fact that each MOBA hero is unique and has a learning curve even for experienced human players,
existing methods by randomly presenting these disordered hero combinations to a learning system
can lead to “learning collapse” [[L], which has been observed from both OpenAl Five [2] and our
experiments. For instance, OpenAl attempted to expand the hero pool up to 25 heroes, resulting in
unacceptably slow training and degraded Al performance, even with thousands of GPUs (see Section
“More heroes” in [24]] for more details). Therefore, we need MOBA Al learning methods that deal
with scalability-related issues caused by expanding the hero pool.

In this paper, we propose a learning paradigm for supporting full MOBA game-playing with deep
reinforcement learning. Under the actor-learner pattern [12], we first build a distributed RL infrastruc-
ture that generates training data in an off-policy manner. We then develop a unified actor-critic [20]]
network architecture to capture the playing mechanics and actions of different heroes. To deal with
policy deviations caused by the diversity of game episodes, we apply off-policy adaption, following
that of [38]. To manage the uncertain value of state-action in game, we introduce multi-head value
estimation into MOBA by grouping reward items. Inspired by the idea of curriculum learning [[1]] for
neural network, we design a curriculum for the multi-agent training in MOBA, in which we “start
small” and gradually increase the difficulty of learning. Particularly, we start with fixed lineups to
obtain teacher models, from which we distill policies [26], and finally we perform merged training.
We leverage student-driven policy distillation [9] to transfer the knowledge from easy tasks to difficult
ones. Lastly, an emerging problem with expanding the hero pool is drafting, a.k.a. hero selection,
at the beginning of a MOBA game. The Minimax algorithm [18]] for drafting used in existing work
with a small-sized hero pool [2] is no longer computationally feasible. To handle this, we develop an
efficient and effective drafting agent based on Monte-Carlo tree search (MCTS) [[7]].

Note that there still lacks a large-scale performance test of Game Al in the literature, due to the
expensive nature of evaluating Al agents in real games, particularly for sophisticated video games.
For example, AlphaStar Final [33] and OpenAl Five [2]] were tested: 1) against professionals for 11
matches and 8 matches, respectively; 2) against the public for 90 matches and for 7,257 matches,
respectively (all levels of players can participate without an entry condition). To provide more
statistically significant evaluations, we conduct a large-scale MOBA Al test. Specifically, we test
using Honor of Kings, a popular and typical MOBA game, which has been widely used as a testbed for
recent Al advances [36}138,137]. Al achieved a 95.2% win-rate over 42 matches against professionals,
and a 97.7% win-rate against players of High King levelr’jover 642,047 matches.

To sum up, our contributions are:

e We propose a novel MOBA Al learning paradigm towards playing full MOBA games with
deep reinforcement learning.

e We conduct the first large-scale performance test of MOBA Al agents. Extensive experiments
show that our Al can defeat top esports players.

'In this paper, MOBA refers to the standard MOBA 5v5 game, unless otherwise stated.

20penAl Five has two limitations from the regular game: 1) the major one is the limit of hero pool, i.e., only
a subset of 17 heroes supported; 2) some game rules were simplified, e.g., certain items were not allowed to buy.

*In Honor of Kings, a player’s game level can be: No-rank, Bronze, Silver, Gold, Platinum, Diamond,
Heavenly, King (a.k.a, Champion) and High King (the highest), in ascending order.



2 Related Work

Our work belongs to system-level Al development for strategy video game playing, so we mainly
discuss representative works along this line, covering RTS and MOBA games.

General RTS games StarCraft has been used as the testbed for Game Al research in RTS for many
years. Methods adopted by existing studies include rule-based, supervised learning, reinforcement
learning, and their combinations [23| [34)]. For rule-based methods, a representative is SAIDA,
the champion of StarCraft Al Competition 2018 (see https://github.com/TeamSAIDA/SAIDA).
For learning-based methods, recently, AlphaStar combined supervised learning and multi-agent
reinforcement learning and achieved the grandmaster level in playing StarCraft 2 [33]]. Our value
estimation (Section [3.2)) shares similarity to AlphaStar’s by using invisible opponent’s information.

MOBA games Recently, a macro strategy model, named Tencent HMS, was proposed for MOBA
Game Al [36]. Specifically, HMS is a functional component for guiding where to go on the map
during the game, without considering the action execution of agents, i.e., micro control or micro-
management in esports, and is thus not a complete Al solution. The most relevant works are Tencent
Solo [38]] and OpenAl Five [2]]. Ye et al. [38] performed a thorough and systematic study on the
playing mechanics of different MOBA heroes. They developed a RL system that masters the micro
control of agents in MOBA combats. However, only 1v1 solo games were studied without the much
more sophisticated multi-agent 5v5 games. On the other hand, the similarities between this work
and Ye et al. [38] include: the modeling of action heads (the value heads are different) and off-policy
correction (adaption). In 2019, OpenAl introduced an Al for playing 5v5 games in Dota 2, called
OpenAl Five, with the ability to defeat professional human players [2]. OpenAl Five is based on
deep reinforcement learning via self-play. It trains using Proximal Policy Optimization (PPO) [28]].
The major difference between our work and OpenAl Five is that the goal of this paper is to develop
Al programs towards playing full MOBA games. Hence, methodologically, we introduce a set of
techniques of off-policy adaption, curriculum self-play learning, value estimation, and tree-search
that addresses the scalability issue in training and playing a large pool of heroes. On the other
hand, the similarities between this work and OpenAl Five include: the design of action space for
modeling MOBA hero’s actions, the use of recurrent neural network like LSTM for handling partial
observability, and the use of one model with shared weights to control all heroes.

3 Learning System

To address the complexity of MOBA game-playing, we use a combination of novel and existing
learning techniques for neural network architecture, distributed system, reinforcement learning,
multi-agent training, curriculum learning, and Monte-Carlo tree search. Although we use Honor of
Kings as a case study, these proposed techniques are also applicable to other MOBA games, as the
playing mechanics across MOBA games are similar.

3.1 Architecture

MOBA can be considered as a multi-agent Markov game with partial observations. Central to our Al
is a policy mg(at|st) represented by a deep neural network with parameters 6. It receives previous
observations and actions s; = 01.¢, a1.4—1 from the game as inputs, and selects actions a; as outputs.
Internally, observations o; are encoded via convolutions and fully-connected layers, then combined as
vector representations, processed by a deep sequential network, and finally mapped to a probability
distribution over actions. The overall architecture is shown in Fig.

The architecture consists of general-purpose network components that model the raw complexity
of MOBA games. To provide informative observations to agents, we develop multi-modal features,
consisting of a comprehensive list of both scalar and spatial features. Scalar features are made up
of observable units’ attributes, in-game statistics and invisible opponent information, e.g., health
point (hp), skill cool down, gold, level, etc. Spatial features consist of convolution channels extracted
from hero’s local-view map. To handle partial observability, we resort to LSTM [14] to maintain
memories between steps. To help target selection, we use target attention [38, 2|, which treats the
encodings after LSTM as query, and the stack of game unit encodings as attention keys. To eliminate
unnecessary RL explorations, we design action mask, similar to [38]. To manage the combinatorial
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Figure 1: Our neural network architecture.

action space of MOBA, we develop hierarchical action heads and discretize each head. Specifically,
Al predicts the output actions hierarchically: 1) what action to take, e.g., move, attack, skill releasing,
etc; 2) who to target, e.g., a turret or an enemy hero or others; 3) how to act, e.g., a discretized
direction to move.

3.2 Reinforcement Learning

We use the actor-critic paradigm [20]], which trains a value function Vj(s;) with a policy mg(a|s:).
And we use off-policy training, i.e., updates are applied asynchronously on replayed experiences.

MOBA game with a large hero pool poses several challenges when viewed as a reinforcement learning
problem: off-policy learning can be unstable due to long-term horizons, combinatorial action space
and correlated actions; a hero and its surroundings are evolving and ever-changing during the game,
making it difficult to design reward and estimate the value of states and actions.

Policy updates. We assume independence between action heads, so as to simplify the correlations
between action heads, e.g., the direction of a skill (“How”) is conditioned on the skill type (“What”),
which is similar to [38},33]. In our large-scale distributed environment, the trajectories are sampled
from various sources of policies, which can differ considerably from the current policy 7y. To avoid
training instability, we use Dual-clip PPO [38]], which is an off-policy optimized version of the PPO

algorithm [28]]. Considering that when 7y (agi) |st) > mg,, (agi) |s;) and the advantage A, < 0, ratio

re(0) = % will introduce a big and unbounded variance since r(#) A; < 0. To handle this,
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when 4, < 0, Dual-clip PPO introduces one more clipping hyperparameter c in the objective:
,Cpoucy(é?) =, [max (min (rt(ﬂ)/it, clip(m(@)7 1—¢1+ e) At) , c/lt)} , €))
where ¢ > 1 indicates the lower bound, and e is the original clip in PPO.

Value updates. To decrease the variance of value estimation, similar to [33]], we use full information
about the game state, including observations hidden from the policy, as input to the value function.
Note that this is performed only during training, as we only use the policy network during evaluation.
In order to estimate the value of the ever-changing game state more accurately, we introduce multi-
head value (MHV) into MOBA by decomposing the reward, which is inspired by the hybrid reward
architecture (HRA) used on the Atari game Ms. Pac-Man [32]]. Specifically, we design five reward
categories as the five value heads, as shown in Fig. [T} based on game expert’s knowledge and the
accumulative value loss in each head. These value heads and the reward items contained in each
head are: 1) Farming related: gold, experience, mana, attack monster, no-op (not acting); 2) KDA
related: kill, death, assist, tyrant buff, overlord buff, expose invisible enemy, last hit; 3) Damage
related: health point, hurt to hero; 4) Pushing related: attack turrets, attack enemy home base; 5)
Win/lose related: destroy enemy home base.

LU (g) — Fy [ Z (RE— V¥, V= Z wp V¥, 2)
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where RF and f/;k are the discounted reward sum and value estimation of the k*" head, respectively.
Then, the total value estimation is the weighted sum of the head value estimates.
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Figure 2: The flow of curriculum self-play learning: 1) Small task with small model. We divide
heroes into groups, and start with training fixed lineups, i.e., 5 fixed heroes VS another 5 fixed heroes,
via self-play RL. 2) Distillation. We adopt multi-teacher policy distillation. 3) Continued learning.

3.3 Multi-agent Training

As discussed, large hero pool leads to a huge number of lineups. When using self-play reinforcement
learning, the 10 agents playing one MOBA game is faced with a non-stationary moving-target problem
[4}13]]. Furthermore, the lineup varies from one self-play to another, making policy learning even
more difficult. Presenting disordered agent combinations for training leads to degraded performance
[24]. This calls for a paradigm to guide agents learning in MOBA.

Inspired by the idea of curriculum learning [1]], i.e., machine learning models can perform better
when the training instances are not randomly presented but organized in a meaningful order which
illustrates gradually more concepts, we propose curriculum self-play learning (CSPL) to guide MOBA
Al learning. CSPL includes three phases, shown in Fig. 2] described as follows. The rule of advancing
to the next phase in CSPL is based on the convergence of Elo scores.

In Phase 1, we start with easy tasks by training fixed lineups. To be specific, in the 40-hero case, we
divide the heroes to obtain four 10-hero groups. The self-play is performed separately for each group.
The 10-hero grouping is based on the balance of two 5-hero teams, with a win-rate close to 50% to
each other. The win-rate of lineups can be obtained from the vast amount of human player data. We
select balanced teams because it is practically effective to policy improvement in self-play [33)[15]].
To train teachers, we use a smaller model with almost half parameters of the final model in Phase 3,
which will be detailed in Section .11

In Phase 2, we focus on how to inherit the knowledge mastered by the fixed-lineup self-plays.
Specifically, we apply multi-teacher policy distillation [26]], using models from Phase 1 as teacher
models (7), which are merged into a single student model (my). The distillation is a supervised
process, based on the loss function in Eq. [3} where H > (p(s)||q(s)) denotes Shannon’s cross entropy
between two distributions over actions —FE,.,(s)[log q(als)], go is the sampling policy, V) (s) is
the value function, and heady, denotes the k-th value head mentioned in the previous section.

LU0y = Y By [ H (milso)lImo(se)) + Y (ViF(s0) = Vi (s0))°]. ©)
teacher; t heady,

With the loss of cross entropy and mean square error of value predictions, we sum up these losses
from all the teachers. As a result, the student model distills both of policy and value knowledge
from the fixed-lineup teachers. During distillation, the student model is used for exploration in the
fixed-lineup environments where teachers are trained, known as student-driven policy distillation
[9]]. The exploration outputs actions, states and the teacher’s predictions (used as guidance signal for
supervised learning) into the replay buffer.

In Phase 3, we perform continued training by randomly picking lineups in the hero pool, using the
distilled model from Phase 2 for model initialization.

3.4 Learning to draft

An emerging problem brought by expanding the hero pool is drafting, a.k.a. hero pick or hero
selection. Before a MOBA match starts, two teams go through the process of picking heroes, which



directly affects future strategies and match result. Given a large hero pool, e.g., 40 heroes (more than
10*! combinations), a complete tree search method like the Minimax algorithm used in OpenAl Five
[2] will be computationally intractable [5]].

To manage this, we develop a drafting agent leveraging Monte-Carlo tree search (MCTS) [[7] and
neural networks. MCTS estimates the long-term value of each pick, and the hero with the maximum
value will be picked. The particular MCTS version we use is Upper Confidence bounds applied to
Trees (UCT) [19]. When drafting, a search tree is built iteratively, with each node representing the
state (which heroes have been picked by both teams) and each edge representing the action (pick a
hero that has not been picked) resulting to a next state.

The search tree is updated based on the four steps of MCTS for each iteration, i.e., selection, expansion,
simulation, and backpropagation, during which the simulation step is the most time-consuming. To
speed up simulation, different from [S]], we build a value network to predict the value of the current
state directly instead of the inefficient random roll-out to get the reward for backpropagation, which
is similar to AlphaGo Zero [31]]. The training data of the value network is collected via a simulated
drafting process played by two drafting strategies based on MCTS. When training the value network,
Monte-Carlo roll-out is still performed until reaching the terminal state, i.e., the end of the simulated
drafting process. Note that, for board games like Chess and Go, the terminal state determines the
winner of the match. However, the end of the drafting process is not the end of a MOBA match, so we
cannot get match results directly. To deal with this, we first build a match dataset via self-play using
the RL model trained in Section[3.3] and then we train a neural predictor for predicting the win-rate
of a particular lineup. The predicted win-rate of the terminal state is used as the supervision signal
for training the value network. The architectures of the value network and the win-rate predictor are
two separate 3-layer MLPs. For the win-rate predictor, the input feature is the one-hot representation
of the 10 heroes in a lineup, and the output is the win-rate ranged from O to 1. For the value network,
the input representation is the game state of the current lineup, containing one-hot indexes of picked
heroes in the two teams, default indexes of unpicked heroes, and the index of the team which is
currently picking, while the output is the value of the state. On the other hand, the selection, expansion
and backpropagation steps in our implementation are the same as the normal MCTS [19, 5]].

3.5 Infrastructure

To manage the variance of stochastic gradients introduced by MOBA agents, we develop a scalable
and loosely-coupled infrastructure to construct the utility of data parallelism. Specifically, our
infrastructure follows the classic Actor-Learner design pattern [[12]. Our policy is trained on the
Learner using GPUs while the self-play happens on the Actor using CPUs. The experiences,
containing sequences of observations, actions, rewards, etc., are passed asynchronously from the
Actor to a local replay buffer on the Learner. Significant efforts are dedicated to improving the
system throughput, e.g., the design of transmission mediators between CPUs and GPUs, the IO cost
reduction on GPUs, which are similar to [38]]. Different from [38]], we further develop a centralized
inference module on the GPU side to optimize resource utilization, similar to the Learner design in a
recent infrastructure called Seed RL [11]].

4 Evaluation

4.1 Experimental Setup

We test on Honor of Kings, which is the most popular MOBA game worldwide and has been actively
used as the testbed for recent Al advances [[10, 35,116, 136, 138, 137].

Our RL infrastructure runs over a physical computing cluster. To train our AI model, we use 320
GPUs and 35,000 CPUs, referred to as one resource unit. For each of the experiments conducted
below, including ablation study, time and performance comparisons, we use the same quantity of
resources to train, i.e., one resource unit, unless otherwise stated. Our cluster can support 6 to 7 such
experiments in parallel. The mini-batch size per GPU card is 8192. We develop 9,227 scalar features
containing observable unit attributions and in-game stats, and 6 channels of spatial features read from
the game engine with resolution 6*17*17. Each of the teacher models has 9 million parameters,
while the final model has 17 million parameters. LSTM unit sizes for teacher and final models are
512 and 1024, respectively. LSTM time step is 16 for all models. For teacher models, we train using



half resource unit, since they are relatively small-sized. To optimize, we use Adam [17] with initial
learning rate 0.0001. For Dual-clip PPO, the two clipping hyperparameters € and c are set as 0.2
and 3, respectively. The discount factor is set as 0.998. We use generalized advantage estimation
(GAE) [27]] for reward calculation, with A = 0.95 to reduce the variance caused by delayed effects.

For drafting, the win-rate predictor is trained with a match dataset of 30 million samples. These
samples are generated via self-play using our converged RL model trained from CSPL. And the value
network is trained using 100 million samples (containing 10 million lineups; each lineup has 10
samples because we pick 10 heroes for a completed lineup) generated from MCTS-based drafting
strategies. The labels for the 10 samples in each lineup are the same, which is calculated using the
win-rate predictor.

To evaluate the trained Al’s performance, we deploy the Al model into Honor of Kings to play against
top human players. For online use, the response time of Al is 193 ms, including the observation delay
(133 ms) and reaction delay (about 60 ms), which is made up of processing time of feature, model,
result, and the network delay. We also measure the APM (action per minute) of Al and top human
players. The averaged APMs of our Al and top players are comparable (80.5 and 80.3, respectively).
The proportions of high APMs (APM > 300 for Honor of Kings) during games are 4% for top players
and 5% for our Al, respectively. We use the Elo rating [8] for comparing different versions of Al,
similar to other Game Al programs [30, 33].

4.2 Experimental Results
4.2.1 Al Performance

We train an Al for playing a pool of 40 heroes E] in Honor of Kings, covering all hero roles (tank,
marksman, mage, support, assassin, warrior). The scale of hero pool is 2.4x larger than previous
MOBA Al work [2]], leading to 2.1 x 10'' more agent combinations. During the drafting phase,
human players can pick heroes from the 40-hero pool. When the match starts, there are no restrictions
to game rules, e.g., players are free to build any item or use any summoner ability they prefer.

We invite professional esports players of Honor of Kings to play against our Al. From Feb. 13th,
2020 to Apr. 30th, 2020, we conduct weekly matches between Al and current professional esports
teams. The professionals were encouraged to use their skilled heroes and to try different team
strategies. In a span of 10-week’s time, a total number of 42 matches were played. Our Al won 40
matches of them (win rate 95.2%, with confidence interval (CI) [22]] [0.838, 0.994]). By comparison,
professional tests conducted by other related Game Al systems are: 11 matches for AlphaStar
Final (10 win 1 lose, CI [0.587, 0.997]), and 8 matches for OpenAl Five (8 win 0 lose, CI [0.631,
1]). A number of episodes and complete games played between Al and professionals are publicly
available at: https://sourl.cn/NVwV6L, in which various aspects of the Al are shown, including
long-term planning, macro-strategy, team cooperation, high-level turret pushing without minions,
solo competition, counter strategy to enemy’s gank, etc. Through these game videos, one can clearly
see the strategies and micro controls mastered by our Al

From May 1st, 2020 to May 5th, 2020, we deployed our Al into the official release of Honor of
Kings (Version 1.53.1.22, released on Apr. 29th, 2020; Al-game entry switch-on at 00:00:00, May
1st), to play against the public. To rigorously evaluate whether our Al can counter diverse high-level
strategies, only top ranked human players (at about the level of High King in Honor of Kings) are
allowed to participate, and participants can play repeatedly. To encourage engagement, players who
can defeat the Al will be given a honorary title and game rewards in Honor of Kings. As a result, our
Al was tested against top human players for 642,047 matches. AI won 627,280 of these matches,
leading to a win-rate of 97.7% with confidence interval [0.9766, 0.9774]. By comparison, public tests
from the final version of AlphaStar and OpenAl Five are 90 matches and 7,257 matches, respectively,
with no requirements of game level to the participated human players.

*40-hero pool: Di Renjie, Consort Yu, Marco Polo, Lady Sun, Gongsun Li, Li Yuanfang, Musashi Miyamoto,
Athena, Luna, Nakoruru, Li Bai, Zhao Yun, Wukong, Zhu Bajie, Wang Zhaojun, Wu Zetian, Mai Shiranui,
Diaochan, Gan&Mo, Shangguan Wan’er, Zhang Liang, Cao Cao, Xiahou Dun, Kai, Dharma, Yao, Ma Chao,
Ukyo Tachibana, Magnus, Hua Mulan, Guan Yu, Zhang Fei, Toro, Dong Huang Taiyi, Zhong Kui, Su Lie, Taiyi
Zhenren, Liu Shan, Sun Bin, Guiguzi.
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Figure 3: The training process: a) The training of a teacher model, i.e., Phase 1 of CSPL. b) The Elo
change during distillation, i.e., Phase 2 of CSPL. The student’s converged Elo is marginally below
the teacher. ¢) and d) Compare the Elo change of CSPL with the baseline method, for the 20-hero
and 40-hero cases, respectively. Note that the baseline has no Phase 1 and Phase 2. CSPL has better

scalability than the baseline when expanding the hero pool.

Table 1: Comparing training time of CSPL and the baseline.

#Heroes  Training method ~ Phasel Phase2  Phase3 Total time  Note

20 Baseline 0 0 192 h 192 h slow convergence

20 CSPL 72h 48 h 24h 144 h fast convergence

40 Baseline 0 0 NA (> 480 h) >480h very slow or non convergence
40 CSPL 144 h 48 h 144 h 336 h fast convergence

Prior to supporting 40 heroes, we trained a 20-hero E] Al version, using the same training paradigm.
The AI was tested against professional teams for 30 matches, and Al dominated the matches with
100% win rate (30:0). We are in the process of training a complete pool of heroes (there are 101
heroes in total in Honor of Kings as per Oct. 2020) using our paradigm.

4.2.2 Training Process

In this section, we compare the training process between our paradigm and OpenAI’s method [2]], i.e.,
randomly picking heroes, when trained with different hero pool sizes, including 20-hero and 40-hero.

Both OpenAl Five [2] and our development experience confirm that training with the minimal hero
pool (10-hero) is able to reach professional esports player’s level rapidly, whose Elo score is thereby
used as the upper limit criterion in our experiments. With this criterion, we can evaluate the detailed
learning process of different sizes of hero pools using the two methods. The 10 heroes chosen are
also included in the 20- and 40-hero pools. Note that the 10-hero lineup used for computing upper
limit Elo score does not have an overlap with the lineups for preparing teacher models during the
Phase 1 of CSPL, for fairness of evaluation.

In Fig. 3] we illustrate the whole training process of CSPL and the baseline. And in Table [T} we
compare the concrete training time between the two methods. Specifically, the Elo growing trend of a
teacher model is shown in Fig. [B}-a., from which we observe that the Elo score grows with the training
length and becomes relatively steady after about 72 hours. As mentioned, each teacher is trained
with half resource unit. Therefore, one resource unit is used to train two teacher models in parallel in
Phase 1 in practice. Fig. [B}b shows the policy distillation process, from which we can see that the Al
ability rapidly increases in the beginning, and soon converges to an Elo score that is marginally below
the teacher’s score. We empirically observe that the convergence in student-driven policy distillation
is not sensitive to the hero pool size. Both 20-hero and 40-hero cases can converge rapidly within
two days. Fig. [B}c and Fig. B}d provide a direct comparison between the two training processes. For
20-hero, we see that both CSPL and the baseline converge within a reasonable amount of time, while

320-hero pool: Athena, Consort Yu, Wu Zetian, Zhang Fei, Cao Cao, Nakoruru, Di Renjie, Wang Zhaojun,
Dharma, Toro, Luna, Marco Polo, Diaochan, Sun Bin, Kai, Li Bai, Gongsun Li, Mai Shiranui, Magnus, Guiguzi.
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Figure 4: Ablations for key components: a) comparing training methods using Elo (with CSPL and
without CSPL); b) comparing different compositions of value functions using Elo; ¢) comparing
ways of policy updates using Elo; d) Elo scores of built-in bots and supervised learning agents using
human game data and the final reinforcement learning agents; €) comparing averaged win-rates when
using different drafting methods (RD: picking heroes randomly, HWR: picking heroes with highest
win-rates, MCTS: picking heroes with our drafting method).

CSPL can converge faster than the baseline. However, for 40-hero, the baseline method results in
unacceptably slow training, which fails to converge, with an Elo score 400 lower than the upper limit
even being trained for 480 hours. By comparison, CSPL converges much faster using a total amount
of training time of about 336 hours. Overall, training MOBA Al playing a large hero pool benefits
significantly from our proposed method.

4.2.3 Ablations

To further analyze the components in our method, we have run several internal ablations, as shown
in Fig. 4] All these comparative experiments are carried out based on the final 40-hero Al version
with equal training time and resource. We observe that, for multi-agent training, training with CSPL
is helpful to the final AI performance (Fig. f}a). For value estimation, using invisible opponent
information and multi-head value can both increase the Elo score effectively (Fig. [@}b), when
compared with the baseline value estimation method in OpenAl Five [2]|. Fig. B}c indicates that
applying dual-clip PPO is beneficial to the ability of our agents, due to its training stability, as
analyzed in Section[3.2] In Fig. {i}d, the Elo scores of built-in bots, supervised learning agents and
the final reinforcement learning agents are provided. Ratings are anchored by a bot that never acts.
Finally, drafting methods are compared in Fig. @}e. The number of matches played for each pair of
drafting strategies is 1000. We can see that our proposed drafting method (MCTS-based) outperforms
RD (each time, sample an unpicked hero randomly) and HWR (pick the hero with highest win-rates
based on frequency counts), with 0.86 and 0.68 mean win-rates, respectively.

5 Conclusion and Future Work

In this paper, we proposed a MOBA Al learning paradigm towards playing full MOBA games with
deep reinforcement learning. We developed a combination of novel and existing learning techniques,
including off-policy adaption, multi-head value estimation, curriculum self-play learning, multi-
teacher policy distillation, and Monte-Carlo tree search, to deal with the emerging problems caused
by training and playing a large pool of heroes. Tested on Honor of Kings, the most popular MOBA
game at present, our Al can defeat top human players with statistical significance. To the best of our
knowledge, this is the first reinforcement learning based MOBA Al program that can play a pool of
40 heroes and more. Furthermore, there has been no Al program for sophisticated strategy video
games working with our large-scale, rigorous, and repeated performance testing.

In the future, we will continue to work on complete hero pool support, and to investigate more
efficient training methods to further shorten the MOBA Al learning process. To facilitate research on
game intelligence, we will also develop subtasks of MOBA-game-playing for the AI community.



6 Broader Impact

To the research community. MOBA (Multiplayer Online Battle Arena) poses a grand challenge
to the AI community. We would believe that mastering a typical MOBA game without restrictions
will become the next Al milestone like AlphaGo or AlphaStar. To this end, this paper is introducing
a MOBA Al learning paradigm towards this goal. Moreover, the proposed methodology is based
on general-purpose machine learning components that are applicable to other similar multiplayer
domains. Our results suggest that curriculum-guided reinforcement learning can help handle very
complex tasks involving multi-agent competition and cooperation, real-time decision-making, im-
perfect observation, complex strategy space, and combinatorial action space. We herewith expect
this work to provide inspirations to other complex real-world problems, e.g., real-time decisions of
robotics.

To the game industry. Honor of Kings, published by Tencent, has a tremendously large user group.
It was reported to be the world’s most popular and highest-grossing game of all time, as well as the
most downloaded App worldwide ﬂ Our AI has found several real-world applications in the game,
and is changing the way that MOBA game designers work, particularly game balance designers,
elaborated as follows: 1) Game balance testing. In MOBA and many other game types, balancing
the ability of each character is essential. The numerical values and skill-sets design of a MOBA
hero, e.g., the physical/magical attack value, blood, and skill types, are traditionally set based on the
experience of game balance designers. Value adjustments to a hero must be tested in the Beta game
servers for months, to see its win-rate in the hero pool through a significantly large number of human
matches. In self-play reinforcement learning, the agents are very sensitive to feature changes and
hero adjustments affect the win-rate of the team. Using similar techniques presented in this paper, we
have constructed a balance testing tool for Honor of Kings. 2) PVE (player vs environment) game
mode. We had deployed earlier checkpoints trained by our method (with a much weaker ability than
the Al in this paper, mainly for entertainment) into Honor of Kings. These checkpoints are for players
at all levels. 3) AFK hosting. It happens that players in casual matches drop offline or AFK (away
from the keyboard) during a game due to an unstable network, temporary emergencies, etc. We have
developed a preliminary learning-based Al to host the dropped players.

To the esports community. The playing style of our Al is different from normal playing of human
esports players E] For example, in MOBA, a commonly seen opening-strategy for human teams is the
three-lane-strategy, i.e., marksman and warrior heroes go to bottom and top lanes, respectively, while
the mage hero plays the middle. However, such a strategy has seldom been adopted by the Al team.
Our Al has its way of fast upgrading and team cooperation, which has inspired new strategies to
professional players. As commented by a professional coach, “AI’s resource allocation is a bit weird
but effective. After trying out some of Al’s playing style, we observe a slight increase of gold and
experience gained during certain game phases. Another finding given by Al is that some marksman
heroes are suitable to play middle, apart from playing bottom. These are interesting and helpful to us.”
In the future, we would believe that with larger hero pool support, the strategies explored by self-play
reinforcement learning will have an even broader impact on how esports players play the game.
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